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Abstract: The asymptotic distribution of the linear instrumental variables (IV) estimator with
empirically selected ridge regression penalty is characterized. The regularization tuning parameter
is selected by splitting the observed data into training and test samples and becomes an estimated
parameter that jointly converges with the parameters of interest. The asymptotic distribution is
a nonstandard mixture distribution. Monte Carlo simulations show the asymptotic distribution
captures the characteristics of the sampling distributions and when this ridge estimator performs
better than two-stage least squares. An empirical application on returns to education data is presented.
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1. Introduction

This paper concerns the estimation and inference on the structural parameters in the linear
instrumental variables (IV) model estimated with ridge regression. This estimator differs from previous
ridge regression estimators in three important areas. First, the regularization tuning parameter is
selected using a randomly selected test sample from the observed data. Second, the empirically
selected tuning parameter’s impact on the estimates of the parameters of interest is accounted for by
deriving their asymptotic joint distribution, which is a mixture. Third, the traditional Generalized
Method of Moments (GMM) framework is used to characterize the asymptotic distribution.

The ridge estimator belongs to a family of estimators which utilize regularization, see (Bickel et al. 2006)
and (Hastie et al. 2009) for overviews. Regularization requires tuning parameters and procedures to
select them can be split into three broad areas. (1) Plugin-type. For a given criteria function, an optimal
value is determined in terms of the model’s parameters. These model’s parameters are then estimated
with the data set and plugged into the formula. Generalization include adjustments to reduce bias
and iterative procedures until a fixed point is achieved. (2) Test sample. The data set is randomly split
into a training and a test sample. The tuning parameter and estimates from the training sample are
used to evaluate some criteria function on the test sample to determine the optimal tuning parameter
and model. Generalizations include k-fold cross-validation and generalized cross-validation. (3) Rate
of convergence restriction. The tuning parameter must converge at an appropriate rate to guarantee
consistency and a known asymptotic distribution for the estimates of the parameters of interest. A key
feature is that the tuning parameter only converges to zero asymptotically and is restricted from
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zero in finite samples. Previous ridge estimators have relied on plugin-type and rate of convergence
restrictions. We study the test sample approach.

This estimator builds on a large literature. The ridge regression estimator was proposed in
(Hoerl and Kennard 1970) to obtain smaller MSE relative to the OLS estimates in the linear model
when the covariates are all exogenous but have multicollinearity. It was shown that for fixed tuning
parameter, α, the bias and variance of the ridge estimator implied that there exists an α value with
lower MSE than for the OLS estimator. Assuming that α is fixed, Hoerl et al. (1975) proposed selecting
α to minimizing the MSE of the ridge estimator. This resulting formula became a plugin selection for α.
Subsequent research has followed the same approach of selecting the tuning parameter to minimize
MSE where α is assumed fixed, see (Dorugade 2014) and the papers cited there. A shortcoming
of this plugin-type approach is that the form of the MSE assumes the tuning parameter is fixed,
however it is then selected on the observed sample and hence is stochastic, see (Theobald 1974) and
(Montgomery et al. 2012). Instead of focusing on reducing the MSE, we focus on the large sample
properties of the estimates of the parameters of interest. In this literature the work closest to ours is
(Firinguetti and Bobadilla 2011) where the sampling distribution is considered for a ridge estimator.
However, this estimator is built on minimizing the MSE where the tuning parameter is assumed fixed,
see (Lawless and Wang 1976). Our ridge estimator is derived knowing that the tuning parameter is
stochastic. This leads to the joint asymptotic distribution for the estimates of the parameters of interest
and the tuning parameter.

The supervised learning (machine learning) literature focuses on the ability to generalize to new
data sets by selecting the tuning parameters to minimize the prediction error for a test (or holdout or
validation) sample. Starting with (Larsen et al. 1996), a test sample is used to select optimal tuning
parameters for a neural network model. The problem reduces to finding a local minimum of the criteria
function evaluated on the test sample. Extensions of the test sample approach include backward
propagation, see (Bengio 2000; Habibnia and Maasoumi 2019), but as the number of parameters
increases the memory requirements become too large. This has led to the use of stochastic gradient
decent, see (Maclaurin et al. 2015). Much research in this area has focused on effecient ways to
optimally select the hyperparameters to minimize prediction errors. We select the tuning parameter
to address its impact on the estimates of the model’s coefficients and do not focus on the model’s
predictive power.

A number of papers extend the linear IV model with tuning parameters. Structural econometrics
(Carrasco 2012) allows the number of instruments to grow with the sample size and (Zhu 2018)
considers models where the number of covariates and instruments is larger than the sample size.
In genetics the linear IV model is widely used to model gene regulatory networks, see (Chen et al. 2018;
Lin et al. 2015). In this setting the number of covariates and instruments can be larger than the number
of observations and the tuning parameter is restricted from being zero in finite samples. In contrast to
these models, we fix the number of covariates and instrument to determine the asymptotic distribution
and permit the tuning parameter to take the value zero.

Within the structural econometrics literature, ridge type regularization concepts are not new. Notable
contributions are (Carrasco and Tchuente 2016; Carrasco and Florens 2000; Carrasco et al. 2007) which allow
for a continuum of moment conditions. The authors use ridge regularization to find the inverse of the
optimal weighting operator (instead of optimal weighting matrix in traditional GMM). In these papers
and in (Carrasco 2012) the rate of convergence restriction is used to select the tuning parameter.

Several types of identification and asymptotic distributions can occur with linear IV models
e.g., strong instruments, nearly-strong instruments, nearly-weak instrument and weak instruments,
see (Antoine and Renault 2009) for a summary. For this taxonomy, this paper and estimator is in the
strong instruments setting. The models considered in this paper are closest to the situation considered
in (Sanderson and Windmeijer 2016). However, unlike (Sanderson and Windmeijer 2016) we provide
point estimates instead of testing for weak instruments and restrict attention to fixed parameters that
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do not drift to zero. The models we study are explicitly strongly identified, however in a finite sample
the precision can be low.

This ridge estimator extends the literature in five important dimensions. First, this estimator
allows a meaningful prior. When the prior is ignored, or equivalently set to zero, the model penalizes
variability about the origin. However, in structural economic models a more appropriate penalty
will be variability about some economically meaningful prior. Second, the regularization tuning
parameter is selected empirically using the observed data. This removes the internally inconsistent
argument about the minimum MSE when the tuning parameters is assumed fixed. Third, the tuning
parameter is allowed to take the value zero in finite samples. Fourth, empirically selecting the
tuning parameter impacts the asymptotic distribution of the parameter estimates. As stressed in
(Leeb and Pötscher 2005), the final asymptotic distribution will depend on empirically selected tuning
parameters. We address this directly by characterizing the joint asymptotic distribution that includes
both the parameters of interest and the tuning parameter. Fifth, the GMM framework is used to
characterize the asymptotic distribution.1 The GMM framework is used because it is better suited
to the social science setting where this estimator will be most useful. Rarely does a social science
model imply the actual distribution for an error. Unconditional expectations of zero are more typical in
social science theories and are the foundation for the GMM estimator. Adding a regularization penalty
term and splitting the observed data into a training and test samples, takes the estimator out of the
traditional GMM framework. We present new moment conditions in the traditional GMM framework
which include the first order conditions for the ridge estimator.

Section 2 presents the linear IV framework, describes the precision problem and the ridge estimator.
Section 3 characterizes the asymptotic distribution of the ridge estimator in the traditional GMM
framework. Small sample properties are analyzed via simulations in Section 4. The procedure is
applied to the returns to education data set from Angrist and Krueger (1991) in Section 5. Section 6
summarizes the results and presents directions for future research.

2. Ridge Estimator for Linear Instrumental Variables Model

This section presents the ridge regression estimator where regularization tuning parameter is
empirically determined by splitting the data into training and test samples. This estimator is then fit
into the traditional GMM framework to characterize its asymptotic distribution. Consider the model

Y = Xβ0 + ε (1)

X = ZΓ0 + u (2)

where Y is n× 1, X is n× k, Z =
[

z1 z2 · · · zn

]′
is n×m, m ≥ k, zi ∼ iid, Rz = E[ziz′i] full rank,

and conditional on Z,

[
εi
ui

]
∼ iid

(
0,

[
σ2

ε Σεu

Σuε ΣU

])
. This model allows for both endogenous X’s

that are correlated with ε and exogenous X’s that are uncorrelated with ε. Endogenous regressors
imply OLS will be inconsistent. The Z instruments allow consistent estimates with the IV estimator
that minimizes the residual sum of squares projected onto the instruments and has the closed form

β̂ IV = arg min
β

1
2n

(Y− Xβ)′Z(Z′Z)−1Z′(Y− Xβ) (3)

= (X′PZX)−1X′PZY

1 Relative the likelihood based approaches, the GMM framework is better suited to the social science setting where this
estimator will be most useful. Rarely does a social science model imply the actual distribution for an error. Unconditional
expectations of zero are more typical in social science theories and are the foundation for the GMM estimator.
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where PZ is the projection matrix for Z. The well known asymptotic distribution is

√
n
(

β̂ IV − β0
)
∼a N

(
0, σ2

ε

(
Γ′0RzΓ0

)−1
)

and the covariance can be consistently estimated with

ε̂′ ε̂

n

[(
X′Z

n

)(
Z′Z

n

)−1 (Z′X
n

)]−1

=
ε̂′ ε̂

n

[
X′PZX

n

]−1

(4)

where ε̂ = Y− Xβ̂ IV . Let S0 = E[zix′i ] = RzΓ0.

For a finite sample let2 X′PZX
n have the spectral decomposition CΛC′, where Λ is a positive definite

diagonal k× k matrix, and C is orthonormal, C′C = Ik. A precision problem occurs when some of
the eigenvectors explain very little variation, as represented by the magnitude of the corresponding
eigenvalues. This occurs when the objective function is relatively flat along these dimensions and
the resulting covariance estimates are large because as Equation (4) shows, the variance of β̂ IV is

proportional to
(

X′PZX
n

)−1
= (CΛC′)−1 = CΛ−1C′. The flat objective function, or equivalently large

estimated variances, leads to a relatively large MSE. The ridge estimator addresses this problem by
shrinking the estimated parameter toward a prior. The IV estimate still has low bias (it is consistent)
and has the asymptotically minimum variance. However, accepting a little higher bias can have a
dramatic reduction in the variance and thus provide a point estimate with lower MSE.

The ridge objective function augments the usual IV objective function (3) with a quadratic penalty
centered at a prior value, βp, weighted by a regularization tuning parameter α

Qn(β) =
1

2n
(Y− Xβ)′PZ(Y− Xβ) +

1
2

α(β− βp)′(β− βp). (5)

The objective function’s second derivative is
(

X′PZX
n + αIk

)
= C(Λ + αIk)C′. The regularization

parameter injects stability since
(

X′PZX
n + αIk

)−1
= C (Λ + αIk)

−1 C′ has eigenvalues 1/(λi + α) for
i = 1, . . . , k which are decreasing in α. This results in smaller variance but higher bias.

Denote the ridge solution given α as

β̂ IV(α) =

(
X′PZX

n
+ αIk

)−1 (X′PZY
n

+ αβp
)

= C (Λ + αIk)
−1 C′

X′PZY
n

+ C (Λ + αIk)
−1 C′αβp

= C (Λ + αIk)
−1 C′ ·

[
CΛC′ · CΛ−1C′

] X′PZY
n

+ C
(

Λ
α
+ Ik

)−1
C′βp

= C
(

Ik + αΛ−1
)−1

C′ β̂ IV + C
(

Λ
α
+ Ik

)−1
C′βp. (6)

Equation (6) shows how the tuning parameter, α creates a smooth curve in the parameter space
between the low bias-high variance IV estimate, β̂ IV , (when α = 0) to the high bias-no variance prior,
βp, (when α→ ∞).

Different values of α result in different estimated values for β0. The optimal value of α is
determined empirically by splitting the data into training and test samples. The training sample is a
randomly drawn sample of [τn] observations, denoted, Yτn, Xτn, and Zτn, and are used to calculate a

2 This term is both the second derivative of the objective function (3) and the matrix being inverted in the last term of the
covariance (4).



Econometrics 2020, 8, 39 5 of 25

path between the IV estimate and the prior as in Equation (6). The estimate using the training sample,
conditional on α, is

β̂tr(α) ≡ arg min
β

1
2[τn]

(Yτn − Xτnβ)′ PZτn (Yτn − Xτnβ) +
α

2
(β− βp)′(β− βp) (7)

where PZτn is the projection matrix onto Zτn and [·] is the greatest integer function. The first order
conditions for an internal solution are

− 1
τn

X′τnPZτn

(
Yτn − Xτn β̂tr

)
+ α(β̂tr − βp) = 0

or alternatively

− 1
[τn]

[τn]

∑
i=1

{(
X′τnZτn

[τn]

)(
Z′τnZτn

[τn]

)−1
}

zi
(
yi − x′i β̂tr

)
+ α(β̂tr − βp) = 0. (8)

The closed form solution is

β̂tr(α) =

(
X′τnPZτn Xτn

[τn]
+ αI

)−1 (X′τnPZτn Yτn

[τn]
+ αβp

)
. (9)

As α goes from 0 towards infinity, this gives a path from the IV estimator, β̂tr (at α = 0),
to the prior, βp (the limit as α → ∞). Following this path, the optimal α is selected to minimize
the IV least squares objective function (3) over the remaining (n− [τn]) observations, the test sample,
denoted Yn(1−τ), Xn(1−τ) and Zn(1−τ). The optimal value for the tuning parameter is defined by
α̂ = arg minα∈[0,∞) Qn(1−τ)(α) where

Qn(1−τ)(α) =
1

2(n− [nτ])

(
Yn(1−τ) − Xn(1−τ) β̂tr(α)

)′
PZn(1−τ)

(
Yn(1−τ) − Xn(1−τ) β̂tr(α)

)
(10)

where PZn(1−τ)
is the projection matrix onto Zn(1−τ).

1
(n− [τn])

(βp − β̂tr(α̂))
′
(

X′τnPZτn Xτn

[τn]
+ α̂Ik

)−1

X′n(1−τ)PZn(1−τ)

(
Yn(1−τ) − Xn(1−τ) β̂tr(α̂)

)
= 0

or alternatively

1
n− [τn]

n

∑
i=[τn]+1

{
(βp − β̂tr(α̂))

′
((

X′τnZτn

[τn]

)(
Z′τnZτn

[τn]

)−1 (X′τnZτn

[τn]

)
+ α̂Ik

)−1

(
X′τnZτn

n− [τn]

)(
Z′τnZτn

n− [τn]

)−1
}

zi
(
yi − x′i β̂tr(α̂)

)
= 0. (11)

The ridge regression estimate β̂α̂ ≡ β̂ IV(α̂) is then characterized by

− 1
n

X′PZ
(
Y− Xβ̂α̂

)
+ α̂(β̂α̂ − βp) = 0

or alternatively

− 1
n

n

∑
i=1

{(
X′Z

n

)(
Z′Z

n

)−1
}

z′i(yi − xi β̂α̂) + α̂(β̂α̂ − βp) = 0. (12)
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The first order conditions that characterize the ridge estimator, Equations (8), (11), and (12),
are 2k + 1 equations in the 2k + 1 parameters and have the structure of sample averages being set
to zero. However, the functions being averaged do not fit into the traditional GMM framework.
In Equations (8), (11), and (12) the terms in the curly brackets depend on the entire sample and not just
the data for index i and the parameters. The terms in the curly brackets will converge at Op

(
n−1/2

)
and must be considered jointly with the asymptotic distributions of (β̂′α̂, α̂)′.

The asymptotic distribution of the ridge estimator can be determined with the GMM framework
using the parameterization

θ =
[

vech(Rτ)′ vech
(

R(1−τ)

)′
vec(Sτ)′ vec

(
S(1−τ)

)′
β′tr α β′

]′
where vec(·) stacks the elements from a matrix into a column vector and vech(·) stacks the unique
elements from a symmetric matrix into a column vector. The population parameter values are

θ0 =
[

vech(Rz)′ vech(Rz)′ vec(RzΓ0)
′ vec(RzΓ0)

′ β′0 0 β′0

]′
.

The ridge estimator is part of the parameter estimates defined by the just identified system of
equations Hn(θ) =

1
n ∑n

i=1 hi(θ) = 0 where

hi(θ) =



1τ(i)vech(Rτ − ziz′i)
(1− 1τ(i))vech(R(1−τ) − ziz′i)

1τ(i)vec(Sτ − zix′i)
(1− 1τ(i))vec(S(1−τ) − zix′i)

1τ(i)
(
−S′τ R−1

τ zi(yi − x′i βtr) + α(βtr − βp)
)

(1− 1τ(i))(yi − x′i βtr)z′iR
−1
(1−τ)

S(1−τ)

(
S′τ R−1

τ Sτ + αIk
)−1

(βp − βtr)

−(τSτ + (1− τ)S1−τ)
′(τRτ + (1− τ)R1−τ)

−1)zi(yi − x′i β) + α(β− βp)


(13)

and the training and test samples are determined with the indicator function

1τ(i) =

{
1, i ≤ [τn]
0, [τn] < i.

Using the structure of Equation (13), the system Hn(θ) =
1
n ∑n

i=1 hi(θ) = 0 can be seen as seven
sets of equations. The first four sets are each self-contained systems of equal numbers of equations
and parameters. The fifth set has k equations and introduces k new parameters, βtr. The six is a
single equation with the new parameter α. The seventh set has k equations and introduces the final
k parameters, β. Identification occurs because the expectation of the gradient is invertible. This is
presented in the Appendices A and B.

3. Asymptotic Behavior

Three assumptions are sufficient to obtain asymptotic distribution for the ridge estimator.

Assumption 1. zi is iid with finite fourth moments and E[ziz′i] = Rz has full rank.

Assumption 2. Conditional on Z,
[

εi u′i
]′

are iid vectors with zero mean, full rank covariance matrix with
possibly nonzero off-diagonal elements.

Assumptions 1 and 2 imply E[hi(θ0)] = 0 and
√

nHn(θ0) satisfies the CLT.
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Assumption 3. The parameter space Θ is defined by: Rz is restricted to a symmetric positive definite matrix
with eigenvalues 1/B1 ≤ λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃m ≤ B1,

∣∣β j
∣∣ ≤ B2 for j = 1, 2, . . . , k, Γ0 = [γ`,j] is of full

rank with
∣∣∣γ`,j

∣∣∣ ≤ B3 for ` = 1, . . . , m, j = 1, 2, . . . , k and α ∈ [0, B4] where B1, B2, B3 and B4 are positive
and finite.

First consider the tuning parameter. Even though it is empirically selected using the training and
testing samples, its limiting value and rate of convergence are familiar.

Lemma 1. Assumptions 1, 2 and 3 imply

1. α̂→ 0 and
2.

√
nα̂ = Op(1).

Proofs are given in the Appendix A.
Lemma 1 implies that the population parameter value for the tuning parameter is zero, α0 = 0,

which is on the boundary of the parameter space. This results in a nonstandard asymptotic distribution
which can be characterized by appealing to Theorem 1 in (Andrews 2002). The approach in
(Andrews 2002) requires the root-n convergence of the parameters. Lemma 1, traditional TSLS and
method of moments establishes this for all the parameters in θ. Equation Equation (13) puts the ridge
estimator in the form of the first part of (14) from (Andrews 2002). Because the system is just identified,
the weighting matrix does not affect the estimator and is set to the identity matrix. The scaled GMM
objective function can be expanded into a quadratic approximation about the centered and scaled
population parameter values

nHn(θ)
′Hn(θ) = nHn(θ0)

′Hn(θ0) + nHn(θ0)
∂Hn(θ0)

∂θ′
(θ − θ0)

+
n
2
(θ − θ0)

′
{

∂Hn(θ0)
′

∂θ

∂Hn(θ0)

∂θ′

}
(θ − θ0) + op(1)

=
n
2

Hn(θ0)
′Hn(θ0) +

n
2

(
Hn(θ0) +

∂Hn(θ0)

∂θ′
(θ − θ0)

)′ (
Hn(θ0) +

∂Hn(θ0)

∂θ′
(θ − θ0)

)
+ op(1)

=
n
2

Hn(θ0)
′Hn(θ0) +

1
2

((
− ∂Hn(θ0)

∂θ′

)−1√
nHn(θ0)−

√
n(θ − θ0)

)′ {
∂Hn(θ0)

′

∂θ

∂Hn(θ0)

∂θ′

}

×
((
− ∂Hn(θ0)

∂θ′

)−1√
nHn(θ0)−

√
n(θ − θ0)

)
+ op(1).

The first term does not depend on θ and the last term converges to zero in probability. This
suggests that selecting θ̂ to minimize Hn(θ)′Hn(θ) will result in the asymptotic distribution of

√
n(θ̂ −

θ0) being the same as the distribution of λ ∈ Λ ≡
{

λ ∈ Rm(m+1)+2km+2k+1 : λm(m+1)+2km+k+1 ≥ 0
}

where (Z − λ)′M′0M0(Z − λ) takes its minimum, where the random variable is defined as

Z = lim
n→∞

(
E
[
−∂Hn(θ0)

∂θ′

])−1√
nHn(θ0)

and

M0 = E
[

∂Hn(θ0)

∂θ′

]
.

This indeed is the result by Theorem 1 of (Andrews 2002). The needed assumptions are given in
(Andrews 2002). The estimator is defined as

θ̂ = arg min
θ∈Θ

Hn(θ)
′Hn(θ).
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Theorem 1. Assumptions 1–3 imply the asymptotic distribution of
√

n(θ̂ − θ0) is equivalent to the
distribution of

λ̂ = arg min
λ∈Λ

(Z − λ)′M′0M0(Z − λ).

The objective function can be minimized at a value of the tuning parameter in (0, ∞) or possibly
at α = 0. The asymptotic distribution of the tuning parameter will be composed of two parts, a discrete
mass at α = 0 and a continuous function over (0, ∞). The asymptotic distribution over the other
parameters can be thought of as being composed of two parts, the distribution conditional on α = 0
and the distribution over α > 0.

In terms of the framework presented in (Andrews 2002), the random sample is used to create a
random variable. This is then projected onto the parameter space, which is a cone. The projection
onto the cone results in the discrete mass at α = 0 and the continuous mass over (0, ∞). As noted in
(Andrews 2002), this type of a characterization of the asymptotic distribution can be easily programmed
and simulated.

4. Small Sample Properties

To investigate the small sample performance, linear IV models are simulated and estimated using
TSLS and the ridge estimator. The model is given in Equations (1) to (4) with k = 2 and m = 3.
To standardize the model, set zi ∼ iidN(0, I3) and β0 = (0, 0)’. Endogeneity is created with

[
εi
ui

]
∼ iidN

0,

 1 0.7 0.7
0.7 1 0
0.7 0 1


 .

The strength of the instrument signal is controlled by the parameter3 δ in

Γ0 =

1 0
0 δ

1 0

 .

To judge the behavior of the estimator, three different dimensions of the model are adjusted.

1. Sample size. For smaller sample sizes, the ridge estimator should have better properties whereas
for larger sample sizes, TSLS should perform better. We consider sample sizes of n = 25, 50, 250
and 500.

2. Precision. Signal strength of the instruments is one way to vary precision. The instrument signal
strength decreases with the value of δ above, conditional on holding the other model parameters
fixed. For lower precision settings or smaller signal strengths the ridge estimator should perform
better. We consider values of δ = 0.1, 0.25, 0.5 and 1. Note that while δ = 1 leads to a high
precision setting for all sample sizes considered, δ = 0.1 leads to a low precision setting in smaller
samples and a high precision setting in larger samples.

3. Prior value relative to β0. For the prior closer to the population parameter values the ridge
estimator should perform relatively better. We consider values of βp which were (a) one
standard deviation4 from the true value βp = (1/

√
2, 1/
√

2)′, (b) two standard deviations

3 Similar results are obtained via other specifications of Γ0. These are included as part of Supplementary Materials for the
paper, available from the authors on request.

4 Each individual error term is standard normal.
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from the true value βp = (
√

2,
√

2)′, and (c) three standard deviations from the true value5

βp = (3/
√

2, 3/
√

2)′.

We simulate a total of 48 model specifications corresponding to 4 sample sizes n, 4 values of the
precision parameter δ and 3 values of the prior βp. Each specification is simulated 10,000 times and
both TSLS and ridge estimator are estimated. We compare estimated β0 values on bias, variance and
MSE. For the ridge estimator we use τ = 0.7 to split the sample between training and test samples.6

The regularization parameter α is selected in two steps—first, we search in the log-space going
from 10−5 to 106; second, we perform a grid search7 in a linear space around the value selected in
the first step. A final selected value of α̂ = 0 in the second step corresponds to a “no regularization”
scenario which implies the ridge estimator ignores the prior in favor of the data and the value α̂ = 107

corresponds to an “infinite regularization” scenario which implies the ridge estimator ignores the data
in favor of the prior.

Tables 1 and 2 compare the performance of the TSLS estimator with the ridge estimator for
different precision levels and sample sizes when the prior is fixed at βp = ( 1√

2
, 1√

2
)′ and βp = ( 3√

2
, 3√

2
)′

respectively. Recall, our parameter of interest is β0 = (β1, β2)
′ = (0, 0)′. We compare the estimators

based on (a) bias, (b) standard deviation of the estimates, (c) MSE values of the estimates and (d) sum
of MSE values of β̂1 and β̂2. In both tables, the TSLS estimator performs as expected—both bias
and standard deviation of estimates fall as sample size increases and as instrument signal strength
increases. In smaller samples, the TSLS estimators exhibit some bias, which confirms that TSLSL
estimators are consistent but not unbiased. Table 1 presents a scenario where the prior for the ridge
estimator is one standard deviation away from the true parameter estimate. We note that in the low
precision setting of δ = 0.1 the ridge estimator has lower MSE for all sample sizes considered in the
simulations. However as precision improves, we note that for larger sample sizes the TSLS estimator
has lower MSE. Table 2 describes a scenario where the ridge estimator does not have any particular
advantage since it is biased to a prior which is 3 standard deviations away from the true parameter
value. However, even when prior values are far from true parameter values, there are a number of
scenarios where the ridge estimator outperforms the TSLS estimator in terms of MSE. In particular,
in small samples and low precision settings, the ridge estimator leads to smaller MSE. When δ = 0.1,
the ridge estimator leads to lower MSE values for all sample sizes except n = 500. When δ = 1 and the
model has high precision, the ridge estimator has higher MSE than TSLS. Thus as the signal strength
improves and low precision issues subside, TSLS dominates. The bias-variance trade-off is at work
here. Consider the results corresponding to n = 25 and δ = 0.25. The ridge estimator has higher bias
compared to the TSLS estimator for both parameters, however this is compensated by considerably
smaller standard deviation values leading to smaller MSE. This table also demonstrates scenarios
where for a given δ value, as the sample size increases the estimator with lower MSE changes from
ridge to TSLS. For δ = 0.25, the ridge estimator performs better for sample sizes n ≤ 50 whereas TSLS
performs better for n ≥ 250. Similarly, for δ = 0.50, the ridge estimator outperforms TSLS only for the
smallest sample size of n = 25.

Figures 1–4 present scatter plots of the estimates from TSLS and ridge estimator with different
priors for the following cases: (a) low precision, small sample size; (b) low precision, large sample size;
(c) high precision, small sample size; (d) high precision, large sample size. These figures demonstrate
the influence of the priors. The prior pulls the ridge estimates away from the population parameter
values. For low precision models (δ = 0.1), the variance associated with TSLS estimates is larger
than the ridge estimates, even in larger sample sizes. The ridge estimator is biased towards the prior

5 Other specifications of prior values also led to similar results. These are included as part of Supplementary Materials for the
paper, available from the authors on request.

6 The best value of τ is unclear. All the simulations reported in this section were also performed with τ = 0.5 and τ = 0.9.
The results were similar to τ = 0.7. The full set of simulations is available in the Supplementary Materials.

7 We consider a linear grid of 10,000 points in the the second step.
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which is demonstrated by the estimates not being distributed symmetrically around the true value.
On the other hand, for high precision models (δ = 1) the variance reduction from TSLS for the ridge
estimator is not as dramatic. In fact, while the variance reduction appears substantial for the prior
value of βp = ( 1√

2
, 1√

2
)′, it is unclear at least visually if there is a reduction in variance for a poorly

specified prior at βp = ( 3√
2

, 3√
2
)′. In larger samples with high precision (Figure 4) the TSLS estimates

outperform the ridge estimators which is demonstrated by larger clouds which are slightly off-center
from the true parameter values. However, ridge estimators using different priors are still competitive
and don’t lead to a drastically worse performance (as a reference compare the performance of the TSLS
estimates to the ridge estimates in Figure 1).

Table 1. Estimates of β̂1 and β̂2 using TSLS and ridge estimator for βp = ( 1√
2

, 1√
2
)′. The ridge estimator

leads to smaller combined MSE (highlighted in bold) when precision is low (δ = 0.10). This drop
in MSE is driven primarily by large reductions in standard deviations of the estimates. The TSLS
estimator leads to smaller combined MSE when precision is high (δ = 1.00). For intermediate precision
models the ridge estimator leads to smaller combined MSE in small samples.

δ n Estimator
β̂1 β̂2 (β̂1, β̂2)

Bias SD MSE Bias SD MSE MSE

0.10 25 TSLS 0.013 0.232 0.054 0.630 1.514 2.690 2.744
Ridge 0.100 0.138 0.029 0.677 0.403 0.621 0.650

50 TSLS 0.006 0.189 0.036 0.542 1.428 2.333 2.368
Ridge 0.062 0.100 0.014 0.646 0.548 0.717 0.731

250 TSLS −0.000 0.081 0.007 0.204 1.511 2.323 2.330
Ridge 0.021 0.044 0.002 0.498 0.385 0.396 0.398

500 TSLS −0.000 0.041 0.002 0.060 0.763 0.585 0.587
Ridge 0.014 0.032 0.001 0.401 0.349 0.282 0.283

0.25 25 TSLS 0.008 0.216 0.047 0.322 1.156 1.440 1.486
Ridge 0.101 0.145 0.031 0.549 0.467 0.519 0.550

50 TSLS 0.002 0.147 0.022 0.179 1.085 1.209 1.231
Ridge 0.062 0.098 0.013 0.461 0.342 0.329 0.343

250 TSLS −0.001 0.047 0.002 −0.002 0.297 0.088 0.091
Ridge 0.016 0.045 0.002 0.215 0.263 0.116 0.118

500 TSLS 0.000 0.032 0.001 0.000 0.188 0.035 0.036
Ridge 0.009 0.032 0.001 0.143 0.211 0.065 0.066

0.50 25 TSLS 0.002 0.198 0.039 0.053 0.751 0.566 0.605
Ridge 0.099 0.158 0.035 0.338 0.362 0.245 0.280

50 TSLS −0.000 0.113 0.013 0.005 0.402 0.162 0.175
Ridge 0.057 0.104 0.014 0.239 0.264 0.127 0.141

250 TSLS −0.001 0.045 0.002 −0.000 0.130 0.017 0.019
Ridge 0.014 0.045 0.002 0.088 0.147 0.029 0.032

500 TSLS 0.000 0.032 0.001 −0.000 0.091 0.008 0.009
Ridge 0.009 0.032 0.001 0.057 0.108 0.015 0.016

1.0 25 TSLS −0.002 0.163 0.026 −0.004 0.244 0.060 0.086
Ridge 0.090 0.164 0.035 0.144 0.221 0.070 0.105

50 TSLS 0.000 0.106 0.011 0.001 0.153 0.023 0.035
Ridge 0.054 0.107 0.014 0.095 0.155 0.033 0.047

250 TSLS −0.001 0.045 0.002 −0.000 0.064 0.004 0.006
Ridge 0.018 0.048 0.003 0.035 0.073 0.007 0.009

500 TSLS 0.000 0.032 0.001 −0.000 0.045 0.002 0.003
Ridge 0.013 0.034 0.001 0.024 0.053 0.003 0.005
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Table 2. Estimates of β̂1 and β̂2 using TSLS and ridge estimator for βp = ( 3√
2

, 3√
2
)′. The prior is 3

standard deviations away from the true parameter value. The ridge estimator outperforms the TSLS
estimator in terms of MSE values in a number of cases. In particular, in small samples and low precision
settings, the ridge estimator leads to smaller MSE values.

δ n Estimator
β̂1 β̂2 (β̂1, β̂2)

Bias SD MSE Bias SD MSE MSE

0.10 25 TSLS 0.012 0.232 0.054 0.629 1.516 2.693 2.747
Ridge 0.090 0.222 0.058 1.050 0.895 1.903 1.961

50 TSLS 0.006 0.189 0.036 0.546 1.425 2.328 2.363
Ridge 0.051 0.152 0.026 1.000 0.972 1.944 1.970

250 TSLS −0.000 0.081 0.007 0.205 1.511 2.325 2.332
Ridge 0.012 0.074 0.006 0.686 1.196 1.902 1.908

500 TSLS −0.000 0.041 0.002 0.058 0.764 0.588 0.589
Ridge 0.006 0.035 0.001 0.489 0.614 0.615 0.617

0.25 25 TSLS 0.008 0.216 0.047 0.324 1.160 1.451 1.498
Ridge 0.085 0.217 0.054 0.786 0.850 1.340 1.394

50 TSLS 0.002 0.147 0.022 0.178 1.082 1.202 1.223
Ridge 0.046 0.127 0.018 0.629 0.718 0.910 0.928

250 TSLS −0.001 0.047 0.002 −0.003 0.297 0.088 0.091
Ridge 0.008 0.042 0.002 0.225 0.318 0.151 0.153

500 TSLS 0.000 0.032 0.001 −0.000 0.188 0.035 0.036
Ridge 0.005 0.030 0.001 0.136 0.215 0.065 0.066

0.50 25 TSLS 0.002 0.199 0.040 0.053 0.748 0.562 0.602
Ridge 0.077 0.190 0.042 0.412 0.561 0.485 0.527

50 TSLS −0.000 0.113 0.013 0.005 0.402 0.161 0.174
Ridge 0.041 0.108 0.013 0.263 0.364 0.201 0.215

250 TSLS −0.001 0.045 0.002 −0.001 0.130 0.017 0.019
Ridge 0.011 0.044 0.002 0.086 0.149 0.030 0.032

500 TSLS 0.000 0.032 0.001 −0.000 0.091 0.008 0.009
Ridge 0.008 0.031 0.001 0.056 0.108 0.015 0.016

1.0 25 TSLS −0.002 0.162 0.026 −0.003 0.244 0.060 0.086
Ridge 0.076 0.171 0.035 0.142 0.256 0.086 0.121

50 TSLS 0.000 0.106 0.011 0.001 0.153 0.023 0.035
Ridge 0.048 0.108 0.014 0.093 0.162 0.035 0.049

250 TSLS −0.001 0.045 0.002 −0.000 0.064 0.004 0.006
Ridge 0.017 0.048 0.003 0.034 0.074 0.007 0.009

500 TSLS 0.000 0.032 0.001 −0.000 0.045 0.002 0.003
Ridge 0.012 0.034 0.001 0.024 0.053 0.003 0.005
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Figure 1. Scatter plots of the estimates from TSLS and ridge estimator with different priors when
precision is low (δ = 0.1) and sample size is small (n = 25). Estimates, the true parameter value and
prior values are represented by blue, yellow and red points respectively. The variance associated with
TSLS estimates is much larger than the ridge estimates. The ridge estimator is biased toward the prior.

Figure 2. Scatter plots of the estimates from TSLS and ridge estimator with different priors when
precision is low (δ = 0.1) and sample size is large (n = 500). Estimates, the true parameter value and
prior values are represented by blue, yellow and red points respectively. The variance associated with
TSLS estimates is much larger than the ridge estimates. The ridge estimator is less biased towards the
prior in the larger samples.
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Figure 3. Scatter plots of the estimates from TSLS and ridge estimator with different priors when
precision is high (δ = 1) and sample size is small (n = 25). Estimates, the true parameter value and
prior values are represented by blue, yellow and red points respectively. TSLS performance is much
better in this setting. The variance reduction for the ridge estimator is not as dramatic.

Figure 4. Scatter plots of the estimates from TSLS and ridge estimator with different priors when
precision is high (δ = 1) and sample size is large (n = 500). Estimates, the true parameter value
and prior values are represented by blue, yellow and red points respectively. The TSLS estimates
outperform the ridge estimators which is demonstrated by marginally larger clouds which are slightly
off-center from the true parameter values for the ridge estimators. However, the ridge estimator using
different priors is still competitive.
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Table 3, summarizes the distribution of the estimated regularization parameter α̂ for different
precision levels, sample sizes and prior values. Recall Theorem 1 implies the asymptotic distribution
will be a mixed distribution with some discrete mass at α = 0. Table 3 reports the proportion of
cases which correspond to “no regularization” (α̂ = 0), “infinite regularization” (α̂ = 107 ≈ ∞)
and “some regularization” (α̂ ∈ (0, 107)). In all cases, there is a substantial mass of the distribution
concentrated at α̂ = 0. On the other hand we note that except in the cases where the prior is located
at the true parameter value, there is no mass concentrated at α̂ ≈ ∞. We see some interesting
variations corresponding to different prior values. In low precision settings (particularly δ = 0.1),
keeping sample size fixed, as the prior moves away from the true value, the proportion of cases
with “no regularization” increases whereas the proportion of cases with “some regularization” falls.
Similarly for high precision settings (particularly δ = 1), as the sample size increases, the proportion
of cases with “no regularization” increases whereas the proportion of cases with “some regularization”
falls. In this table we also present results for large sample sizes of n = 10,000, which demonstrate that
the mass at α̂ = 0 approaches 50% asymptotically, as predicted by Theorem 1. Distributions of α̂ for
large sample sizes of n = 10,000 via histograms are presented in Figure 5.

Figure 5. This figure plots the histogram of estimated regularization parameter α̂ when n = 10,000 for
all precision parameters and all priors considered in the simulations. The total number of simulations to
generate each of these plots is N = 1000. As predicted by Theorem 1, the mass at α̂ = 0 is approaching
50% asymptotically. Distributions of α̂ values for all cases considered are presented in Table 3.
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Table 3. Distribution of regularization parameter α̂. The mixed distribution associated with the finite samples is in agreement with the nonstandard asymptotic
distribution given in Theorem 1. The proportion of cases with “no regularization” (α̂ = 0), “some regularization” (α̂ ∈ (0, 107)) and “infinite regularization”
(α̂ = 107 ≈ ∞) are presented. For all cases, there is a substantial mass of the distribution concentrated at α̂ = 0. On the other hand, there is no mass concentrated at
α̂ ≈ ∞ except in very small samples of n = 25. As predicted by Theorem 1, the mass at α̂ = 0 is approaching 50% asymptotically. Histograms for the large sample cases
of n = 10,000 are presented in Figure 5.

δ n
βp = (1/

√
2, 1/
√

2)′ βp = (
√

2,
√

2)′ βp = (3/
√

2, 3/
√

2)′

α̂ = 0 α̂ ∈ (0, 107) α̂ = 107 ≈ ∞ α̂ = 0 α̂ ∈ (0, 107) α̂ = 107 α̂ = 0 α̂ ∈ (0, 107) α̂ = 107

0.01 25 0.164 0.834 0.003 0.262 0.738 0.001 0.339 0.661 0.000
50 0.166 0.834 0.000 0.275 0.725 0.000 0.354 0.646 0.000
250 0.190 0.810 0.000 0.281 0.719 0.000 0.319 0.681 0.000
500 0.220 0.780 0.000 0.285 0.715 0.000 0.302 0.698 0.000

10,000 0.413 0.587 0.000 0.411 0.589 0.000 0.411 0.589 0.000

0.25 25 0.176 0.822 0.002 0.262 0.737 0.001 0.315 0.684 0.001
50 0.184 0.816 0.000 0.263 0.737 0.000 0.299 0.701 0.000
250 0.293 0.707 0.000 0.309 0.691 0.000 0.314 0.686 0.000
500 0.346 0.654 0.000 0.354 0.646 0.000 0.354 0.646 0.000

10,000 0.461 0.539 0.000 0.465 0.535 0.000 0.465 0.535 0.000

0.50 25 0.216 0.780 0.004 0.262 0.737 0.001 0.284 0.716 0.000
50 0.255 0.745 0.000 0.284 0.716 0.000 0.294 0.706 0.000
250 0.369 0.631 0.000 0.374 0.626 0.000 0.376 0.624 0.000
500 0.412 0.588 0.000 0.415 0.585 0.000 0.417 0.583 0.000

10,000 0.463 0.537 0.000 0.467 0.533 0.000 0.466 0.534 0.000

1.00 25 0.287 0.708 0.005 0.310 0.689 0.001 0.318 0.681 0.000
50 0.333 0.667 0.000 0.346 0.654 0.000 0.351 0.649 0.000
250 0.413 0.587 0.000 0.418 0.582 0.000 0.419 0.581 0.000
500 0.439 0.561 0.000 0.443 0.557 0.000 0.442 0.558 0.000

10,000 0.474 0.526 0.000 0.478 0.522 0.000 0.477 0.523 0.000



Econometrics 2020, 8, 39 16 of 25

Table 4 presents summaries of the smallest singular value of the matrix8
(
−X′Z

n

)
for different

values of δ and n. The estimated asymptotic standard deviation is inversely related to the smallest
singular value, or equivalently smaller singular values are associated with flatter objective functions at
their minimum values. As the precision parameter increases from δ = 0.1 to δ = 1, the mean of the
smallest singular value increases. As the sample size increases, the variance of the smallest singular
values decreases.

Table 4. Summary statistics of the smallest singular value for the matrix
(
−X′Z

n

)
corresponding to

different precision parameter values δ and sample sizes n, using 10,000 samples each. As the precision
parameters increase from δ = 0.1 to δ = 1, the mean of the smallest singular value increases. As sample
sizes increase from n = 25 to n = 10,000, the spread in the smallest singular value decreases.

δ n Mean Std Dev 1st Quartile Median 3rd Quartile

0.10 25 0.25 0.14 0.14 0.23 0.33
50 0.19 0.10 0.12 0.18 0.26

250 0.12 0.05 0.08 0.12 0.16
500 0.11 0.04 0.08 0.11 0.14

2500 0.10 0.02 0.09 0.10 0.12
5000 0.10 0.01 0.09 0.10 0.11

10,000 0.10 0.01 0.09 0.10 0.11

0.25 25 0.32 0.17 0.19 0.30 0.42
50 0.28 0.13 0.19 0.27 0.37

250 0.26 0.07 0.21 0.26 0.30
500 0.25 0.05 0.22 0.25 0.29

2500 0.25 0.02 0.24 0.25 0.26
5000 0.25 0.01 0.24 0.25 0.26

10,000 0.25 0.01 0.24 0.25 0.26

0.50 25 0.50 0.21 0.35 0.48 0.63
50 0.50 0.17 0.39 0.49 0.61

250 0.50 0.08 0.45 0.50 0.55
500 0.50 0.05 0.46 0.50 0.54

2500 0.50 0.02 0.48 0.50 0.52
5000 0.50 0.02 0.49 0.50 0.51

10,000 0.50 0.01 0.49 0.50 0.51

1.00 25 0.86 0.27 0.67 0.85 1.03
50 0.92 0.21 0.77 0.91 1.05

250 0.98 0.10 0.91 0.98 1.05
500 0.99 0.08 0.94 0.99 1.04

2500 1.00 0.03 0.98 1.00 1.02
5000 1.00 0.02 0.98 1.00 1.02

10,000 1.00 0.02 0.99 1.00 1.01

5. Returns to Education

This section revisits the question of returns to schooling in Angrist and Krueger (1991). The key
insight of that paper was the use of quarter of birth indicator variables as instruments to uniquely
identify the impact of years of education on wages. The data are Public use Micro Sample of the 1980
U.S. Census and includes men born between 1920 and 1949 with positive earnings in 1979 and no
missing observations. The sample is divided into three data sets, one for each decade. The empirical
results are summarized in Table 5.

8 This corresponds to the estimate of E
[

∂gi(β)
∂β′

]
where gi(β) = (yi − xi β)zi .
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Table 5. Effect of years of education on the log of weekly earnings.

1920–1929 1930–1939 1940–1949

OLS 0.070 0.063 0.052
TSLS 0.058 0.099 −0.073
Ridge 0.027 0.066 0.001

First stage F-test 38.3 30.5 26.3
Overidentification, Basmann 0.776 2.321 9.693

{p-value} {0.679} {0.313} {0.008}
λmin 3.3 × 10−6 1.3 × 10−5 6.6 × 10−7

Condition Number 4.1 × 107 1.2 × 107 2.8 × 108

Sample size, n 247,199 329,509 486,926

The specification explains the log of weekly wages with the years of education; with race, standard
metropolitan statistical area, marital status, region dummies, and year of birth dummies as controls9.
The same data set was used in (Staiger and Stock 1997) which focused on weak instruments using the
quarter of birth interacted with year of birth to create 30 instruments. To avoid weak instruments, we
restrict attention to the quarter of birth dummy variables as instruments. This gives three instruments
for years of education. The resulting first stage F-tests give no indication of weak instruments.
The appropriateness of the specification is tested with the Basmann test for overidentify restrictions.
The specification is not rejected for the 1920s and 1930s. However, the specification is rejected for
the 1940s.

Each sample is split into a training sample with τ = 0.7 and a testing sample. The empirical
results will be sensitive to this randomization. For each decade, the data was read into R from the
Stata data set from the Angrist Data Archive at MIT, dplyr was used to filter the data for each decade
and the random seed was set in R with “set.seed(12345)”. The samples have hundreds of thousands
of observations, n, with 22 parameters estimated. However, there are precision problems with these
estimates. As noted above in Section 2, the precision can be judged by the magnitude of the smallest
eigenvalue of the second derivative of the objective function at the TSLS estimate for the entire sample,
these are denoted λmin. The precision can also be judged with the condition number for the second
derivatives which varies between 12 million and 282 million.

The prior for the ridge estimates was set empirically to judge the variability in the parameter
estimates in the least informative dimension of the parameter space. The prior was set at four times
the eigenvector associated with the smallest eigenvalue of the second derivative of the TSLS objective
function for the training sample. This is moving four unit lengths away from the TSLS estimate in
the flattest (least informative) direction. The ridge estimator is then defined by the value of α that
minimizes the TSLS objective function using the test sample.

Even with the large sample sizes, the prior impacts the estimates. For the 1930s and 1940s the
ridge estimate is between the OLS and the TSLS estimates. For the 1920s the ridge estimate is below
both the TSLS estimate and the OLS estimate.

A final simulation exercise compares TSLS estimates with ridge estimates using the
Angrist and Krueger (1991) data. As above the specification explains the log of weekly wages with the
years of education; with race, standard metropolitan statistical area, marital status, region dummies,

9 The specification with exogenous variables W, (Staiger and Stock 1997)

Y = X̃a + Wb + u

X̃ = Z̃c + Wd + ε̃

fits into the specification of Equations (1) and (2) with X =
[

X̃ W
]

, Z =
[

Z̃ W
]

, ε =
[

ε̃ 0
]

, β =

[
a
b

]
, and

Γ =

[
c 0
d I

]
.
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and year of birth dummies as controls. The quarter of birth dummies provide three instruments for
years of education. Using the parameter estimates obtained by running the TSLS estimation on the
entire sample from 1930s we obtain residuals û and ε̂ and their estimated covariance matrix. We then
draw N = 10,000 random samples of size n with replacement for the instruments and control variables
and use these along with the full sample parameter estimates and error covariance to obtain simulated
values of years of education and log of weekly wages.

TSLS and ridge estimates are obtained for each random sample and compared on the basis of
bias, standard deviation and root mean square error (RMSE). For the ridge estimates each sample
is split into a training sample with τ = 0.7 and a testing sample. Priors for all parameters are set
to β̂ IV,train i.e., the TSLS parameter estimate using only the training sample, except the parameter
corresponding to returns to education. Three priors are considered for the returns to education
parameter: β

p
edu = 1

2

(
β̂IV

edu,train

)
, β

p
edu =

(
β̂IV

edu,train

)
and β

p
edu = 2

(
β̂IV

edu,train

)
. Results presented in

Table 6 demonstrate that for the smallest sample size of n = 1000 ridge estimates corresponding to all
three priors produce lower RMSE values for the parameter of interest compared to TSLS. On the other
hand for the larger sample size of n = 100,000 TSLS estimates produce lower RMSE values compared
to ridge estimates for all three priors.

Table 6. Simulation results using returns to education data.

Prior Sample Size Estimator Bias SD RMSE

β
p
edu = 1

2

(
β̂IV

edu,train

)
1000 TSLS −0.032 0.185 0.188

Ridge −0.027 0.164 0.166

100,000 TSLS −0.001 0.039 0.039
Ridge −0.0003 0.058 0.058

β
p
edu =

(
β̂IV

edu,train

)
1000 TSLS −0.032 0.192 0.194

Ridge −0.026 0.166 0.168

100,000 TSLS −0.002 0.039 0.039
Ridge −0.004 0.062 0.062

β
p
edu = 2

(
β̂IV

edu,train

)
1000 TSLS −0.036 0.181 0.184

Ridge −0.023 0.134 0.136

100,000 TSLS −0.001 0.038 0.038
Ridge −0.007 0.050 0.051

6. Conclusions

The asymptotic distribution of the ridge estimator when the tuning parameter is selected with
a test sample has been characterized. This estimator incorporates a non-zero prior and allows the
non-negative tuning parameter to be zero. The resulting asymptotic distribution is a mixture with
discrete mass on zero for the tuning parameter, a novel result, which follows from the true value of the
tuning parameter lying on the boundary of the parameter space.

Simulations demonstrate where the ridge estimator produced lower MSE than the TSLS estimator,
specifically when model precision is low, particularly in smaller samples and often even in larger
samples. Where the TSLS estimator has lower MSE, particularly when precision is high, the ridge
estimator remains competitive. As an empirical application, we have applied this procedure to the
returns from education dataset used in (Angrist and Krueger 1991). Importantly, even with over
200,000 observations, the prior still influences the point estimates.

The ridge estimator will be particularly useful in addressing applied empirical questions where
TSLS is appropriate but the available data suffers from low precision or where the sample size available
is small. The characterization the asymptotic distribution of the ridge estimator also provides a useful
framework for other estimators that involve tuning parameters.
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Extensions and improvements of the approach are worthwhile to pursue. Different loss functions
can be applied to the test sample (e.g., k-fold cross validation), we can allow for multiple tuning
parameters, consider models without a closed form solution, allow the number of covariates to grow
with the sample size, allow the number of tuning parameters to grow with the sample size, consider
situation with weak instruments or nearly weak instruments, allow other penalty terms such as the
LASSO or elastic-net.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1146/8/4/39/s1,
File S1: Supplementary Material: On the Asymptotic Distribution of Ridge Regression Estimators using Training
and Test Samples.
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Appendix A. Proof of Lemma 1

The objective function that determines the optimal tuning parameter is given in Equation (10).
As the sample size grows the objective function uniformly converges to a deterministic function
that takes a unique local minimum at α = 0. The parameter space is bounded and the law of large
numbers implies

lim
n→∞

Qn(1−τ)(α) =
1
2
(β0 − βp)′

(
Γ′0RzΓ0

α
+ Ik

)−1

Γ′0RzΓ0

(
Γ′0RzΓ0

α
+ Ik

)−1

(β0 − βp)

which is minimized at α = 0. Hence α0 = 0. When α = 0 then β̂tr(0)→ β0.
The root-n consistency of α̂ follows from the standard approach of Lemma 5.4 in Ichimura (1993).

The needed results are that
dQn(1−τ)(α0)

dα satisfies a CLT and
d2Qn(1−τ)(α)

dα2 is continuous (from the right

hand side) at α0 and
d2Qn(1−τ)(α0)

dα2 limits to a positive value. These derivatives reduce to the derivatives

of β̂tr(α) =
(

X′τnPZτn Xτn
[τn] + αI

)−1 (X′τnPZτn Yτn
[τn] + αβp

)
wrt α. The first derivative is

dβ̂tr(α)
dα =

(
X′τnPZτn Xτn

[τn] + αIk

)−1
βp −

(
X′τnPZτn Xτn

[τn] + αIk

)−2 (X′τnPZτn Yτn
[τn] + αβp

)
=

(
X′τnPZτn Xτn

[τn] + αIk

)−1 (
βp − β̂tr(α)

)
.

The second derivative is

d2 β̂tr(α)
dα2 = −

(
X′τnPZτn Xτn

[τn] + αIk

)−1 dβ̂tr(α)
dα −

(
X′τnPZτn Xτn

[τn] + αIk

)−2 (
βp − β̂tr(α)

)
= −

(
X′τnPZτn Xτn

[τn] + αIk

)−2 (
βp − β̂tr(α)

)
−
(

X′τnPZτn Xτn
[τn] + αIk

)−2 (
βp − β̂tr(α)

)
= −2

(
X′τnPZτn Xτn

[τn] + αIk

)−2 (
βp − β̂tr(α)

)
.

Now determine the derivatives of Qn(1−τ)(α). The first derivative is

dQn(1−τ)(α)

dα = −1
(n−[τn])

(
Yn(1−τ) − Xn(1−τ) β̂tr(α)

)′
PZn(1−τ)

Xn(1−τ)
dβ̂tr(α)

dα

= −1
(n−[τn])

(
Yn(1−τ) − Xn(1−τ) β̂tr(α)

)′
PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn] + αIk

)−1 (
βp − β̂tr(α)

)
.

http://www.mdpi.com/2225-1146/8/4/39/s1
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Evaluate at α0 = 0

dQn(1−τ)(0)
dα = −1

(n−[τn])

(
Yn(1−τ) − Xn(1−τ) β̂tr(0)

)′
PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−1 (
βp − β̂tr(0)

)
= −1

(n−[τn])

(
(Yn(1−τ) − Xn(1−τ)β0)− Xn(1−τ)(β̂tr(0)− β0)

)′
×PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−1 (
βp − β0 − (β̂tr(0)− β0)

)
= −1

(n−[τn])

(
ε′n(1−τ) −

ε′τnPZτn Xτn
[τn]

(
X′τnPZτn Xτn

[τn]

)−1
X′n(1−τ)

)
×PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−1
(

βp − β0 −
(

X′τnPZτn Xτn
[τn]

)−1 X′τnPZτn ετn
[τn]

)
.

The CLT applies to the ε′n(1−τ)Zn(1−τ) and ε′τnZτn terms. The others converge by LLN. Hence

√
(n− [τn])

dQn(1−τ)(0)
dα = −1√

(n−[τn])

(
ε′n(1−τ) −

ε′τnPZτn Xτn
[τn]

(
X′τnPZτn Xτn

[τn]

)−1
X′n(1−τ)

)
×PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−1
(βp − β0) + op(1).

The second derivative is

d2Qn(1−τ)(α)

dα2

= −1
(n−[τn])

(
Yn(1−τ) − Xn(1−τ) β̂tr(α)

)′
PZn(1−τ)

Xn(1−τ)
d2 β̂tr(α)

dα2

+ 1
(n−[τn])

(
Xn(1−τ)

dβ̂tr(α)
dα

)′
PZn(1−τ)

Xn(1−τ)
dβ̂tr(α)

dα

= 2
(n−[τn])

(
Yn(1−τ) − Xn(1−τ) β̂tr(α)

)′
PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn] + αIk

)−2 (
βp − β̂tr(α)

)
+ 1

(n−[τn])

(
βp − β̂tr(α)

)′ (X′τnPZτn Xτn
[τn] + αIk

)−1
X′n(1−τ)

×PZn(1−τ)
Xn(1−τ)

(
X′τnPZτn Xτn

[τn] + αIk

)−1 (
βp − β̂tr(α)

)
.

This is a bounded continuous function. Now evaluate at α0 = 0

d2Qn(1−τ)(0)
dα2 = 2

(n−[τn])

(
(Yn(1−τ) − Xn(1−τ)β0)− Xn(1−τ)(β̂tr(0)− β0)

)′
×PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−2 (
βp − β0 − (β̂tr(0)− β0)

)
+ 1

(n−[τn])

(
βp − β0 − (β̂tr(0)− β0)

)′ (X′τnPZτn Xτn
[τn]

)−1

×X′n(1−τ)PZn(1−τ)
Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−1 (
βp − β0 − (β̂tr(0)− β0)

)
= 2

(n−[τn])

(
εn(1−τ) − Xn(1−τ)(β̂tr(0)− β0)

)′
×PZn(1−τ)

Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−2 (
βp − β0 − (β̂tr(0)− β0)

)
+ 1

(n−[τn])

(
βp − β0 − (β̂tr(0)− β0)

)′ (X′τnPZτn Xτn
[τn]

)−1

×X′n(1−τ)PZn(1−τ)
Xn(1−τ)

(
X′τnPZτn Xτn

[τn]

)−1 (
βp − β0 − (β̂tr(0)− β0)

)
.

The first term will converge to zero and the second term converges to the positive value

(βp − β0)
′ (Γ′0RzΓ0

)
(βp − β0) .

Now follow the standard approach (Lemma 5.4, Ichimura 1993) to show that
√

n(α̂− α0) = Op(1).
Expand Qn(1−τ)(α) about α0 and evaluate at α̂.

Qn(1−τ)(α̂) = Qn(1−τ)(α0) +
dQn(1−τ)(α0)

dα
(α̂− α0) +

1
2

d2Qn(1−τ)(ᾱ)

dα2 (α̂− α0)
2



Econometrics 2020, 8, 39 21 of 25

where 0 ≤ ᾱ ≤ α̂. Because α̂ = arg min[0,∞) Qn(1−τ)(α), 0 ≥ Qn(1−τ)(α̂)−Qn(1−τ)(α0), hence

0 ≥
dQn(1−τ)(α0)

dα
(α̂− α0) +

1
2

d2Qn(1−τ)(ᾱ)

dα2 (α̂− α0)
2.

Multiply both sides by n
(1+
√

n|α̂−α0|)2 .

0 ≥ dQn(1−τ)(α0)

dα (α̂− α0)
n

(1+
√

n|α̂−α0|)2 +
1
2

d2Qn(1−τ)(ᾱ)

dα2 (α̂− α0)
2 n
(1+
√

n|α̂−α0|)2

=
√

n
dQn(1−τ)(α0)

dα

( √
n(α̂−α0)

(1+
√

n|α̂−α0|)

)
1

(1+
√

n|α̂−α0|)
+ 1

2
d2Qn(1−τ)(ᾱ)

dα2

( √
n(α̂−α0)

(1+
√

n|α̂−α0|)

)2 (A1)

Suppose
√

n|α̂− α0| diverged to infinity. As noted above
√

n
dQn(1−τ)(α0)

dα = Op(1). In addition,( √
n(α̂−α0)

(1+
√

n|α̂−α0|)

)
= Op(1). However, 1

(1+
√

n|α̂−α0|)
= op(1) and hence the first term on the LHS of

Equation (A1) goes to zero. This means

op(1) ≥
1
2

d2Qn(1−τ)(ᾱ)

dα2

( √
n(α̂− α0)

(1 +
√

n|α̂− α0|)

)2

.

However,
d2Qn(1−τ)(ᾱ)

dα2 limits to
d2Qn(1−τ)(α0)

dα2 , a positive value, and the RHS can satisfy this only if

√
n(α̂− α0)

(1 +
√

n|α̂− α0|)
= op(1).

This occurs only if
√

n|α̂− α0| = op(1) which is a contradiction of the assumption that
√

n|α̂− α0|
diverges. Hence

√
n(α̂− α0) = Op(1). �

Appendix B. Proof of Theorem 1

This is a direct application of Theorem 1 from (Andrews 2002). Assumptions A1–A5
(GMM1∗–GMM5∗) in (Andrews 2002) are satisfied for the linear model by Assumptions 1–3. To show
how the assumptions in (Andrews 2002) are satisfies, we first use Assumtions 1–3 to demonstrate
three useful results for the system of Equation (13). The useful results are: E[hi(θ0)] = 0,

√
nHn(θ0)

satisfies a central limit theorem and
(

limn→∞
∂Hn(θ0)

∂θ′

)−1
exists, which requires showing that LLN

leads to a matrix which is invertible. In the statement of the Theorem, the limiting random variable, Z,

is composed of two terms:
√

nHn(θ0) and
(
−E

[
∂hi(θ0)

∂θ′

])−1
.

Evaluate the moment condition, Equation (13), at θ0, to show that E[hi(θ0)] = 0 and that
√

nHn(θ0)

satisfies a central limit theorem.

Hn(θ0) =
1
n

n

∑
i=1



1τ(i)vech(Rz − ziz′i)
(1− 1τ(i))vech(Rz − ziz′i)

1τ(i)vec(RzΓ0 − zix′i)
(1− 1τ(i))vec(RzΓ0 − zix′i)
−1τ(i)

(
Γ′0RzR−1

z zi(yi − x′i β0)
)

(1− 1τ(i))(yi − x′i β0)z′iR
−1
z RzΓ0

(
Γ′0RzR−1

z RzΓ0
)−1

(βp − β0)

−
(
Γ′0RzR−1

z zi(yi − x′i β0)
)
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=
1
n

n

∑
i=1



1τ(i)vech(Rz − ziz′i)
(1− 1τ(i))vech(Rz − ziz′i)

1τ(i)vec
(

RzΓ0 − ziu′i − ziz′iΓ0
)

−(1− 1τ(i))vec(RzΓ0 − uiz′i − ziz′iΓ0)

1τ(i) (Γ′0ziεi)

(1− 1τ(i))εiz′iΓ0 (Γ′0RzΓ0)
−1 (βp − β0)

− (Γ′0ziεi)


Each element of hi(θ0) has expectation zero and bounded covariance, hence the iid assumption

implies the central limit theorem

√
nHn(θ0) ∼A N


0,



τχ 0 τξ 0 0 0 0
0 (1− τ)χ 0 (1− τ)ξ 0 0 0

τξ ′ 0 τζ 0 τΨ 0 τΨ
0 (1− τ)ξ ′ 0 (1− τ)ζ 0 (1− τ)Π (1− τ)Ψ
0 0 τΨ′ 0 τΞ 0 τΞ
0 0 0 (1− τ)Π′ 0 (1− τ)Υ (1− τ)Φ′

0 0 τΨ′ (1− τ)Ψ′ τΞ (1− τ)Φ Ξ




where

χ = E
[
vech(Rz − ziz′i)vech(Rz − ziz′i)

′] ,

ξ = E
[
vech(Rz − ziz′i)vec(RzΓ0 − ziz′iΓ0)

′] ,

ζ = E
[

vec(RzΓ0 − zix′i)vec(RzΓ0 − zix′i)
′] ,

Ψ = E
[
vec(ziu′i)

(
εiz′iΓ0

)]
,

Π = E
[
vec(−uiz′i)εiz′iΓ0(Γ′0RzΓ0)

−1(β0 − βp)
]

,

Ξ = (Γ′0RzΓ0)σ
2
ε ,

Υ = σ2
ε (β0 − βp)′(Γ′0RzΓ0)

−1(β0 − βp), and

Φ = −σ2
ε (β0 − βp)′.

The expectation of the first derivative of the moment conditions evaluated at θ0 is

E
[

∂hi(θ0)

∂θ′

]
=

τ I m(m+1)
2

0 0 0 0 0 0

0 (1− τ)I m(m+1)
2

0 0 0 0 0

0 0 τ Imp 0 0 0 0
0 0 0 (1− τ)Imp 0 0 0
0 0 0 0 τ(Γ′0RzΓ0) τ(β0 − βp) 0
0 0 0 0 −(1− τ)(β0 − βp)′ 0 0
0 0 0 0 0 (β0 − βp) (Γ′0RzΓ0)


The general structure of the last matrix is[

A B
κB′ C

]
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where

A =


τ I m(m+1)

2
0 0 0 0

0 (1− τ)I m(m+1)
2

0 0 0

0 0 τ Imp 0 0
0 0 0 (1− τ)Imp 0
0 0 0 0 τ(Γ′0RzΓ0)

 ,

B =

[
0 0

τ(β0 − βp) 0

]
, C =

[
0 0

(β0 − βp) (Γ′0RzΓ0)

]
, and κ = −(1−τ)

τ . The inverse of the general

structure is [
A−1 + A−1B(C− κB′A−1B)−1BA−1 −A−1B(C− κB′A−1B)−1

−(C− κB′A−1B)−1BA−1 (C− κB′A−1B)−1

]
which is well defined if the inverses of A and (C− κB′A−1B) exist. The matrix A−1 is well defined
because Assumption 3 implies (Γ′0RzΓ0) is full rank. The matrix

(
C− κB′A−1B

)
=

[
(1− τ)(β0 − βp)′ (Γ′0RzΓ0)

−1 (β0 − βp) 01×p
(β0 − βp) (Γ′0RzΓ0)

]

with inverse

(
C− κB′A−1B

)−1
=

 1
(1−τ)(β0−βp)′(Γ′0RzΓ0)−1(β0−βp)

01×p

− (Γ′0RzΓ0)
−1(β0−βp)

(1−τ)(β0−βp)′(Γ′0RzΓ0)−1(β0−βp)
(Γ′0RzΓ0)

−1

 .

Hence
(
−E

[
∂hi(θ0)

∂θ′

])−1
is well defined. Now verify Assumptions A1–A5 (GMM1∗–GMM5∗) in

Andrews (2002).

Assumption A1 (GMM1∗). This parameter space is bounded. Because zi has finite fourth moments and[
εi u′i

]′
has a finite second moment there exists a dominating function with a finite expectation. This implies

that Hn(θ)′Hn(θ) will uniformly converge to its limiting function, E[Hn(θ)′]E[Hn(θ)]. Identification follows
from E[Hn(θ0)] = 0 and the invertibility of E

[
∂hi(θ0)

∂θ′

]
.

Assumption A2 (GMM2∗). The data are iid. The GMM structure is presented above. The expectation of the
first derivative of the moment conditions is evaluated at θ0 and inverted, hence demonstrating it is full rank.
E[Hn(θ0)] = 0 is demonstrated above. The system is just identified, so an identity weighting matrix is used.

Assumption A3 (GMM3∗). The CLT applies because the data are iid and zi has finite fourth moments,[
εi u′i

]′
has a finite second moment and the zi and

[
ε j u′j

]′
are independent for all i and j.

Assumption A4 (GMM4∗). Because the eigenvalues of Rz are bounded above zero and below infinity each
element of Rz and R−1

z is bounded above. Hence all the parameters in Θ are bounded and Equation (27) of
(Andrews 2002) is satisfied with c = max(B1, B2, B3, B4).

Assumption A5 (GMM5∗). The cone for this problem is Λ ={
λ ∈ Rm(m+1)+2mk+2k+1 : λm(m+1)+2mk+k+1 ≥ 0

}
which is convex.

�
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