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Abstract: A two-stage simulation-based framework is proposed to derive Identification Robust
confidence sets by applying Indirect Inference, in the context of Autoregressive Moving Average
(ARMA) processes for finite samples. Resulting objective functions are treated as test statistics, which
are inverted rather than optimized, via the Monte Carlo test method. Simulation studies illustrate
accurate size and good power. Projected impulse-response confidence bands are simultaneous by
construction and exhibit robustness to parameter identification problems. The persistence of shocks
on oil prices and returns is analyzed via impulse-response confidence bands. Our findings support
the usefulness of impulse-responses as an empirically relevant transformation of the confidence set.
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1. Introduction

Indirect inference refers to resampling-based statistical methods that use simulations to calculate
estimating functions including likelihoods, scores or moments. The idea of replacing complicated or
intractable statistical functions by computer simulations motivated initial applications and underlying
theory; see Smith (1993); Gouriéroux et al. (1993); Gouriéroux and Monfort (1996) and Gallant and
Tauchen (1996). Since then, available evidence suggests that indirect inference often works better
than traditional methods in finite samples for bias or misspecification corrections under various
situations.1 We propose a two-stage framework that can yield identification robust confidence sets via
Indirect Inference for finite samples. The primary focus concerns inference in Autoregressive Moving
Average (ARMA) models and production of simultaneous confidence bands from its impulse-response
functions.2

Despite the simplicity of ARMA models in time series, identification and boundary issues raise
enduring complications for estimation and inference. First, Autoregression (AR) unit roots cause
the so-called non-uniform convergence problem, which means that methods requiring stationarity

1 See, for example, Robins et al. (2000); Ronchetti and Trojani (2001); Calzolari et al. (2004); Dridi et al. (2007);
Gouriéroux et al. (2010); Li (2010); Dominicy and Veredas (2013); Fuleky and Zivot (2014); Calvet and Czellar (2015);
Chaudhuri et al. (2018) and Forneron and Ng (2018).

2 On simultaneous inference in related contexts see e.g., Jordà (2009); Jordà and Marcellino (2010); Jordà et al. (2013) on
simultaneous path forecasts, and recently Montiel et al. (2019).
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break down at, or close to the unit boundary, whereas local-to-unity motivated methods perform
poorly away from unity; see Hansen (1999); Mikusheva (2007); Andrews and Guggenberger (2010);
Gorodnichenko et al. (2012); Mikusheva (2012, 2014) and Phillips (2014). Second, identification failure
related to the invertibility of Moving Average (MA) components causes the so-called pile up effect, since
estimating functions, including likelihoods, can have a local maximum at the invertibility boundary
even when the true process is invertible; see Sargan and Bhargava (1983); Davis and Dunsmuir (1996);
Gospodinov (2002); Genton and Ronchetti (2003); Billio and Monfort (2003); Davis and Song (2011);
and Gospodinov and Ng (2015).

Third, root cancelation, also known as common factors, or parameter redundancy described,
e.g., in Harvey (1981), occurs when the AR polynomial and the MA polynomial have one or more
roots in common. Root cancelation and near-root cancelation produce spurious inference related
to lack of identification or weak-identification of the parameters in question. Identification and
inference concerns in this context have been extensively analyzed in the literature. For instance,
Ansley and Newbold (1980) document the severe bias suffered by the Maximum Likelihood
Estimation (MLE) for finite samples. Galbraith and Zinde-Walsh (1997) and references therein
focus on providing identification devices for ARMA models. Nelson and Startz (2007) emphasize
that near-root cancelations lead to spurious inference regardless of large sample sizes, even when
asymptotic theory is expected to hold. More recently, see Andrews and Cheng (2012) and
Andrews and Mikusheva (2014, 2015), most of which remains asymptotic.

Our two-stage simulation approach complements the asymptotic frameworks available in the
literature, in the sense that it presents a finite sample version; see Khalaf and Saunders (2019). Indirect
Inference relies on a binding function that links parameters of interest to auxiliary parameters, for which
simple estimators are available. The binding function admits a simulation-based approximate. Hence,
we propose the following Ordinary Least Squares (OLS) auxiliary estimates: (i) least squares in
two-sided regressions with leads and lags, (ii) least squares in long-autoregressions (AR), and (iii)
empirical autocorrelations. Methods with leads and lags generally aim to deal with feedback effects;
see Stock and Watson (1993); Dufour and Torrès (2000). AR-based approximations have long been
popular for ARMA models; see Hannan and Rissanen (1982); Galbraith and Zinde-Walsh (1994, 1997);
Ghysels et al. (2003); Guay and Scaillet (2003); Gospodinov and Ng (2015); Dufour and Pelletier (2014).
Empirical autocorrelations and related measures including cumulants and local projections have
recently been re-introduced from a minimum distance perspective; see e.g., Jordà and Kozicki (2011);
Gorodnichenko et al. (2012); Gospodinov and Ng (2015) and references therein. Our two-stage
simulation framework unifies all the above for confidence interval purposes.

The first simulation stage involves constructing a Wald-type minimum-distance metric that
matches auxiliary parameters with corresponding estimates. Typically in Indirect Inference, standard
asymptotic arguments are employed to derive confidence sets and hypothesis tests; however, these
assume that parameters are identified. In contrast to the standard extremum extimation strategy, we
propose to treat this Wald-type distance metric as a test statistic, which we invert, rather than minimize.
Inverting a test involves collecting the values of the parameter that are not rejected via this test at a
given level of significance α to construct a confidence set. Exactness and identification robustness are
achieved by applying the Monte Carlo (MC) test method from Dufour (2006) to compute simulated
p-values in a second stage. This method achieves size control 3 when the null distribution of the statistic,
even if not computable analytically, does not depend on unknown or nuisance parameters.4 In our
ARMA application, a nuisance-parameter-free distribution results from scale-invariance of OLS in AR
settings, and from the standardization inherent to empirical autocorrelations. Laslty, the confidence set
is projected to construct impulse-response confidence bands, which entails maximizing and minimizing

3 Throughout this document, size and coverage are used interchangeably; see Andrews and Cheng (2012).
4 In this regard, our work relates to Dufour and Valéry (2006, 2009) in stochastic volatility models, Dufour and Kurz-Kim (2010)

and Beaulieu et al. (2007, 2013, 2014) in models with fat-tailed fundamentals.
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each function over the non-rejected values of the parameters. The confidence intervals obtained are
thus simultaneous by construction and robust to the aforementioned identification problems.

We conduct a simulation study on ARMA and MA processes and compare our method with
MLE-based inference. Simple objective functions as in Galbraith and Zinde-Walsh (1994, 1997),
as well as over-identified criteria are considered, in addition to various lag structures. Results can be
summarized as follows. In contrast to MLE, our method eradicates pile up root cancelation problems
and boundary problems, even with very small samples, with no more than 50 observations. MLE is
oversized for both individual parameter and joint tests. None of the estimation functions steadily
outperforms the rest for all sample sizes and pairs tested. Thus, we incorporate a joint criterion,
constructed by averaging the three proposed objective functions, to exploit the power advantages
of each of them. Leads improve power for highly persistent processes. Overidentification yields
important power benefits. On balance, autocorrelation-based methods require a larger sample to
catch up power-wise with AR-based counterparts. Inverting the asymptotic Wald test based on MLE
estimates is almost infeasible at corner solutions with parameters close to the unit boundary, since in
many instances the variance-covariance matrix is not invertible. This result is expected and provides
support to our research.

Our methodology is applied with a univariate perspective to investigate the persistence of
oil shocks via impulse-responses confidence bands. We select daily spot prices of the West Texas
Intermediate (WTI), a high quality, light sweet crude oil, delivered at Cushing, Oklahoma and priced
in U.S. dollars per barrel. We focus on the logarithmic transformation of prices and returns at the
weekly and monthly frequencies. The main advantage of our method is the possibility of remaining
agnostic with respect to the process followed by these series. Among our results, we highlight that
our simultaneous impulse-response confidence bands seem well identified, despite the presence of
parameter uncertainty in these series. We find that root cancelation does not bias our results; however
it affects predictability; in particular, by obscuring the behaviour of impulse-responses for oil returns.
Hence, when the focus of the analysis is on predictability, researches should favour the study on
prices, instead of growth in prices. We find that shocks to oil prices are permanent, taking about a
decade or so to die down. Also, relying on MLE to estimate the effect of shocks when processes are
highly persistent can mislead researches when conducting estimation and forecasting. In contrast, our
proposed impulse-response confidence bands represent an empirically relevant transformation of the
joint confidence set.

We introduce our framework in Section 2 and discuss inference by test inversion in Section 3.
The ARMA special case is presented in Section 4. Simulation results are presented in Section 5.
An empirical application with focus on benchmark oil prices and returns is explored in Section 6 and
we conclude in Section 7.

2. General Framework

Consider the general model
(X , {P (ϑ) : ϑ ∈ Θ}) (1)

where X is the sample space, such that a sample of size T is represented as

X = (X1, ..., Xt, ..., XT)
′ , (2)

P (ϑ) is a probability distribution over X indexed by ϑ and Θ is the parameter space. We also asume
that ϑ can be partitioned as

ϑ = (β′, σ′)′, β ∈ Θβ, σ ∈ Θσ, (3)

where Θβ and Θσ are partitions of Θ. β is the q-dimensional parameter of interest and σ is a nuisance
parameter, which we aim to partial out.
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Pseudo-data can be simulated from (1) and an auxiliary parameter denoted λ, of dimension p ≥ q,
can be defined in a way that it is linked to β via an exact or limiting binding function, λ = L(ϑ).
In general, L(.) need not have a known analytical form. Furthermore, a simple statistic is available to
estimate λ given X.

Denote by λ̂ = Λ̂(X) the considered data-based estimate of λ where Λ̂(.) is the estimating
function. Its simulation-based counterpart, given a specific value of ϑ, can be derived, for example,
in this way: (i) creating H simulated paths,

xh(ϑ) = (xh,1(ϑ), ..., xh,t(ϑ)..., xh,T(ϑ))
′ , h = 1, ..., H, (4)

each of size T from (1) given ϑ; (ii) applying the same estimation method to each simulated path,
leading to a series of estimations,

Λ̂(xh(ϑ)), h = 1, ..., H (5)

and then (iii) computing their average as follows,

Λ(ϑ) =
1
H

H

∑
h=1

Λ̂(xh(ϑ)). (6)

The distance between Λ̂(X) and Λ(ϑ) forms the basis of Indirect Inference. A common special case
is the Wald-type distance measure (Λ̂(X)− Λ(ϑ))′Ω̂(Λ̂(X)− Λ(ϑ)) where Ω̂ is a positive definite
weighting matrix. Gouriéroux et al. (1993) suggest Ω̂ = Ip where Ip denotes a p-dimensional identity
matrix because the loss in efficiency with respect to an optimal estimator can be disregarded. This
practice is also suggested, more recently, by Gouriéroux et al. (2010).

2.1. Nuisance Parameters

Focusing on β as the parameter of interest requires a strategy to account for σ. In some settings,
σ can be easily estimated given β. Alternatively, an auxiliary estimate, or objective function that is
exactly invariant to σ can be considered. We emphasize the latter case in this study, defined via the
following assumptions that characterize the model and its respective estimating functions.

Assumption 1. In the context of model (1), an estimating function Λ̂(.) is invariant to σ, if

Λ̂(X∗) = Λ̂
(

X†
)

where X∗and X† are samples from (1) with P ((β′, σ′∗)
′) and P ((β′, σ′†)

′) , respectively, and σ∗ 6= σ† are two
different values of σ.

This assumption ensures that

Λ̂(xh((β′, σ′∗)
′)) = Λ̂(xh((β′, σ′†)

′)), h = 1, ..., H, (7)

which yields an invariant objective function for the transformation that maps X∗ into X†. Indeed,
applying Assumption 1 to the calibration in (6), we have:

Λ((β′, σ′∗)
′) =

1
H

H

∑
h=1

Λ̂(xh(β′, σ′∗)
′) (8)

=
1
H

H

∑
h=1

Λ̂(xh(β′, σ′†)
′) = Λ((β′, σ′†)

′). (9)
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It follows that σ can be set to any value in Θσ for simulation purposes with no bearing on estimation,
nor inference, via objective functions of the form

S(X; ϑ) = (Λ̂(X)−Λ(ϑ))′(Λ̂(X)−Λ(ϑ)). (10)

In line with the above cited literature, (10) uses an identity weighting matrix. Other choices are possible
as long as S(X; ϑ) remains invariant to σ, or the distribution of S(X; ϑ) does not depend on σ under
the null hypothesis that fixes β.

A common special case includes scale invariance, which implies robustness to multiplying the
data by any positive scalar a, so Assumption 1 yields the following,

xh((β′, a)′) = axh((β′, 1)′) (11)

Λ̂(aX)) = Λ̂ (X) , (12)

which together imply:
Λ̂(xh((β′, 1)′)) = Λ̂(xh((β′, a)′)). (13)

Its multivariate counterpart involves multiplying the data by an invertible matrix. For illustrations on
finite sample cases, see Beaulieu et al. (2007, 2013) and Dufour et al. (2003, 2010).

Invariance also implies that in the simulation study, σ can be set to any known value in its
parameter space, since it will be partialled-out. Hence, we simplify our notation by supressing σ in
S(X; ϑ), Λ(ϑ) and Λ̂(ϑ), and redefining them as S(X; β), Λ(β) and Λ̂(β).

3. Inference via Test Inversion

Standard applications of Indirect Inference resort to minimizing (10) and formulating adequate
regularity conditions, so that the resulting estimator, denoted β̂, is (typically) asymptotically normal
with a covariance matrix that can be estimated consistently. To compare and contrast our proposed
inference method with common practices and to define test inversion within a familiar setting, let us
revisit the traditional α-level confidence interval,

CI(g(β); α) = {g(β̂)± zα/2Σ̂1/2
g } (14)

for a given scalar function g (β), where Σ̂1/2
g denotes the relevant standard error estimate computed

(for example, via the delta-method) from the estimated asymptotic variance-covariance matrix of β̂

and zα/2 is a two-tailed standard normal critical point. As it is well known, CI(g(β); α) is derived by
solving the following inequality, over g(β0):

|g(β̂)− g(β0)|/Σ̂1/2
g ≤ zα/2. (15)

Said differently, the solution of (15) inverts a t-type test of

Hg : g(β) = g(β0), β0 known, (16)

based on the statistic |g(β̂)− g(β)|/Σ̂1/2
g .

The null hypothesis may also cover the full model specification in conjunction with testing g(β),
in which case, the alternative hypothesis is no longer restricted to g(β) 6= g(β0). Interpreting rejections
when the model is jointly tested calls for caution; and when such a test is inverted, the outcome
may be the empty set, which indicates that the model under the null is misspecified. The test that
we invert below follows these principles, in the sense that model misspecification is covered by the
alternative hypothesis.

Ideally, P[g(β) ∈ CI(g(β); α)] ≥ 1− α, at least as T → ∞. However, identification failures,
or stationarity concerns will cause intervals of this form to severely under-cover, even with large
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samples. In our research, we depart from this approach and propose a confidence set for β based on
inverting a test of the form,

H0 (β0) : β = β0, β0 known , (17)

using (10), which we treat as a test statistic. Inverting a test of H0 (β0) at a given level α consists in
collecting, numerically or analytically, the β0 values that are not rejected using the considered test at
the specified level. For example, given the right-tailed test statistic,

T (β0) = S(X, β0) = (Λ̂(X)−Λ(β0))
′(Λ̂(X)−Λ(β0)) (18)

and assuming (for the moment and for illustrative purposes) that an α -level cut-off point Tc is available,
the test inversion involves solving, over β0, the inequality T ( β0) < Tc. The solution of this inequality
is a parameter space subset, denoted CS(β; α), that satisfies:

P[β ∈ CS(β; α)] ≥ 1− α. (19)

Since the finite sample distribution of (10) is intractable, and since there is no reason to expect that a cut-off
point invariant to β0 can be found, a numerical solution is required.

We propose collecting via numerical search, the β0 values that are not rejected using a MC p-value
that we will define in the next section, denoted p̂ (β0). In other words, we propose to search for
the β0 values for which p̂ (β0) > α. The result is a joint α -level confidence region denoted CS(β; α),
as mentioned before. The set thus derived can be empty, which will provide a diagnostic test of
the hypothesized model. Said differently, an empty confidence set would occur when all values
of β are rejected at the considered level, meaning that in this case, the selected specification would
be incompatible with the available data. Our proposed variant of Indirect Inference preserves its
specification-robustness attributes. If identification is weak, the set will be unbounded or diffuse,
which will also provide useful information regarding model fit (or lack thereof).

If a confidence interval for the individual components of β or, more generally, for a given function
g(β) is desired, the above defined CS(β; α) can be projected. This implies minimizing and maximizing
g(β) over the β values in CS(β; α). We study a special case of ARMA-based impulse-response functions
that illustrates the usefulness of such projections.

3.1. Exact p-Values

We propose applying Dufour’s (2006) MC method to compute the above p̂ (β0) empirical p-value.
Given that the null distribution of the considered statistic is nuisance parameter free, the MC method
controls the type I error even if S(X, β0) is itself simulation-based, in finite samples. This method is
summarized as follows.

First, we introduce a new layer of simulation, for each value of β0: We draw L replications
satisfying the null hypothesis in (17) from the model,

xl(β0) = (xl,1(β0), ..., xl,t(β0), ..., xl,T(β0))
′, l = 1...L. (20)

These replications should be generated independently from the simulations underlying S(X, β0).
Next, we apply Λ̂(.) to each replication l leading to

Λ̂(xl(β0)), l = 1, ..., L, (21)

and compute a series of statistics that are similar to the one in (18), but now considering the vector of
the estimated parameters obtained from Λ̂(xl(β0)), for each replication l,

Sl(xl(β0)) = (Λ̂(xl(β0))−Λ(β0))
′(Λ̂(xl(β0))−Λ(β0)), (22)
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instead of the vector obtained by applying the estimation method to the data. We are able to use the
same vector of calibrated parameters, Λ(β0) from (18), due to the exchangeability property of the MC
test; see Dufour (2006). Lastly, the empirical p-value associated with the null hypothesis is computed
as

p̂ (β0) =
GL + 1
L + 1

, (23)

where GL denotes the number of times the statistic Sl(xl(β0)) is greater than or equal to the data-based
statistic S(X, β0). 5

4. ARMA Special Case

We consider the zero mean Gaussian ARMA(1,1) process of size T with unknown parameters
β = {θ, ψ},

Xt = ψXt−1 + et + θet−1, t = 1...T, (24)

with
et = σut, t = 0...T (25)

where |θ| < 1 guarantees invertibility or an Autoregressive AR(∞) representation, |ψ| < 1 ensures
stationarity in causal processes and the joint distribution of u1, ..., ut, ..., uT is known. For example, ut

can be assumed independent and identically distributed with a standard normal distribution:

ut
i.i.d.∼ N (0, 1), t = 0...T (26)

This notation implies that X0 is the pre-sample observation (i.e., it is not observed), in which case
further assumptions are needed due to our indirect inference focus. In a stationary 6 environment, X0

should be set to the following:

X0 =

(
1 + 2ψθ + θ2

1− ψ2

)1/2

σu0. (27)

Alternatively, e0 can be set to zero, which maintaining (27), fixes X0 to zero.
Gaussian and Student-t errors are considered in our Monte Carlo (MC) simulations and empirical

application; the generalized lambda family of distributions as considered in Gospodinov and Ng (2015)
is another interesting parametrization. Non-zero mean and exogenous variables can be projected
out. With regards to the above notation, we maintain σ as the nuisance parameter and we focus on
inverting tests as in (17), for H0 : β = β0.

In this context, for any positive scalar a and number of lags p, we have:

ARGMINγQ(X) = ARGMINγQ(aX) (28)

γ =
(

γ′f , γ′b

)′
, γ f =

(
γ f 1, ..., γ f p

)′
, γb =

(
γb1, ..., γbp

)′
(29)

Q(X) =
T−p

∑
t=p+1

[Xt − γ f 1Xt+1 − ...− γ f pXt+p − γb1Xt−1 − ...− γbpXt−p]
2 (30)

and

ρ̂j =
Ĉov(Xt, Xt−j)

V̂ar(Xt)
=

Ĉov(aXt, aXt−j)

V̂ar(aXt)
, j = 1...p. (31)

5 Because of our focus on invariant statistics, to draw such data generating processes (DGPs), the choice of σ is immaterial
because any value selected would give exactly the same sequence of simulated statistics in (21); thus using (23), gives exactly
the same p-value.

6 Alternatively, the data can be burned in to induce stationarity. Extensions to the mean-non stationarity framework as in
Khalaf and Saunders (2019) is a worthy research direction.
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These invariance properties guarantee that the argument that minimizes Q(.) would numericly coincide
if the data generating process (DGP) is drawn with unit variance or any other value of σ; the same
holds for the empirical autocorrelations. To simplify the notation, we use the same number of leads
and lags in Q(X), although clearly, invariance to σ does not require this restriction. The choice in
terms of the number of lags p is user defined, as it is the case with all auxiliary model-based methods.
In contrast to most existing methods, the methodology that we propose controls the significance level
for any given p and thus regardless of the truncation order. This is discussed further in the context of
our simulation study in Section 5.

Conformably, we consider three choices for our estimating function Λ̂(.): (i) two -sided OLS
estimation with forward and backward-looking components; (ii) OLS estimation of backward-looking
or long-AR; and (iii) empirical autocorrelations. For clarity, and given any sample vector
X = (X1, ..., XT)

′ of size T, we will refer to these choices as

Λ̂ f b(X) = ARGMINγQ(X), with γ =
(

γ′f , γ′b

)′
(32)

Λ̂b(X) = ARGMINγ0 Q(X), with γ0 =
(
0, γ′b

)′ (33)

Λ̂c(X) = (ρ̂1, ..., ρ̂p)
′, (34)

where Q(X) corresponds to (30) and ρ̂j is given by (31).
For each choice of the estimating function, we construct a test statistic considering the distance

between the previously estimated and the simulation-calibrated auxiliary parameters. In addition,
to be able to harvest all available information, we construct a fourth test statistic by a simple average
of those three.

Because we focus on an invariant auxiliary statistics, to compute their simulation-based
counterparts for any given value of the parameters, it suffices to create H simulated paths, xh(β) =

(xh,1, ..., xh,t, ..., xh,T)
′, as

xh,t(β) = ψxh,t−1 + uh,t + θuh,t−1, t = 1...T, h = 1...H. (35)

Population autocorrelations need not be derived by simulation; yet invariance is explicitly
imposed this way for any p. For the MA(1) special case, we also use a simplified auxiliary parameter:
We fit a long-AR to observed and simulated data and retain the coefficient of the first lag Xt−1.

4.1. Impulse-Response Confidence Bands

Impulse-response functions are the most empirically and policy relevant transformations of
ARMA parameters. If the stationarity condition is satisfied, (24) admits an MA (∞) approximation
using lags operators L,

Xt = (1− ψL)−1(1 + θL)et

= (1− φ(L))et =
∞

∑
s=0

φset−s, t = 1...T, (36)

and the empirical impulse-response coefficients can be computed following the well-known
iterative process:

φ0 = 1 (37)

φs = ψs−1(ψ + θ) where s ≥ 1. (38)

These equations define a series of known functions of the vector β = (θ, ψ), denoted gi (β), i = 1, ..., m,
that can be projected in turn, which imply minimizing and maximizing gi(β) over the β values in
CS(β; α).
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Resulting confidence intervals are simultaneous, in the following sense. Let gi
(
CS (β; α)

)
denote

the image of CS (β; α) by the function gi. Then, (19) implies that

P
[
gi (β) ∈ gi

(
CS (β; α)

)
, i = 1, . . . , m

]
≥ 1− α. (39)

The simulation study reported below includes an illustrative analysis of such projections
emphasizing close to boundary values of the MA parameter θ and the AR parameter ψ, as well
as robustness to root cancelation.

5. Simulation Study

We conduct MC simulation experiments to assess the performance of our method for MA(1) and
ARMA(1,1) processes. Our objective is to study power and size when MA parameters are close to
the non-invertibility region for both processes, and the AR parameter is close to the non-stationary
region for the ARMA. Our experiments are designed as follows. Simulated samples with number of
observations T equal to 50, 100 and 200, used here as pseudo-data, are drawn from the ARMA model in
(24). First, time series of errors are drawn from a Gaussian, or a Student-t distribution with 5 degrees
of freedom, setting σ = 1, in line with Assumption 1. These choices of sample size correspond to
samples employed in other MC studies, as well as data used in empirical applications.

The dimension of the auxiliary parameter is assessed by simulation. Power is studied by selecting
various combinations of number of parameters and paths within the simulations explored in our model.
Various tests are performed by changing the number of auxiliary parameters in our experiments
-refer to definitions in Section 2- from 1 to 3 and 8 for the MA and from 6 to 8 and 12 for the
ARMA. We take into consideration the recommendations from Galbraith and Zinde-Walsh (1994) and
Ghysels et al. (2003) for the long-AR estimation, and Gorodnichenko et al. (2012) for the estimation
with autocorrelations. We find that selecting 8 auxiliary parameters provides the highest power for
all the sample sizes. 7 Hence, we suggest that for empirical practices, the total number of auxiliary
parameters is set to 8 for each of the choices of the estimating functions, explained in Section 4: (i)
γ f = γb = 4 in the OLS estimation with forward and backward-looking components, (ii) γb = 8 in the
OLS estimation of the long-AR, and (iii) j = 8 in the estimation with empirical autocorrelations. In the
case of the simplified auxiliary parameter estimation for the MA process, the long-AR is estimated
with 8 parameters, but only the first coefficient is retained.

As part of previous experiments, we test the number of simulated paths in the first simulation
stage, setting H = 1 and H = 3, as suggested by Ghysels et al. (2003) for the MA, and also H = 5,
to examine whether it could improve power for ARMA -refer to the notation in Section 2. However,
H = 3 is finally selected, keeping the number of auxiliary parameters equal to 8, as the value which
provides the highest power for all sample sizes. The number of replications in the second simulation
step, involving the application of Dufour’s (2006) MC method, is L = 199 and we consider a level of
significance α = 0.05 -see notation in Section 3. An identity weighting matrix is used to preserve the
invariance to scale of the statistic associated to every choice of the estimating function. Lastly, 1000
replications are considered on each MC simulation experiment.

5.1. Main Results

Each pair of {MA, AR} parameters employed in the data generating process (DGP) of ARMA(1,1)
is denoted in our experiments as {θDGP, ψDGP}. Outcomes from all our simulation studies are available
upon request. We focus on the following set of pairs to illustrate our results: {θDGP, ψDGP} =

{{0.6, 0}; {0.99, 0}; {0.65,−0.65}; {0.99, 0.99}}. Note that we set the AR parameter ψDGP equal to zero

7 Useful insight beyond the ARMA (1,1) on minimum dimension is found in the literature, in particular, Galbraith and
Zinde-Walsh (1997) and more recently Gospodinov and Ng (2015).
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in (24) a priory to draw samples from MA(1) processes, for instance, when the value of θDGP is 0.6
and 0.99.

We report power in terms of empirical rejections and our main results are summarized along
the following lines. The results of the experiments conducted for MA(1) processes are presented in
Tables 1 and 2, and the studies related to the ARMA(1,1) process are shown in Tables 3 and 4. We use
abbreviations for each estimating function: OLS-FBLC, OLS-Long AR and AutoCorr correspond to the
OLS estimation with forward and backward-looking components, the OLS estimation of the long-AR
and the estimation with empirical autocorrelations, respectively. Size is controlled with our method
for all sample sizes, choices of the estimating function, and for both Gaussian and Student- t errors,
irrespective of how close the true parameters are to the unit root. It is well known that MLE gives size
distortions when the sample size is small, for both, individual parameter tests and joint tests. Size
seems to improve for the MLE when the sample size is increased and the parameters are far from the
unit root regions. However, when the parameters approach the unit root regions, size fails for the MLE
as the sample size increases, which confirms its asymptotic failure.8

Results obtained in term of power for processes with Student- t errors are in line with the ones
obtained with Gaussian errors. This outcome confirms the robustness of our framework to fatter tails,
since we purposely ignore the fact that the errors are drawn from the Student- t distribution when we
apply our method.

Tables 1 and 2 exhibit results from experiments on MA processes. The top section of this table
compares our method -denoted SIM METHOD in the tables- versus MLE in terms of size. Note that
MLE is oversized, while size remains exact for our method. We can identify that the pile up effect
starts for values of the parameter θ higher than 0.6, in finite samples. Although our method does not
produce size distortions, it cannot discriminate between tested values higher than 0.85, when the true
DGP value is between 0.85 and 1. This result is expected and traced back to, e.g., Stock (1991) and
references therein. Typically, when values of the parameter near the boundary (around 0.99) cannot be
refuted, values substantially different (for instance, 0.85) from the boundary are also hard to refute in
small samples. For small values of the parameter, the method with the simplified auxiliary parameter
estimation, inspired in Galbraith and Zinde-Walsh (1994, 1997), shows an increase in power with
respect to the OLS estimation of the long-AR. However, as the tested value of the parameter increases
and gets closer to the unit root region, the latter method shows higher power than the former. This
result indicates that overidentification is useful to increase power when we have higher persistence in
MA(1) processes.

In general, the power of our method increases for the three estimating functions applied to the
ARMA as the sample size increases, but none of them steadily shows the highest power for all sample
sizes and pairs tested. When the AR parameter is closer to the unit root than the MA parameter and
the sample is very small, 50 or 100 observations, our method applied with the OLS estimation with
forward and backward looking components offers the highest power on the boundary. However,
when the reverse occurs, the MA parameter is closer to the unit root than the MA parameter, our
framework with the autocorrelations enables better discrimination between the true pair and any
pair with values that are closer to the boundaries. Results obtained with the root cancelation pair,
{θDGP, ψDGP} = {0.65,−0.65} are reported in Table 3. As before, the top section of the table compares
our method versus MLE in terms of size. Size remains exact for our method in this case; however MLE
is oversized. When the OLS estimation with forward and backward components is applied, it gives the
highest power for almost all the pairs tested for a sample size of T = 50 observations. Once we increase
the sample size to T = 100, this estimating function still shows the highest power, followed closely by
the second choice of estimating function, the OLS estimation of the long-AR. When the sample size is

8 This is noteworthy in view of the above cited problems discussed in the literature.
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T = 200, the power obtained with the autocorrelations reaches closely to the power obtained with the
other two estimating functions.

Table 1. Data generated process (DGP) with {θDGP, ψDGP} = {0.6, 0}.

SIZE

SIM Method Gaussian MA Student-t (df = 5) MA

OLS-Long AR Simplified OLS-Long AR Simplified

T = 50 0.046 0.040 0.043 0.038
T = 100 0.054 0.055 0.047 0.042
T = 200 0.046 0.049 0.053 0.039

MLE Gaussian MA Student-t (df = 5) MA

T = 50 0.096 0.099
T = 100 0.054 0.062
T = 200 0.057 0.049

POWER [SIM Method]

T = 50 Gaussian MA Student-t (df = 5) MA

Tested Value OLS-Long AR Simplified OLS-Long AR Simplified{θ0}
{0.00} 0.717 0.861 0.720 0.865
{0.30} 0.322 0.364 0.302 0.370
{0.85} 0.276 0.225 0.266 0.211
{0.90} 0.368 0.286 0.371 0.267
{0.96} 0.436 0.324 0.430 0.302
{0.99} 0.442 0.334 0.442 0.309

T = 100 Gaussian MA Student-t (df = 5) MA

Tested Value OLS-Long AR Simplified OLS-Long AR Simplified{θ0}
{0.00} 0.988 0.994 0.989 0.995
{0.30} 0.628 0.699 0.634 0.703
{0.85} 0.611 0.476 0.623 0.470
{0.90} 0.721 0.569 0.729 0.558
{0.96} 0.785 0.634 0.796 0.610
{0.99} 0.790 0.640 0.806 0.618

T = 200 Gaussian MA Student-t (df = 5) MA

Tested Value OLS-Long AR Simplified OLS-Long AR Simplified{θ0}
{0.00} 1.000 1.000 1.000 1.000
{0.30} 0.926 0.935 0.934 0.942
{0.85} 0.910 0.786 0.910 0.779
{0.90} 0.960 0.869 0.967 0.862
{0.96} 0.978 0.914 0.983 0.908
{0.99} 0.980 0.919 0.984 0.912

Note: Numbers reported are empirical rejections for the hypothesis H0 : θ = θ0. Size is measured with
θ0 = θDGP and other choices for θ0 are reported as tested values in the power tables.
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Table 2. Data generated process (DGP) with {θDGP, ψDGP} = {0.99, 0}.

SIZE

SIM Method Gaussian MA Student-t (df = 5) MA

OLS-Long AR Simplified OLS-Long AR Simplified

T = 50 0.052 0.045 0.048 0.041
T = 100 0.054 0.053 0.045 0.038
T = 200 0.039 0.042 0.039 0.042

MLE Gaussian MA Student-t (df = 5) MA

T = 50 0.167 0.156
T = 100 0.294 0.229
T = 200 0.429 0.347

POWER [SIM Method]

T = 50 Gaussian MA Student-t (df = 5) MA

Tested Value OLS-Long AR Simplified OLS-Long AR Simplified{θ0}
{0.00} 0.998 0.993 0.998 0.993
{0.30} 0.948 0.854 0.961 0.842
{0.60} 0.594 0.363 0.573 0.353
{0.85} 0.095 0.073 0.091 0.061
{0.90} 0.061 0.054 0.059 0.049
{0.96} 0.057 0.045 0.051 0.041

T = 100 Gaussian MA Student-t (df = 5) MA

Tested Value OLS-Long AR Simplified OLS-Long AR Simplified{θ0}
{0.00} 1.000 1.000 1.000 1.000
{0.30} 1.000 0.990 1.000 0.992
{0.60} 0.918 0.676 0.916 0.690
{0.85} 0.141 0.094 0.130 0.078
{0.90} 0.087 0.060 0.071 0.059
{0.96} 0.059 0.053 0.045 0.040

T = 200 Gaussian MA Student-t (df = 5) MA

Tested Value OLS-Long AR Simplified OLS-Long AR Simplified{θ0}
{0.00} 1.000 1.000 1.000 1.000
{0.30} 1.000 1.000 1.000 1.000
{0.60} 0.996 0.922 0.996 0.928
{0.85} 0.204 0.099 0.196 0.124
{0.90} 0.084 0.050 0.079 0.063
{0.96} 0.042 0.039 0.043 0.040

Note: Numbers reported are empirical rejections for the hypothesis H0 : θ = θ0. Size is measured with
θ0 = θDGP and other choices for θ0 are reported as tested values in the power tables.

Lastly, we examine the almost unit root pair as the true DGP pair, {θDGP, ψDGP} = {0.99, 0.99} in
Table 4. For most of the pairs tested, applying the method with the OLS estimation of the long-AR
gives the highest power for sample sizes of T = 50 and T = 100. However, for the same sample sizes,
using autocorrelations gives the highest power for the last three pairs tested, for which the value of
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the MA parameter is closer to the boundary than the value of the AR parameter. As we increase the
sample size, power reaches similar values for our method with the three estimating functions.

Table 3. Data generated process (DGP) with {θDGP, ψDGP} = {0.65,−0.65}.

SIZE

SIM Method Gaussian ARMA Student-t (df = 5) ARMA

OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr

T = 50 0.056 0.053 0.038 0.041 0.049 0.033
T = 100 0.053 0.054 0.058 0.041 0.048 0.051
T = 200 0.049 0.045 0.054 0.049 0.043 0.061

MLE Gaussian ARMA Student-t (df = 5) ARMA

MA AR Joint MA AR Joint

T = 50 0.470 0.454 0.523 0.446 0.401 0.500
T = 100 0.432 0.417 0.482 0.404 0.392 0.457
T = 200 0.414 0.414 0.470 0.370 0.371 0.445

POWER [SIM Method]

T = 50 Gaussian ARMA Student-t (df = 5) ARMA
Tested Pair OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}

{0, 0.6} 0.430 0.225 0.181 0.418 0.229 0.174
{0.3, 0.2} 0.806 0.728 0.858 0.796 0.740 0.866
{0.3, 0.85} 0.923 0.699 0.453 0.932 0.702 0.428
{0.5, 0.5} 0.956 0.866 0.981 0.958 0.858 0.986
{0.6, 0} 0.836 0.436 0.180 0.828 0.431 0.170

{0.6, 0.85} 0.985 0.878 0.880 0.992 0.884 0.880
{0.85, 0.2} 0.999 0.916 0.307 0.999 0.904 0.271
{0.85, 0.6} 1.000 0.955 0.568 1.000 0.961 0.557
{0.96, 0.5} 1.000 0.961 0.481 1.000 0.963 0.471

{0.99, 0.99} 1.000 0.980 0.997 1.000 0.979 0.998

T = 100 Gaussian ARMA Student-t (df = 5) ARMA
Tested Pair OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}

{0, 0.6} 0.797 0.695 0.500 0.793 0.700 0.493
{0.3, 0.2} 0.980 0.998 0.991 0.981 0.999 0.990
{0.3, 0.85} 0.996 0.995 0.875 0.996 0.994 0.870
{0.5, 0.5} 0.999 1.000 0.999 1.000 1.000 0.999
{0.6, 0} 0.983 0.901 0.509 0.989 0.899 0.502

{0.6, 0.85} 1.000 1.000 0.992 1.000 1.000 0.991
{0.85, 0.2} 1.000 1.000 0.727 1.000 0.999 0.727
{0.85, 0.6} 1.000 1.000 0.933 1.000 1.000 0.932
{0.96, 0.5} 1.000 1.000 0.901 1.000 1.000 0.894

{0.99, 0.99} 1.000 1.000 1.000 1.000 1.000 1.000



Econometrics 2020, 8, 12 14 of 26

Table 3. Cont.

POWER [SIM Method]

T = 200 Gaussian ARMA Student-t (df = 5) ARMA

Tested Pair OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}
{0, 0.6} 0.984 0.979 0.887 0.987 0.983 0.894

{0.3, 0.2} 0.999 1.000 1.000 0.999 1.000 1.000
{0.3, 0.85} 1.000 1.000 0.998 1.000 1.000 0.996
{0.5, 0.5} 1.000 1.000 1.000 1.000 1.000 1.000
{0.6, 0} 0.999 0.999 0.911 1.000 0.999 0.918

{0.6, 0.85} 1.000 1.000 1.000 1.000 1.000 1.000
{0.85, 0.2} 1.000 1.000 0.994 1.000 1.000 0.992
{0.85, 0.6} 1.000 1.000 1.000 1.000 1.000 0.999
{0.96, 0.5} 1.000 1.000 0.998 1.000 1.000 0.998
{0.99, 0.99} 1.000 1.000 1.000 1.000 1.000 1.000

Note: Numbers reported are empirical rejections for the hypothesis H0 : θ = θ0 and ψ = ψ0. Size is measured
with θ0 = θDGP and ψ0 = ψDGP. Other choices for θ0 and ψ0 are reported as tested values in the power tables.

Table 4. Data generated process (DGP) with {θDGP, ψDGP} = {0.99, 0.99}.

SIZE

SIM Method Gaussian ARMA Student-t (df = 5) ARMA

OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr

T = 50 0.044 0.041 0.052 0.049 0.038 0.049
T = 100 0.049 0.041 0.053 0.049 0.035 0.048
T = 200 0.052 0.058 0.051 0.048 0.046 0.043

MLE Gaussian ARMA Student-t (df = 5) ARMA

MA AR Joint MA AR Joint

T = 50 0.140 0.060 0.171 0.119 0.060 0.153
T = 100 0.281 0.068 0.259 0.223 0.049 0.227
T = 200 0.390 0.074 0.349 0.317 0.049 0.281

POWER [SIM Method]

T = 50 Gaussian ARMA Student-t (df = 5) ARMA
Tested Pair OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}

{0, 0.6} 0.922 1.000 0.915 0.921 1.000 0.914
{0.3, 0.2} 0.831 1.000 0.992 0.830 1.000 0.991
{0.3, 0.85} 0.609 0.979 0.331 0.615 0.985 0.332
{0.5, 0.5} 0.295 0.968 0.904 0.305 0.980 0.906
{0.5, 0.96} 0.285 0.778 0.046 0.290 0.794 0.046

{0.6, 0} 0.427 0.998 0.998 0.442 0.999 0.992
{0.6, 0.85} 0.131 0.653 0.317 0.131 0.663 0.308
{0.85, 0.2} 0.017 0.763 0.980 0.020 0.772 0.986
{0.85, 0.6} 0.023 0.304 0.815 0.024 0.293 0.825
{0.96, 0.5} 0.040 0.257 0.891 0.038 0.241 0.893
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Table 4. Cont.

POWER [SIM Method]

T = 100 Gaussian ARMA Student-t (df = 5) ARMA

Tested Pair OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}
{0, 0.6} 0.997 1.000 0.994 0.997 1.000 0.995

{0.3, 0.2} 0.980 1.000 1.000 0.984 1.000 1.000
{0.3, 0.85} 0.908 1.000 0.635 0.914 1.000 0.648
{0.5, 0.5} 0.690 1.000 0.993 0.701 1.000 0.994

{0.5, 0.96} 0.662 0.984 0.074 0.671 0.988 0.070
{0.6, 0} 0.826 1.000 1.000 0.824 1.000 1.000

{0.6, 0.85} 0.418 0.939 0.610 0.435 0.947 0.626
{0.85, 0.2} 0.036 0.983 1.000 0.042 0.984 1.000
{0.85, 0.6} 0.035 0.508 0.976 0.033 0.531 0.973
{0.96, 0.5} 0.039 0.453 0.991 0.048 0.444 0.994

T = 200 Gaussian ARMA Student-t (df = 5) ARMA

Tested Pair OLS-FBLC OLS-Long AR AutoCorr OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}
{0, 0.6} 1.000 1.000 1.000 1.000 1.000 1.000

{0.3, 0.2} 1.000 1.000 1.000 1.000 1.000 1.000
{0.3, 0.85} 0.991 1.000 0.922 0.992 1.000 0.921
{0.5, 0.5} 0.943 1.000 1.000 0.943 1.000 1.000

{0.5, 0.96} 0.932 1.000 0.157 0.935 1.000 0.163
{0.6, 0} 0.984 1.000 1.000 0.984 1.000 1.000

{0.6, 0.85} 0.778 0.998 0.911 0.780 0.999 0.910
{0.85, 0.2} 0.121 1.000 1.000 0.100 1.000 1.000
{0.85, 0.6} 0.052 0.840 1.000 0.034 0.833 0.999
{0.96, 0.5} 0.067 0.767 1.000 0.067 0.763 1.000

Note: Numbers reported are empirical rejections for the hypothesis H0 : θ = θ0 and ψ = ψ0. Size is measured
with θ0 = θDGP and ψ0 = ψDGP. Other choices for θ0 and ψ0 are reported as tested values in the power tables.

5.2. Robustness Checks

In addition to our previous experiments, we conducted simple robustness checks for our method.
Two examples are shown in Tables 5 and 6. We present the power values for two ARMA processes
which are misspecified as ARMA(1,1) with a sample size T = 100. In Table 5 we have an ARMA(2,1)
with {θDGP, ψ1,DGP, ψ2,DGP} = {0.30, 0.60, 0.85}, so we have a high persistence AR(2) mixed with a low
persistence MA(1). In general, the method applied with autocorrelations offers more power rejecting
the pairs where the AR parameter is closer to the boundary than the MA parameter; while with the
OLS estimation with forward and backward-looking components we obtain more power rejecting the
pairs where the MA parameter is closer to the boundary than the AR parameter.

The ARMA (2,1) in Table 6 with {θ1,DGP, θ2,DGP, ψDGP} = {0.30, 0.85, 0.60}, shows a high
persistence AR(1) mixed with a MA(2), which has higher persistence on its second parameter. In this
case, we find that the method applied with both, the OLS estimation of forward and backward-looking
components and the OLS estimation of the long-AR, is more powerful rejecting the misspecification
than with the autocorrelations. Note that in both examples, our three choices of estimating functions
provide good power, rejecting the misspecification for all the pairs tested.
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Table 5. Data generated process (DGP) with {θ1,DGP, θ2,DGP, ψDGP} = {0.30, 0.85, 0.60}.

POWER [SIM Method]

T = 100 Gaussian ARMA

Tested Pair OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}
{0, 0.6} 0.903 0.998 0.326

{0.3, 0.2} 0.978 0.999 0.974
{0.3, 0.85} 0.994 0.999 0.310
{0.5, 0.5} 0.998 1.000 0.275
{0.5, 0.96} 1.000 1.000 0.918

{0.6, 0} 0.998 0.999 0.993
{0.6, 0.85} 1.000 1.000 0.327
{0.85, 0.2} 1.000 1.000 0.862
{0.85, 0.6} 1.000 1.000 0.105
{0.96, 0.5} 1.000 1.000 0.231

{0.99, 0.99} 1.000 1.000 0.987

Table 6. Data generated process (DGP) with {θDGP, ψ1,DGP, ψ2,DGP} = {0.30, 0.60, 0.85}.

POWER [SIM Method]

T = 100 Gaussian ARMA

Tested Pair OLS-FBLC OLS-Long AR AutoCorr{θ0, ψ0}
{0, 0.6} 0.635 0.931 0.962

{0.3, 0.2} 0.403 0.957 1.000
{0.3, 0.85} 0.171 0.198 0.233
{0.5, 0.5} 0.066 0.130 0.959
{0.5, 0.96} 0.105 0.117 0.103

{0.6, 0} 0.056 0.733 1.000
{0.6, 0.85} 0.289 0.227 0.208
{0.85, 0.2} 0.858 0.562 0.997
{0.85, 0.6} 0.930 0.814 0.898
{0.96, 0.5} 0.974 0.860 0.956

{0.99, 0.99} 0.981 0.969 0.282

Note: Numbers reported are empirical rejections for the hypothesis H0 : θ = θ0 and ψ = ψ0. Various choices
for θ0 and ψ0 are reported as tested values in the power tables.

6. Empirical Application

Our two-stage simulation-based framework is applied with a univariate perspective to investigate
the persistence of oil shocks via impulse-response confidence bands. Apart from supply and demand
conditions, estimation and forecasting of oil prices are complicated by the effect of non-market related
characteristics, such as, regulations, technology and geopolitical considerations; see Hamilton (1983,
1996, 2003, 2009); Kilian (2008a, 2008b, 2008c) and Kilian and Vigfusson (2017). Main concerns in the
literature related to oil prices are, among others, whether the impact of oil shocks is temporary or
permanent and whether a particular model can offer better performance than a random walk. Most
studies support analyzing the real price of oil based on its explanatory power for macroeconomic
forecasting of output, for instance, Baumeister and Kilian (2012) and Alquist et al. (2013). However,
Hamilton (2011) argues that nonlinear transformations of the nominal price of oil can reflect threshold
responses based on consumer sentiment. In addition, he notes that deflating nominal prices by the
Consumer Price Index (CPI) introduces measurement errors that can affect forecasting results. Hence,
we explore the behaviour of oil shocks considering the logarithmic transformation of prices and returns
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(log-differences), at the weekly frequency and also at the monthly frequency, in both, nominal and
real terms.

We have identified four lines of research where oil series are characterized as a mean reverting
process, in particular ARMA: (i) study of long-run persistence in oil prices, (ii) study of oil volatility
persistence, (iii) DSGE calibration and (iv) application of structural Vector Autoregression (VAR) family
models. The first line of research focuses on oil price dynamics with long series and makes modeling
decisions considering mean reverting and random walk processes; see Pindyck (1999); Lee et al. (2006);
Bernard et al. (2012); Gil-Alana and Gupta (2014). Oil volatility persistence is studied in the second
line of research, either by fitting ARMA family models to volatility proxies based on transformations
of oil returns, or by applying Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
family models directly to oil returns; see e.g., Choi and Hammoudeh (2009); Charles and Darné (2014)
and references therein. In the third line of research, DSEG models frequently apply calibrations by
fitting ARMA family models to oil prices, for instance, in the work of Atkeson and Kehoe (1999)
and Leduc and Sill (2004). Lastly, the literature applying VAR family models is very extensive and
it is mostly dedicated to forecasting in short to middle horizons; see Pindyck (2004); Kilian (2009);
Alquist and Kilian (2010); Baumeister and Kilian (2012); Alquist et al. (2013); Baumeister and Kilian
(2014a, 2014b), Baumeister et al. (2014); Baumeister and Kilian (2015); Baumeister et al. (2015).9 In VAR
models, impulse-responses are analyzed by either applying simulations, or Bayesian methods.10

Our simultaneous analysis is related to the research of Staszewska-Bystrova (2007, 2011, 2013);
Jordà (2009); Staszewska-Bystrova and Winker (2013); Jordà and Marcellino (2010); Inoue and Kilian
(2013, 2016); Guerron-Quintana et al. (2017) and Montiel et al. (2019). In contrast to the VAR literature,
our proposed impulse-response confidence bands are compatible with small sample sizes and robust
to parameter identification. Our framework remains agnostic with respect to the process followed
by oil prices and returns by allowing for processes with no persistence, spurious white noise related
to root cancelation, heavy persistence, as well as, almost unit root. Hence, we are able to capture
the range of movement of the series under various observationally equivalent processes, this means
through pairs of parameters that could generate the same log-likelihood function. This characteristic is
related to the work by Sims (2001) and references therein and Lubik and Schorfheide (2003, 2004).

6.1. Data

Daily spot prices of the West Texas Intermediate (WTI) crude oil in U.S. dollars per barrel are
obtained from the webpage of the Energy Information Administration (EIA); see details in the reference
EIA (2019). The series is selected after the deregulation and the post OPEC-administering pricing
system, from January 1986 to June 2019.11 Wednesday prices are selected for the weekly series and the
second Wednesday of the month is selected for the monthly series, to avoid any calendar effects, such
as, Monday or weekend effect, see French (1980), Friday-effect, and turn-on -the- month-effect, see
Ariel (1987). The behaviour of the weekly nominal spot price series for this benchmark is shown in
Figure 1.

We explore the persistence of oil shocks on the logarithmic transformation of prices and returns
(log-differences), at the weekly frequency and also at the monthly frequency, in both, nominal and
real terms. Monthly nominal prices are deflated using the U.S. Consumer Price Index for All Urban
Consumers All Items (CPIAUCSL), published by the U.S. Bureau of Labor Statistics, taking May, 2019

9 Refer to Kilian (2014) for a comprehensive walk through the literature on oil price shocks.
10 Lütkepohl et al. (2015) provide an overview and evaluation in terms of coverage of the available literature dedicated to

impulse-responses for VAR models and propose a new approach based on adjustments to the Bonferroni bands.
11 Alquist et al. (2013) explain that after mid-1980, due to the U.S. deregulation, the co-movement between the U.S. oil price

series, including WTI, refiners acquisition cost for domestically produced oil and for imported crude oil, became stronger.
This means that we can take the WIT, since results obtained with other series are expected to be similar due to the high
correlation between the various U.S. oil price series.
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as base date; see details in the reference US. Bureau of Labour Statistics (2019).12 Table 7 exhibits
summary of statistics for the samples selected (demeaned). The series of returns exhibit higher levels
of skewness and kurtosis than the logarithmic transformation of prices. Overall, the levels of skewness
and kurtosis of these samples indicate the presence of heavy tails and values that are more clustered
around zero.
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West Texas Intermediate (WTI) Jan. 1986− Jun. 2019 [1732 Obs.]

Figure 1. West Texas Intermediate (WTI). Note: WTI prices escalated up to the highest peak during
the month of July in 2008, when the price reached US$145 per barrel. Then, the effect of the financial
crisis and Great Recession caused a price drop to US$30.28 in December of the same year.13 After
2014, WTI prices plummeted during the following three years, down to US$26.68 in January, 2016,
mainly due to the effect of supply strategies, the surprising growth of U.S. shale oil production and
by a slower-than-expected global growth, among others. The behaviour of WTI prices afterwards is
associated with geopolitical risks and growth expectations for the U.S. and Chinese economies.

Table 7. Summary of Statistics. (Demeaned series).

Time Period Sample Obs. Mean Std. Dev. Skewness Kurtosis

Jan. 1986–June 2019 Log of Weekly Nominal Prices 1732 −2.8881 × 10−15 0.6582 0.6582 1.6844
Jan.1986–June 2019 Log of Monthly Nominal Prices 402 5.0485 × 10−16 0.6566 0.2541 1.6844
Jan. 1986–May 2019 Log of Monthly Real Prices 401 9.5241 × 10−16 0.8719 0.1165 1.5428
Jan. 1986–June 2019 Weekly Nominal Returns 1731 4.7302 × 10−19 0.05128 −0.1449 5.9181
Jan. 1986–June 2019 Monthly Nominal Returns 401 6.9216 × 10−20 0.10253 −0.35965 4.9748
Jan. 1986–May 2019 Monthly Real Returns 400 2.2898 × 10−18 0.10341 −0.37958 5.0612

6.2. Impulse-Response Confidence Bands for Oil Series

Our framework produces confidence sets and impulse-responses confidence bands for oil series
considering the Gaussian and the Student-t distribution, with degrees of freedom calibrated as 8, which
are commonly used in macroeconomic and financial time series applications. Note that all series are
demeaned before our two-step simulation-based methodology is applied. To implement our method,
we conduct a grid search on the four quadrants with a step of 0.01. Values of the parameters with a

12 At the time the series is retrieved, the latest available monthly value corresponds to May, 2019.
13 The U.S. subprime mortgage crisis triggered an international financial crisis in 2008. According to the U.S. National Bureau

of Economics Research (NBER), the U.S. recession is identified in terms of peaks and troughs from the last quarter of 2007 to
the second quarter of 2009.
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p-value higher than the level of significance alpha = 0.05 are selected to construct our confidence sets.
There is no statistical reason to predict any particular shape of the confidence region. It is worth noting
that an empty confidence set indicates a rejection of the null hypothesis for any pair. This means a
rejection of the parametric ARMA(1,1) specification as a whole. In this section, we highlight our main
findings. All results are available upon request.

In general, outcomes of our method for the series of the logarithmic transformation of oil prices
(price series, henceforth), with both Gaussian and Student-t distributions, lead to similar conclusions
at the two frequencies examined, including nominal and real terms. Root cancelation is only present
at the monthly frequency on confidence sets resulting from the method with the OLS estimation of
forward and backward looking components as auxiliary function. Root cancelation would invalidate
standard inference; nevertheless it is revealed by our method and not biasing our results. Non-empty
and closed (one set) confidence sets are obtained for the price series in all cases examined.

We focus on the framework with the averaging objective function, which refutes root cancelation
for the price series. This result reinforces the usefulness of our combined strategy. Figure 2 focuses
on the fatter tails calibration and the averaging objective function for the monthly nominal frequency
and contains two diagrams: (i) joint 95% confidence set and (ii) impulse-response confidence bands.
Additionally, the second diagram displays the MLE impulse-response function, to illustrate that it
can be misleading, since it is within our confidence bands. The confidence set obtained with our
method in Figure 2a is sharp and supports the ARMA parametrization. Although the projections of
the MA parameter θ contain zero, the MA root ranges from −0.18 to 0.36. The AR parameter ψ takes
values between 0.95 and 0.99. As a result, our impulse-response confidence bands in Figure 2b show a
persistent effect of the shock on prices, which takes above a decade or so to die down.

We refute the ARMA (1,1) on weekly nominal returns, with both the Gaussian and the Student-t
distributions, when combined with the OLS estimation of forward and backward-looking components
as auxiliary function. This means that the model is not complex enough at this particular frequency.
At the monthly nominal frequency, we also obtain an empty confidence set if the Gaussian distribution
is combined with the same auxiliary function. In contrast, the model with the fatter tails calibration is
never rejected at the monthly frequency. Non-empty confidence sets, obtained with both distributions
at the monthly frequency are closed (one set), or disjoint (with two and three subsets) and exhibit
shapes that are sharp and tight around root cancelation. Confidence sets are informative, since a
large area of the parameter space is refuted. However, we cannot refute root cancelation, even with
fatter tails.

Figure 3 shows results with the fatter tails calibration and the averaging method for the monthly
nominal frequency of returns, following the same order as in the previous figure. Figure 3a exhibits
the confidence set, which is sharp around root cancelation. Resulting impulse-response confidence
bands in Figure 3b indicate that there is no persistence of the shock on returns, due to the effect of
root cancelation.
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Figure 2. SIM Method: Log of Monthly Nominal West Texas Intermediate (WTI) Prices.

Collected together, our results support research at the frequency typically used in macro analysis
for oil series, with an ARMA in levels, including the Gaussian shock hypothesis. Thus, we find that
shocks to oil prices are permanent, taking about a decade or so to die down. Confidence sets obtained
with oil returns are quite sharp around root cancellation, which affects predictability at the frequencies
examined. In addition, the ARMA specification is refuted at the weekly frequency of returns, which
suggests that alternative specifications allowing for e.g., conditional heteroskedasticity and skewness
are interesting research paths, on frequencies more relevant to finance than macro applications.
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Figure 3. SIM Method: Monthly Nominal WTI Returns.

7. Conclusions

Our framework delivers simultaneous impulse-response confidence bands for ARMA (1,1)
processes by combining Indirect Inference, MC test methods and confidence sets projections. We
treat proposed objective functions as test statistics, which we invert through a two-stage simulation
to obtain joint confidence sets for the parameters. Invariance principles are proposed to ensure finite
sample exactness in general nuisance parameter dependent settings. In contrast to MLE-based tests,
our proposed methods achieve size control and good power, irrespective of how close the parameters
are to the unit root boundary, or whether root cancelation is present.
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We investigate the persistence of shocks on oil prices and returns of the West Texas Intermediate
(WTI) benchmark via projected impulse-response confidence bands. The main advantage of our
method is the possibility of remaining agnostic with respect to the process followed by these series.
It is noteworthy that resulting impulse-response confidence bands seem well identified. Our results
support a persistent ARMA model in levels. In contrast, confidence sets for monthly returns are tightly
concentrated on the root cancellation line. ARMA with or without fat tails is rejected for the weekly
return series. This noteworthy result reinforces the usefulness of confidence set methods that allow
for empty outcomes. Lastly, our findings support the applicability of impulse-responses obtained
from asymmetric and heavy tailed distributions, which leaves the door open for further research,
in particular with asymmetric distributions.
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