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In the theory of stochastic differential equations, it is commonly assumed

that the forcing function is a Wiener process. Such a process has an infinite

bandwidth in the frequency domain. In practice, however, all stochastic

processes have a limited bandwidth.

A theory of band-limited linear stochastic processes is described that

reflects this reality, and it is shown how the corresponding ARMA models

can be estimated. By ignoring the limitation on the frequencies of the forcing

function, in the process of fitting a conventional ARMA model, one is liable

derive estimates that are severely biased.

The estimation biases can be avoided by sampling the continuous process

at a rate corresponding to the maximum frequency of the forcing function.

Then, there is a direct correspondence between the parameters of the band-

limited ARMA model and those of an equivalent continuous-time process.
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1. Introduction

It is common to assume that the differential equations that are used for mod-
elling stochastic processes in continuous time are driven by a continuous stream
of infinitesimal impulses. These impulses, which constitute the increments of a
Wiener process, are composed of a non denumerable infinity of sinusoidal com-
ponents of all frequencies in the interval [0,∞).

Whereas a Wiener process is a fruitful mathematical abstraction that has
many important applications, it is of doubtful relevance to macroeconomic mod-
elling. An inspection of the periodograms of macroeconomic data sequences
reveals that their various components tend to reside in strictly limited frequency
bands; and it is improbable that they should have arisen from the filtering of
Wiener processes.

It is more realistic to assume the such components originate in the filtering
of continuous white-noise processes that are band limited in the same manner
as the components themselves. However, in adopting this point of view, we are
challenged to produce a model of such a process. To achieve this is one the
purposes of this paper. A further purpose is to examine the effects of using
ordinary Autoregressive Moving Average (ARMA) models to derive parametric
representations of band-limited processes.
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Conventional ARMA processes are driven by discrete-time white-noise pro-
cesses, which have spectral density functions that are uniform across a frequency
range running from zero to π radians per period, which is the limiting frequency
that is observable in sampled data. When the driving process is band limited to
a subset of the interval [0, π], there are liable to be severe biases in the estimated
parameters, unless some account is taken of this fact.

2. Evidence of Band-Limited Processes

We should begin by presenting some evidence to support the assertion that
macroeconomic data sequences are commonly composed of components that fall
within limited frequency bands.

Figure 1 displays a sequence of the logarithms of the quarterly series of
U.K. Gross Domestic Product (GDP) over the period from 1955 to 1994, which
comprises a total of 160 observations. Interpolated through this sequence is a
quadratic trend, which can be taken to represent the growth path of the economy.

The deviations from this growth path are a combination of a low-frequency
business cycle with some high-frequency fluctuations that are due to the seasonal
nature of economic activity. These deviations are represented in Figure 2, which
also shows an interpolated continuous function that is designed to represent the
business cycle. Figure 3 shows that the effect of taking the first differences of
the logarithmic data is to emphasise the seasonal fluctuations at the expense of
the business cycle.

The periodograms of Figures 4–6 clearly reflect the features of the corre-
sponding data sequences. The periodogram is a discrete periodic function, which
is a function of the Fourier transform of the periodic extension of the data. A
single cycle of the periodogram occurs in the interval [−π, π] or, equivalently,
in the interval [0, 2π]. However, since the data is real-valued, the periodograms
are symmetric about the zero frequency and, therefore, they are characterised
completely by graphs over the interval [0, π]

Figure 4 is the periodogram of the a saw tooth function that corresponds to
the periodic extension of the trended data. It owes its most prominent features to
the radical disjunctions that occur at the points where the end of one replication
of the sample is joined to the beginning of the next replication. The spike in
the vicinity of the zero frequency is so dominant in this periodogram that the
remaining features, which are on a much smaller scale, are almost invisible.

The periodogram of the differenced data, which is in Figure 5, shows that,
in eliminating the trend, the differencing strongly suppresses the low-frequency
components of the data, which include the business cycles.

The periodogram of the deviations from the quadratic trend, which is in
Figure 6, gives a clear representation of the spectral effects both of the business
cycle and of the seasonal fluctuations, and it show that they reside separate
frequency bands.

The spectral structure extending from zero frequency up to π/8 belongs to
the business cycle. The prominent spikes located at the frequency π/2 and at
the limiting Nyquist frequency of π are the property of the seasonal fluctuations.
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Figure 1. The quarterly series of the logarithms of consumption in the U.K.,
for the years 1955 to 1994, together with a quadratic trend interpolated by least-
squares regression.
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Figure 2. The residual sequence from fitting a quadratic trend to the loga-
rithmic consumption data. The interpolated line, which represents the business
cycle, has been synthesised from the Fourier ordinates in the frequency interval
[0, π/8].
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Figure 3. The differences of the logarithmic consumption data.
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Figure 4. The periodogram of the logarithms of consumption in the U.K., for
the years 1955 to 1994.
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Figure 5. The periodogram of the first differences of the the logarithmic con-
sumption data.
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Figure 6. The periodogram of the residual sequence obtained from the linear
detrending of the logarithmic consumption data.
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Elsewhere in the periodogram, there are wide dead spaces, which are punctuated
by the spectral traces of minor elements of noise.

The slowly varying continuous function z(t) interpolated through the devia-
tions of Figure 2 has been created by combining a set of sine and cosine functions
of increasing frequencies which are regularly spaced and extend no further than
the limiting frequency of the business cycle, which is π/8. Thus,

z(t) =
d∑

j=0

{αj cos(ωjt) + βj sin(ωjt)}

=
d∑

j=−d

ξje
iωjt with ωd � π/8,

(1)

where ξj = (αj + iβj)/2 and ξ−j = ξ∗j = (αi − iβj)/2 .
Some justification ought to be given for characterising the spectral structure

of a trended sequence in terms of the periodogram of its deviations from an
interpolated polynomial trend. If y is the vector of the data, then the vector of
the deviations is given by the formula

e = Q(Q′Q)−1Q′y, (2)

wherein Q′ is a submatrix of the pth-order matrix difference operator ∇p
T =

(IT −LT )p, which is obtained by deleting the first p rows. The difference operator
IT −LT is formed from the identity matrix IT = [e0, e1, . . . , eT−1] and from the
matrix LT = [e1, . . . , eT−1, 0], obtained by deleting the leading vector from IT

and appending column of zeros to the end of the array.
Thus, for example, in the case of a second-order difference operator, which

is appropriate to linear detrending, there is

∇2
6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−2 1 0 0 0 0

1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

Q′
∗

Q′

]
. (3)

It is apparent from equation (2) that the residual vector contains exactly the
same information as the vector Q′y of differences.

The periodogram of the polynomial residuals allows us to discern the spec-
tral structure across the entire frequency range. The effect of increasing the
degree of the polynomial, which generates a more flexible trend, is to attenuate
the low-frequency components relative to the high-frequency components, but
the bandwidths of the components in question remain the same. Thus, we have
a device for accurately determining the domains of the various spectral structures
that correspond to the components of the data sequence.
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Our objective is to characterise the dynamics of the business cycle via the
parameters of a fitted ARMA model. Such a model is liable to be applied to a
seasonally adjusted version of the data, of which the periodogram will lack the
spectral spikes at the seasonal frequency of π/2 and at the harmonic frequency
of π. An second-order autoregressive AR(2) model with complex roots is the
simplest of the models that might be appropriate to the purpose. The modulus
of its roots should reveal the damping characteristics of the cycles, and their
argument should indicate the angular velocity or, equivalently, the length, of the
cycles.

The parametric spectrum of an AR(2) model is supported on the entire
frequency range [0, π], which is to say that it is everywhere nonzero within this
interval. However, the band-limited process, to which the observed business cycle
appears to belong, has a zero-valued spectral density everywhere in the interval
(π/8, π].

The consequence of this disparity is that an AR(2) model that is fitted
directly to the data is liable to deliver highly misleading estimates. Thus, it has
been widely reported that, when it is fitted to deseasonalised quarterly data, the
model will invariably deliver estimates that imply real-valued roots, which fail
adequately to represent the dynamics of the business cycle. (See Pagan 1997,
for example.)

In order to estimate the parameters successfully, it is necessary to map the
low-frequency spectral structure of the business cycle into the interval [0, π].
This involves creating a new data sequence at a lower sampling rate. It is also
necessary to ensure that nothing is carried into the interval [0, π] that does not
belong to the low-frequency structure. This is achieved by applying an anti-
aliasing filter prior to resampling the data at the lesser rate

In the process of describing the simple technique of resampling, we shall
provide a model for the continuous-time band-limited process that generates the
business cycle component. The parameters of this process are also the parameters
of a discrete-time ARMA process that describes the resampled data.

3. The Sampling Process

A sequence that has been sampled at the integer time points from a continuous
aperiodic function that is square-integrable will have a transform that is a peri-
odic function. This outcome is manifest in the discrete-time Fourier transform,
where it can be seen that the period in question has the length of 2π radians.

To understand this result, consider the Fourier representation of a real–
valued square-integrable function x(t) defined over the real line. The following
are the corresponding expressions for the function and its Fourier transform:

x(t) =
1
2π

∫ ∞

−∞
eiωtξ(ω)dω ←→ ξ(ω) =

∫ ∞

−∞
e−iωtx(t)dt. (4)

By sampling x(t) at the integer time points, a sequence {xt; t = 0,±1,±2, . . .}
is generated of which the transform is a periodic function. In that case,

xt =
1
2π

∫ π

−π

eiωtξS(ω)dω ←→ ξS(ω) =
∞∑

k=−∞
xke−ikω. (5)
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Figure 7. The sinc function wave-packet φ(0)(t) = sin(πt)/πt comprising frequencies

in the interval [0, π].
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Figure 8. The sinc function wave-packet φ(1)(t) = sin(πt/2)/πt comprising frequen-

cies in the interval [0, π/2].

Therefore, at the sampled point xt, to which the expressions under (4) and (5)
both relate, there is,

xt =
1
2π

∫ ∞

−∞
eiωtξ(ω)dω =

1
2π

∫ π

−π

eiωtξS(ω)dω. (6)

The equality of the two integrals implies that

ξS(ω) =
∞∑

j=−∞
ξ(ω + 2jπ). (7)

Thus, the function ξS(ω) is obtained by wrapping ξ(ω) around a circle of cir-
cumference of 2π and adding the coincident ordinates. The two functions will
coincide at all frequencies in the interval [−π, π] if ξ(ω) = 0 for all |ω| ≥ π.
Otherwise, ξS(ω) will be subject to a process of aliasing, whereby elements of
the continuous function that are at frequencies in excess of π are confounded
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with elements at frequencies less than π. Thus, the so-called Nyquist frequency
of π radians per period of observation represents the limit of what is directly
observable in sampled data.

If the condition is fulfilled that ξ(ω) = 0 for all |ω| ≥ π, then it should be
possible to reconstitute the continuous function x(t) from its sampled ordinates.
This is the burden of the famous Nyquist–Shannon sampling theorem—see Shan-
non (1949, 1998)—which was foreshadowed in the work of Whittaker (1935).

Since ξ(ω) = ξS(ω) is a continuous function defined of the interval [−π, π],
it may be regarded as a periodic function of a period of 2π. Putting the RHS of
(5) into the LHS of (4), and taking the integral over [−π, π] in consequence of
the band-limited nature of the function x(t), gives

x(t) =
1
2π

∫ π

−π

{ ∞∑
k=−∞

xke−ikω

}
eiωtdω =

1
2π

∞∑
k=−∞

xk

∫ π

−π

eiω(t−k)dω. (8)

The integral on the RHS is evaluated as

∫ π

−π

eiω(t−k)dω = 2
sin{π(t − k)}

t − k
. (9)

Putting this into the RHS of (8) gives

x(t) =
∞∑

k=−∞
xk

sin{π(t − k)}
π(t − k)

=
∞∑

k=−∞
xkφ0(t − k), (10)

where

φ0(t − k) =
sin{π(t − k)}

π(t − k)
(11)

is the so-called sinc function, which is the Fourier transform of the following
frequency function:

φ0(ω) =

⎧⎪⎨
⎪⎩

1, if |ω| ∈ (0, π);

1/2, if ω = ±π,

0, otherwise.

(12)

In the case of a stationary stochastic process, the sampled sequence is not
square summable and, therefore, in a strict sense, this proof of the interpolation
via the Nyquist–Shannon Theory does not apply. However, the convergence
of the interpolation formula of (10), when x(t) = {xt; t = 0,±1,±2, . . .} is a
stationary sequence, can confirmed by considering a sum with k ∈ [−N, N ] for
some finite integer N . The variance of the sum of discarded terms can be made
arbitrarily small by increasing the value of N .

To investigate the nature of the interpolation, one may consider the value
interpolated at an arbitrary point τ ∈ (0, 1) lying between the sampled points
x0 and x1. This is representative of any point lying between sampled values.
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The interpolated ordinate xτ is formed as a weighted average of all the sampled
ordinates. The sum of the weights is

∞∑
k=−∞

sin{π(τ − k)}
π(τ − k)

=
sin(πτ)

πτ
+

∞∑
k=1

{
sin{π(τ − k)}

π(τ − k)
+

sin{π(τ + k)}
π(τ + k)

}
. (13)

From the identity sin(A − B) = sin(A) cos(B) − cos(A) sin(B), it follows that

sin{π(τ − k)} = sin(πτ) cos(πk) − cos(πτ) sin(πk)

= (−1)k sin(πτ),
(14)

for, with k as an integer, there is sin(πk) = 0 and cos(πk) = (−1)k. Likewise,
sin{π(τ − k)} = (−1)k sin(πτ). Therefore,

∞∑
k=−∞

sin{π(τ − k)}
π(t − k)

=
sin(πτ)

πτ
+

∞∑
k=1

(−1)k

{
sin(πτ)
π(τ − k)

+
sin(πτ)
π(τ + k)

}

=
sin(πτ)

π

{
1
τ

+
∞∑

k=1

(−1)k2τ

τ2 − k2

}

=
sin(πτ)

π

{
1
τ

+
∞∑

k=1

(−1)k

[
1

τ + k
+

1
τ − k

]}
.

(15)

The value of this sum is unity. Thus, for example, a constant function, which is
not square integrable, will be reconstituted exactly from its sampled values. Also,
the weights are absolutely summable, which means that the BIBO (bounded
input bounded output) condition is satisfied. This condition is sufficient to
ensure that a filtered stationary sequence retains its stationarity.

The sequence of sinc functions φ0(t−k); k ∈ I = {0,±1,±2, . . .} constitutes
an orthogonal basis for the set of all functions band limited to the frequency
interval [0, π]. To show this, let φ0(ω) be the transform of φ0(t) and consider the
following autoconvolution:

∫
t

φ0(t)φ0(τ − t)dt =
∫

t

φ0(t)
{

1
2π

∫
ω

φ0(ω)eiω(τ−t)dω

}
dt

=
1
2π

∫
ω

φ0(ω)
{∫

t

φ0(t)e−iωtdt

}
eiωτdω

=
1
2π

∫
ω

φ0(ω)φ0(ω)eiωτdω.

(16)

The symmetry of φ0(t) allows us to write φ0(τ − t) = φ0(t + τ), whereas the
idempotency of φ0(ω) gives φ2

0(ω) = φ0(ω). Together, these two conditions
indicate that φ0(t) is its own autocorrelation function. Therefore, the condition

φ0(t − k) = 0 for k ∈ {±1,±2, . . .} (17)
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indicates that sinc functions separated by integer distances are mutually orthog-
onal.

The sinc function φ0(t) is represented in Figure 5. Here, it is manifest
that the values of the ordinates of the function at the nonzero integer points
t ∈ {±1,±2, . . .} are zeros. Also, when the set of sinc functions {φ0(t−k); k ∈ I}
at unit displacements are sampled at the integer values of t, the result is nothing
but the set of unit impulses at the integer points. This constitutes a basis for
the set of all sequences defined over the set of integers.

An important property of the basis sinc functions is their lack of mutual
interference at the integer points. Any band-limited function that is composed
of a weighted sum of the basis functions will assume values at the integer points
that are equal to the amplitudes of the sinc functions centred on those points.
There will be no contributions to these values from the other basis functions.

If a function is band limited to the frequency interval [0, π], then sampling
at the integer points constitutes a critical rate of sampling that is just sufficient
to detect an element at the Nyquist frequency of π radians per sampling interval.
If the function is band limited in frequency to a subinterval of [0, π], then the
current rate of sampling is over-rapid, and it may be reduced. In particular, if
the function is band limited to the interval [0, π/n], where n is an integer, then
the continuous function can be reconstituted from a sub sample comprising every
nth point.

Figure 8 depicts the sinc function φ1(t) = sin(πt/2)/πt, which is the Fourier
transform of a rectangle on the frequency interval [−π/2, π/2]. The set of func-
tions {φ1(t − 2k); t ∈ R, k ∈ I}, which are at displacements of 2 sample points,
constitutes a basis of all continuous functions band limited to the interval [0, π/2].

Likewise, the 2-point displacements of the sampled version of φ1(t), with
t ∈ I, provide a basis for the corresponding band-limited sequences obtained
by sampling continuous functions band-limited to [0, π/2]. Discarding alternate
points from such a sampled sequence, and reindexing accordingly, creates a se-
quence with a frequency content extending over the interval [0, π], from which a
continuous function can be recreated in the manner of equation (10).

The reconstruction or interpolation of a function in the manner suggested
by the sampling theorem is not possible in practice, because it requires summing
an infinite number sinc functions, each of which is supported on the entire real
line. Nevertheless, a continuous band-limited periodic function, defined on a
finite interval, can be reconstituted from a finite number of wrapped or periodic
sinc functions, which are Dirichlet kernels by another name. The Dirichlet kernel
is obtained by sampling the sinc-function rectangle in the frequency domain.

Consider

φ(t) =
1
2π

∫ ∞

−∞
eiωtφ(ω)dω ←→ φ(ω) =

∫ ∞

−∞
e−iωtφ(t)dt. (18)

Sampling ψ(ω) at the frequency points ωj = 2πj/T ; j ∈ {0,±1,±2, . . .} gives
rise to a classical Fourier series:

φ◦(t) =
∞∑

j=−∞
eiωjtφj ←→ φj =

1
T

∫ T/2

−T/2

e−iωjtφ◦(t)dt, (19)

10
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where φj = φ(ωj). If the integral on the RHS of (19) is to be reconciled with
that of (18), then it must be the case that

φ◦(t) = T
∞∑

q=−∞
φ(t + qT ), (20)

which is to say that the periodic sinc function φ◦(t) is formed by wrapping
the function φ(t) around a circle of circumference T and adding the overlying
ordinates.

The circular function φ◦(t) can be found by transforming into the time
domain the ordinates sampled from the frequency-domain rectangle of the sinc
function. Thus, it can be shown that if

φj =

{
1, if j ∈ {0,±1, . . . ,±d},

0, otherwise.
(21)

then

φ◦(t) =
sin([d + 1/2]ω1t)

sin(ω1t/2)
, where ω1 =

2π

T
. (22)

The functions {φ◦(t − k); k = 0, 1, . . . , T − 1} are appropriate for reconsti-
tuting a continuous periodic function x(t) defined on the interval [0, T ) from its
sampled ordinates x0, x1, . . . , xT−1. However, the function can also be reconsti-
tuted, in the manner of equation (1), from it Fourier ordinates as

x(t) =
d∑

j=−d

ξje
iωjt =

d∑
j=0

{αj cos(ωjt) + βj sin(ωjt)} , (23)

where ξj = (αj + iβj)/2 and ξ−j = (αj − iβj)/2.
For economic data, the sampling interval is typically a month, a quarter or

a year. For financial data, it may be less. Whatever the case, it is unlikely that
this interval will correspond to an integer multiple of the critical rate of sampling
of whatever band-limited process might underlie the data. Therefore, it may not
be possible to achieve the critical rate by subsampling the data. Nevertheless,
if the Nyquist frequency exceeds the maximum frequency of the process, then
it will always be possible to resample the data at the critical rate. This can be
achieved once the continuous function has been reconstituted, via the formula of
(23), from the relevant Fourier ordinates of the available data.

The sinc function is widely dispersed in time. Wave packets of a more
compact nature can be formed from alternative band-limited spectral energy
functions. The wide dispersion of the sinc function is due to the sharp edges
of the rectangular energy function. Energy functions with smoother profiles
will generate more compact wave packets that might constitute better models
of the elements of a wave train sequence underlying a continuous band-limited
stochastic function.

11
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Figure 9. The wave packets φ(2)(t) and φ(2)(t − k) suffer no interference when

k ∈ {2, 4, 6, . . .}.

4. The Processes Underlying the Data

A clear message that comes from the example of Figure 6, and from others
like it, is that the component structures of many macro econometric sequences
are distinctly band-limited in frequency. Since these structures are quite unlike
those that belong to conventional ARMA or ARIMA processes, it is appropriate
to enquire into the nature of the processes that do underlie the discretely sampled
data.

Our model of a process underlying discretely sampled data is of a sequence
of band-limited wave packets of random amplitudes, which may also have varying
profiles. These may arrive at random intervals in the manner of a Poisson process.
Since the wave packets are band limited, it will always be possible to resolve their
sum into a sequence of sinc functions at regular displacements along the time
axis, having amplitudes that can be described by a discrete stochastic process.

In a continuous band-limited white-noise process, the amplitudes of succes-
sive regularly-spaced sinc functions constitute a sequence of independently and
identically distributed random variables, which corresponds to a discrete-time
white-noise process. In a continuous ARMA process driven by a continuous
band-limited white-noise, the amplitudes of the sinc functions are described by
an ordinary discrete-time ARMA process.

When the interval between successive functions is Δ = 1/n, the generic
sinc function is sin{n(t − k)}/π(t − k). In the limit, as Δ → 0, this becomes
δ(t − k) = lim(n → ∞) sin{n(t − k)}/π(t − k), which is Dirac’s delta function,
also described as the unit impulse. The integral of this function is zero for all
t < k and unity for all t > k. The limiting white-noise process ζ(t), for which

E{ζ(t)} = 0 and E{ζ(t)ζ(t + τ)} = σ2δ(τ), (24)

is commonly described as continuous white noise. It consists of the orthogonal
increments of Wiener process, which is the continuous-time version of the random
walk.
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Figure 10. The sinc function wave-packet φ3(t) = sin(πt/8)/πt comprising frequen-

cies in the interval [0, π/8].

An impulse in continuous time has a uniform power spectrum that is dis-
tributed over the entire frequency range, with infinitesimal power in any finite
interval. A Wiener process is the product of the cumulation of a steam of in-
finitesimal impulses which are the stationarity and independent increments of
the process.

Whereas an ideal impulse is familiar within the conceptual realm of physics,
it has no counterpart in the real physical world, where we can expect there to
be distinct limits to the frequencies of oscillatory motions. On the other hand,
there is a common understanding that, in the real world, time flows continuously.
Therefore, there is a tendency to regard discrete-time models, such as ARMA
models, as approximations to their more realistic continuous-time counterparts,
which are stochastic differential equations.

It is assumed, almost without exception, that the driving forces of such
differential equations are provided by the increments of Wiener processes. The
sampling of a Wiener process at regular intervals entails the phenomenon of alias-
ing whereby the cumulated increments gives rise to a uniform spectrum of finite
power over the interval [−π, π]. Therefore, according to the usual understanding,
the correspondence the parameters of an ARMA model, fitted to the discretely
sampled data, and those of the related differential equation is complicated by
the problem of aliasing.

In the case of a differential equation driven by a process limited to frequency
less that the Nyquist frequency of π, there will be no problem of aliasing to
contend with. However, another problem of a different nature may arise, which
can be described as interference.

Consider sampling a band-limited process at a rate in excess of the critical
Nyquist rate. According to the Shannon interpolation formula, the value of
the process at an arbitrary point in time is liable to be expressed as a sum of
values sampled from an infinite number of wave packets. The sum will include
values sampled from the tails of receding wave packets as well as values that
represent the onset of the waves that lie ahead. Since a discrete ARMA looks in

13



D.S.G. POLLOCK: Band-Limited Processes

one direction only, it appears, at first sight, to be incapable of modelling such a
process.

This problem in ARMA modelling that arises from interference, in common
with the problem of aliasing, can be overcome by sampling the data at the critical
rate that corresponds to the highest frequency present in the underlying process.
In that case, there will be no interference, either from the waves that lie ahead
of the current sample point or from the waves that have passed by, and the
relationship of the current value to the previous sampled values can be described
by a discrete ARMA model.

This outcome is evident in Figure 9, which depicts three adjacent elements
of a sinc function basis which is appropriate to a continuous stochastic function
band limited to the interval [0, π/2]. If observations are taken at successive
integer points, then those for t ∈ {±1,±3,±5, . . .} will be comprise samples from
all of the basis functions. If observations are sampled at two-point intervals, as
is the case when t ∈ {0,±2,±4, . . .}, then the sampled values will correspond to
the amplitudes of individual sinc functions; and there will be no interference, at
the sampled points, from adjacent sinc functions.

In the case the business cycle function of Figure 2, which, on the evidence
of Figure 6, is band-limited to the frequency interval [0, π/8], only one in eight of
the points sampled from this function at unit time intervals needs to be retained
in order to convey all of the relevant information.

The periodogram of the resulting subsampled sequence, which has the fre-
quency range of [0, π], will have a profile identical to that of the spectral of
structure that occupies the interval [0, π/8] in Figure 6. The sinc function
ψ3 = sin(πt/8)πt, of which the 8-point displacements {ψ3(t−8k); k ∈ I} provide
a basis for functions in the frequency band [0, π/8], is illustrated in Figure 10.

5. The Whittle Maximum-likelihood Estimator

We shall now consider methods for estimating the parameters of a band-limited
ARMA process. We shall adopt the Whittle’s (1951, 1962) version of the
maximum-likelihood estimator, which can be modified to take account of only a
subset of the frequency range of the data.

Consider a vector x = [x0, x1, . . . , xT−1]′ of T observations of which the z-
transform is x(z) = x0z+x1z+· · ·+xT−1z

T−1. Let IT = [e0, e1, . . . , eT−1] denote
the identity matrix of order T and let KT = [e1, . . . , eT−1, e0] denote the circulant
operator, which is formed by displacing the leading vector of the identity matrix
to the end of the array. Then, the circulant data matrix X = x(KT ) is formed
by replacing z within x(z) by the matrix KT . (An account of the algebra of
circulant matrices has been provided by Pollock 2002. See, also, Gray 2002.)

The circulant matrix KT may be factorised as

KT = ŪDU = UD̄Ū , (25)

where
U = T−1/2[W jt; t, j = 0, . . . , T − 1] and

D = diag{1, W, W 2, . . . , WT−1}, with

W = exp{−i2π/T},

(26)
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whilst Ū = T−1/2[W−jt; t, j = 0, . . . , T − 1] is the conjugate of the unitary
symmetric matrix U , such that ŪU = UŪ = I.

The second equality of (25) follows from the fact that KT , which is real-
valued, must equal its own complex conjugate. The matrix T−1W = T−1/2U is
that of the discrete Fourier transform (DFT), whereas W−1 = W̄ = T 1/2Ū is
the matrix of the inverse DFT.

Consider factorising the circulant data matrix thus:

x(KT ) = X = Ūx(D)U = Ux(D̄)Ū . (27)

Since X ′ = Ux(D)Ū = Ūx(D̄)U , the matrix of empirical circular autocovari-
ances is

C = T−1X ′X = T−1Ūc(D)U, where

c(D) = diag{g0, g1, . . . , gT−1}
= Tdiag{|ξ0|2, |ξ1|2, . . . , |ξT−1|2}.

(28)

The diagonal elements of c(D) are the ordinates of the periodogram. The ex-
pected value of C is

D(x) = Γ = Ūγ(D)U, (29)

where γ(D) contains ordinates of the spectral density function.
On the assumption that it has a normal distribution, the logarithm of the

density function of the sample is

log L =
−T

2
log(2π) − 1

2
log |Γ| − 1

2
x′Γ−1(x)x. (30)

For a circular process, there is |Γ| =
∏T−1

j=0 γj and

x′Γ−1(x)x = x′Ūγ−1(D)Ux =
T−1∑
j=0

gj/γj . (31)

Therefore,

log |D(x)| + x′D−1(x)x =
T−1∑
j=0

{
log(γj) +

gj

γj

}
. (32)

This is the Whittle’s criterion function of which the minimisation provides the
maximum-likelihood estimates of the parameters of the stochastic process that
has generated the data.

A generalised form of the Whittle function is

L =
T−1∑
j=0

wj

{
log(γj) +

gj

γj

}
. (33)

Here, wj is a nonnegative factor, which can be used to vary the weight that
is attributed to the jth ordinate of the periodogram. This criterion function
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has been investigated by Thomson (1986), and it has been employed in various
applications by Robinson (1995), by Haywood and Tunnicliffe Wilson (1997) and
by Proietti (2007), amongst others.

If x is generated by an ordinary ARMA process, then its z-transform satisfies
the equation

α(z)x(z) = μ(z)ε(z), (34)

wherein ε(z) is the z-transform of a sequence ε(t) = {εt; t = 0,±1,±2, . . .}
of independently and identically distributed mean-zero random disturbances,
described as white noise.

The assumptions affecting an ordinary white-noise sequence can be ex-
pressed as

E{ε(z)} = 0 and E{ε(z)ε(z−1)} = γε(z) = σ2. (35)

Setting z = exp{−iω} in γε(z) gives a spectral density function that is uniform
over the range [−π, π] of the frequency variable ω.

In the case of a band-limited white-noise process ζ(t), for which the spectral
density is non zero and uniform over the interval (−d, d) ∈ [−π, π] and zero
elsewhere, the spectral density function is given by γζ(ω) = σ2φ(ω), where

φ(ω) =

⎧⎪⎨
⎪⎩

1, if ω ∈ (−d, d),

1/2, if ω = ±d,

0, otherwise.

(36)

When the ARMA transfer function μ(z)/α(z) is applied to the band-limited
noise, a process is derived that has the following autocovariance generating func-
tion:

γ(z) = σ2 μ(z)φ(z)μ(z−1)
α(z)α(z−1)

, (37)

where φ(z) is the z-transform of the sequence of ordinates sampled at the integer
time points from the sinc function

φ(t) =
sin(dt)

πt
=

1
2π

∫ d

−d

eiωt. (38)

Setting z = KT gives Γ = γ(KT ), which is the matrix of circular autocovari-
ances of (29). Setting z = exp{i2πj/T} = W j , and letting j = 0, 1, . . . , T − 1,
generates the spectral ordinates γ0, γ1, . . . γT−1, which are the diagonal element
of the matrix γ(D).

6. Alternative Estimates of an AR(2) Process

We can proceed to use the Whittle criterion to obtain some alternative estimates
of the band-limited AR(2) process that appears to be a reasonable model for
describing the business cycles that are depicted in Figure 2. We shall take three
alternative approaches, which produce highly contrasting results; and it is the
process that entails a resampling of the data combined with anti-alias filtering
that is the only appropriate one.
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For the first approach, we need to work with seasonally adjusted data. To
obtain such data, we shall apply a filter that mimics the processes of seasonal
adjustment that occur within national central statistical offices.

The filter is derived from a model that combines a white-noise component
η(t) with a seasonal component obtained by passing an independent white noise
ν(t) through a rational filter with unit poles at the seasonal frequencies and with
corresponding zeros close to unity. The z-transform of the output sequence gives

y(z) = η(z) +
R(z)
S(z)

ν(z) or

S(z)y(z) = S(z)η(z) + R(z)ν(z),
(39)

where
R(z) = 1 + ρz + ρ2z2 + · · · + ρs−1zs−1

=
s−1∏
j=1

(1 − ρe2πj/s),
(40)

with z = exp{−i2π/T} and ρ < 1, and

S(z) = 1 + z + z2 + · · · + zs−1

=
s−1∏
j=1

(1 − e2πj/s).
(41)

The transfer function of the seasonal-adjustment filter is

β(z) =
σ2

ηS(z)S(z−1)
S(z)S(z−1)σ2

η + σ2
νR(z)R(z−1)

. (42)

Setting z = exp{iω} and letting ω run from 0 to π generates the frequency
response of the filter, of which the squared modulus, or squared gain, is plotted
in Figure 11 for the case where ρ = 0.9 and λ = σ2

η/σ2
ν = 0.125.

To derive a version of the filter that is applicable to a finite sample of length
T , we may replace z within the component polynomials by the circulant operator
KT . This produces the matrices QS = S(KT ) and QR = R(KT ). If y is the
original data vector, then the seasonally-adjusted data is

h = QS(Q′
SQS + λ−1Q′

RQR)−1Q′
Sy. (43)

Similar filters have been derived and illustrated by Pollock (2006, 2007).
Figure 12 shows the seasonally-adjusted version of the data sequence of

Figure 2, and Figure 13 shows the extracted seasonal component. The remark-
able regularity of the seasonal component, which is not unusual among such
estimates, is an artefact of the filter 1 − β(z), which is complementary to the
seasonal-adjustment filter. This filter extracts from the data the elements at the
seasonal frequencies π/2 and π, together with a small proportion of what lies at
the adjacent frequencies.
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Figure 11. The squared gain of a seasonal adjustment filter to be applied to
the quarterly detrended logarithmic consumption data.
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Figure 12. The seasonally adjusted detrended logarithmic consumption data.

The periodogram of the seasonally adjusted data is show in Figure 14. Be-
yond the upper limit of the spectrum of the low-frequency business cycle compo-
nent, there are minor traces of a contaminating noise, which serves to roughen
the profile of the seasonally-adjusted data. The smooth profile of the business
cycle, from which this noise is absent, is shown in Figure 2.

When it is applied to the seasonally-adjusted data, the ordinary Whittle
estimator delivers an AR(2) model of which the parametric spectrum is show
in Figure 15. The roots of the estimated autoregressive operator, which are
real-valued, are show of the left side Figure 17. This outcome is due, in large
measure, to the presence of the noise contamination in the seasonally-adjusted
data; and its partial removal leads to very different estimates.

The effect of the noise contamination can be reduced by adopting the gen-
eralised Whittle estimator, which allows differential weights to be attached to
the ordinates of the periodogram. Figure 16 shows the parametric spectrum of
an AR(2) model that has been fitted using the generalised Whittle criterion of
band-spectral estimation, which is superimposed upon the periodogram of the
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Figure 13. The seasonal component extracted from the detrended logarithmic
consumption data in the process of seasonal adjustment.
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Figure 14. The periodogram of the seasonally adjusted data.

data. In the estimation, the selected periodogram ordinates that lie in the fre-
quency interval [0, π/4] have been associated with unit weights wj = 1, and the
remainder have been associated with zero weights. The highlighted region of the
diagram indicates the range of the selected ordinates.

The effect of the frequency selection upon the parametric spectrum of the
estimated model is remarkable. Figure 16 shows a spectrum with a prominent
spike at a frequency that corresponds to that of the business cycle. The complex
roots of the autoregressive operator are shown on the right side of Figure 17,
where it can be seen that they are close to the boundary of the unit circle.

Despite having seemingly appropriate characteristics, the estimates provided
by the band-limited method are of doubtful validity. Already, the over-prominent
spike of the parametric spectrum appears to be misrepresenting the underlying
periodogram. Moreover, in view of the fact that the spectral structure of the
business cycle is limited to the interval [0, π/8], it would seem appropriate to
limit the spectral band of the estimator to the same interval, instead of the
wider interval of [0, π/4]. The effect of this further limitation is to increase
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Figure 15. The spectrum of an AR(2) model fitted to the detrended, seasonally
adjusted logarithmic income data, superimposed on the periodogram.
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Figure 16. The spectrum of an AR(2) model fitted to the detrended, desea-
sonalised logarithmic income data via a band-limited autoregressive estimation,
superimposed on the periodogram.
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Figure 17. The poles of the AR(2) models fitted to the detrended logarithmic
income data. (a) is from unrestricted estimator and (b) is from the band-limited
estimator. 20
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Figure 18. The periodogram of the sub sampled anti-aliased data with the
parametric spectrum of an estimated AR(2) model superimposed.
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Figure 19. The poles of the AR(2) model fitted to 20 points subsampled at the
rate of 1 in 8 from data that has been subjected to an anti-aliasing lowpass filter
with cut off at π/8 radians.

radically the prominence of the spectral spike.
The conclusion of these experiments is that the outcome of the band spectral

estimation is highly dependent upon the extent of the frequency band. Extending
the band to include a small part of the noise contamination that is evident in
the periodogram of the seasonally-adjusted data has a major effect upon the
estimated autoregressive parameters

The appropriate estimator of the business cycle parameters is one that takes
account only of the information within the corresponding spectral structure and
which maps this structure into the interval [0, π], which is the domain of an
ordinary ARMA model. To achieve this outcome, the spectral elements that fall
outside the frequency range of the business cycle must first be removed. This
operation, which constitutes an anti-alias filtering, may be carried out either in
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the time domain or in the frequency domain.
Given the availability of the spectral ordinates of the data, it is straight-

forward to operate in the frequency domain by setting the rejected ordinates
to zeros. Then, a continuous low-frequency function can be synthesised from
the selected ordinates. An example is provided by the interpolated function in
Figure 2. The synthesised function can be resampled at a rate that corresponds
to the maximum frequency within the spectral structure of the business cycle.

Since we have deemed that the maximum frequency within the business
cycle is at π/8, the data is to be resampled at 1/8th of the original rate of
observation. This simple fractional rate is a convenient one, since it implies
taking one in every eight of the anti-aliased data points. In that case, there is
no need synthesise a continuous function for the purpose of resampling the data.

The periodogram of the subsampled anti-aliased data is show in Figure
18 with the parametric spectrum of an estimated AR(2) model superimposed.
The periodogram represents a rescaled version of the part of the periodogram
of Figure 6, pertaining to the original data, that occupies the frequency range
[0, π/8]; and it appears to be well represented by the parametric spectrum. Also,
the roots of the autoregressive operator, which are displayed in Figure 19, appear
to give an appropriate representation of the dynamic properties of the business
cycle, both as regards its frequency and its damping characteristics.

7. Conclusions and Remarks

In this paper, we have presented a model for a band-limited stochastic process
in continuous time and we have demonstrated that, if the rate of sampling corre-
sponds to the maximum frequency within the data, then a sequence of sampled
ordinates can be described by an ordinary discrete-time ARMA model. In these
circumstances, it may be said that the sampling is at the critical rate.

The model is all-inclusive. It provides the continuous-time counterpart of
the conventional ARMA model, where the forcing function is a discrete white-
noise process with a uniform spectral density function defined on the frequency
interval [−π, π]. It also encompasses the case of continuos-time autoregressive
model driven by the increments of a Wiener process, which are unbounded in
frequency.

We have concentrated on the case where the sampling is over-rapid and
where we can afford to reduce it, either by a process of sub sampling or by
resampling a reconstituted version of the continuous signal. There are also cases
to be considered where the sampling rate is less than the maximum frequency of
the data and where there is an inevitable problem of aliasing. Such circumstances
are already accounted for in the existing literature under the rubric of temporal
aggregation.

The available theory indicates that, if the data can be described, at the
critical rate of sampling, by an AR(p) autoregressive model of order p, then the
sub sampled data will be described by an ARMA(p, p − 1) model. The only
proviso here is that, in both cases, the sampling rate should be sufficiently rapid
to accommodate the dynamics implied by the autoregressive operator. Thus, the
maximum value ωm of the arguments associated with the roots of the operator
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must be less than the Nyquist frequency of π radians per sample period.
Telser (1967) derived this result in the context of what he described as the

skip sampling of a discrete-time autoregressive process, whereas Phadke and Wu
(1974) and Pandit and Wu (1975) did so by considering the relations between
continuous-time linear stochastic processes driven by the increments of a Wiener
process and the models that can be fitted to the sampled data.

Our example of a band-limited process is complicated by the fact that it
is a component of a composite process which includes a trend. In this case, we
have been able to represent the trend by a quadratic function that is virtually
linear. However, in general, we can expect that the orderly development of the
data will be disrupted, on occasion, by structural breaks and outliers.

Outliers and level shifts constitute what we may call impact events. Their
effect is to add to the periodogram of the quadratically detrended data some
components that have diffuse spectra that extend in frequency well beyond the
maximum frequency of the business cycle. An outlier on a single point con-
tributes a uniform increment to the ordinates of the periodogram. An abrupt
shift of level has the same effect upon the periodogram as do the disjunctions
that are liable to occur in the periodic extension of the data where the end of
one replication of the sample joins the beginning of the next.

If we wish to preserve the band-limited model in the face of such distur-
bances, then we should need to remove the outliers and to accommodate any
level shifts within the trend. The usual detrending devices are commonly based
on models that describe data components that are generated by homogeneous
time invariant processes. They are not appropriate to our purpose, and they
need to be adapted.

An adaptive device that has proved to be very serviceable is the Reinsch
(1976) smoothing spline with a smoothing parameter that is amenable to local
variations. A sufficient reduction in the value of the smoothing parameter in the
vicinity of a level shift will allow the spline to incorporate the shift.

Two or three such accommodations might be acceptable in a data sequence
of a length similar to that of our example. When the disturbances within the data
become more numerous, there begin to be doubts over whether it can sustain a
constant-coefficient parametric model of the sort that we have attributed to the
business cycle. Then, a non-parametric method of analysis is in order that entails
wave packets within a hierarchy of frequency bands. This is a multiresolution
wavelet analysis in other words.
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