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Abstract: We investigate forecasting in models that condition on variables for which future values are
unknown. We consider the role of the significance level because it guides the binary decisions whether
to include or exclude variables. The analysis is extended by allowing for a structural break, either
in the first forecast period or just before. Theoretical results are derived for a three-variable static
model, but generalized to include dynamics and many more variables in the simulation experiment.
The results show that the trade-off for selecting variables in forecasting models in a stationary world,
namely that variables should be retained if their noncentralities exceed unity, still applies in settings
with structural breaks. This provides support for model selection at looser than conventional settings,
albeit with many additional features explaining the forecast performance, and with the caveat that
retaining irrelevant variables that are subject to location shifts can worsen forecast performance.

Keywords: model selection; forecasting; location shifts; significance level; Autometrics

1. Introduction

There are many approaches to formulating models when the sole objective is forecast-
ing, from the very parsimonious through to large systems. However, there is little agree-
ment on which performs best on a forecasting criterion: see Makridakis and Hibon (2000)
and Fildes and Ord (2002) for evidence from forecast competitions. Clements and Hendry
(2001) suggest that this lack of agreement is the result of intermittent distributional shifts
that affect alternative formulations in different ways. We address this puzzle by analysing
the selection of models in the pursuit of optimal mean square forecast error (MSFE) in
settings with structural breaks.1

We focus on regression models that are linear in the parameters, and consider model
selection that is controlled by the nominal significance level for statistical significance.
Loose significance levels have been shown to be optimal to select regression models for
stationary processes if evaluating on a one-step-ahead MSFE. Shibata (1980) showed that
the Akaike information criterion (AIC, see Akaike 1973) is an asymptotically efficient
selection method when the data generating process (DGP) is an infinite-order process;
also see Ing and Wei (2003). Many other criteria have been proposed that aim to have
optimal properties in certain settings but information criteria alone are not a sufficient
principle for selecting models as they do not ensure congruence, so a misspecified model
could be selected: see Bontemps and Mizon (2003). We explore general-to-specific (Gets)
model selection in the simulation exercise to narrow down the class of forecasting models
to undominated models. This yields well-specified encompassing models in sample, albeit
nonstationarities may preclude those benefits continuing over the forecast horizon.

The theoretical analysis commences with a bivariate conditional model that is part
of a three-variable system in which the selection decision is whether to retain or exclude
one of the regressors. This is empirically relevant as demonstrated by UK inflation, where
autoregressive (AR) forecasting models are augmented with the unemployment rate. The bi-
variate model is analysed first in a stationary setting. This is extended to a nonstationary
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settings where location shifts occur at or near the forecast origin. The static setting still
requires forecasts of the conditioning variables, and alternative forecasting devices are
considered, including the two extremes of the class of robust forecasting devices proposed
by Castle et al. (2015), the sample mean and the random walk. The results confirm that
regressors should be retained for forecasting if their noncentralities exceed unity, regardless
of whether or not there is a structural break, or of the forecasting device used. These
analytic results map to a selection significance level of 16% in the bivariate case, much
looser than conventional significance levels used. The results closely match that of AIC,
which can be interpreted as a likelihood ratio χ2 test for a pair of nested models with one
degree of freedom and a penalty of two, and also gives a significance level of approximately
16%: see Pötscher (1991) and Leeb and Pötscher (2009).

A key source of forecast failure is an induced shift in the equilibrium mean of the
variable being forecast, irrespective of whether those conditioning variables are included
in the forecasting model; see the taxonomy in Hendry and Mizon (2012). Consequently,
the simulation exercise evaluates a wide range of settings including larger models, break
types and magnitudes at or near the forecast origin, and the method of forecasting. We
consider a range of significance levels from the very tight (0.001), eliminating almost all
potentially irrelevant variables, to the very loose (0.50), enabling retention of relevant
variables even if they are only marginally significant. The results enable evaluation of the
costs when either omitting relevant variables, or from incorrectly retaining irrelevant vari-
ables. Overall, the results support looser than conventional significance levels for selecting
forecasting models, with a 10% target significance level often producing superior forecasts.

This paper is structured as follows. Section 2 outlines the aims of this paper, then
Section 3 formulates the model framework that is analysed. Section 4 considers the choice of
selection significance level for forecasting in a stationary DGP. Section 5 analyses selection in
a nonstationary DGP where a location shift occurs out of sample in one of the regressors, and
investigates the consequences of that variable’s inclusion or exclusion in the forecasting model.
Section 6 considers the impacts on selection of in-sample shifts using different forecasting
devices. The analytic results are summarized in Section 7. Sections 8 and 9 present simulation
design and evidence on the performance of the various approaches, examining the preferred
significance level to minimize MSFE across experimental designs. Section 10 concludes this
paper. Appendix A provides analytical calculations and Supplementary Tables are given in
Appendix B.

2. Empirical Motivation

An empirical example of inflation forecasting motivates our interest in structural
breaks and their roles in forecast accuracy and the selection of regressors. Two popular
models within this large literature include single-equation forecasting models based on past
inflation and so-called ‘Phillips curve forecasts’. The former usually consist of univariate
models such as autoregressive integrated moving average (ARIMA) models. In the latter,
the univariate model is augmented with an activity variable such as the unemployment
rate or output gap; see Stock and Watson (2009).

The framework considered below, although static, can be applied to these two models
where the econometrician wishes to determine whether to augment a univariate forecasting
model with the contemporaneous unemployment rate. This ‘exogenous’ variable is subject
to breaks in the form of location shifts, which may occur at or near the forecast horizon.
Figure 1 records2 the quarterly observations on the annual percentage inflation in UK
consumer price index, πt, and the UK unemployment rate as a percentage, Ut, along with a
broken mean obtained by step indicator saturation (SIS, see Castle et al. 2015) at a nominal
significance level α = 0.1%.
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Figure 1. (a) Quarterly average of CPI 12 month inflation rates for the UK (percent per annum); (b) quarterly UK
unemployment rate in percent, with SIS detected mean shifts at α = 0.1%.

The analytics derived below correspond to a Phillips curve formulation (model M1),
a univariate AR model (M2) and selection applied to the unemployment rate using a
significance level of 0.16 (M3). Using model-specific coefficients µ, βi, γi and error term νi,
the three models are:

M1 : ∆πt = µ + ∑4
i=1 βi∆πt−i + ∑4

i=0 γiUt−i + νt,

M2 : ∆πt = µ + ∑4
i=1 βi∆πt−i + νt,

M3 : ∆πt = µ + ∑4
i=1 βi∆πt−i + ∑4

i=0 γ∗i Ut−i + νt,

where ∆πt = πt − πt−1. Selection using Autometrics at α = 0.16 is denoted by ∗, e.g.,
γ∗0 = 0 implies that the contemporaneous unemployment rate is not selected. Dynamics
are included to account for any autocorrelation. The forecasting models are estimated over
the period 2000Q1–2013Q4, producing one-quarter-ahead inflation forecasts for the period
2014Q1–2017Q4 evaluated on MSFE. Selection at 16% results in Ut−1 being retained, with a
p-value of 0.149, so would not be retained under a commonly used 5% significance level.
Longer lags of the unemployment rate were not retained.

Table 1 reports the square root of the MSFEs (RMSFE) for one-step-ahead forecasts over
the sample that was held back. Three cases are considered corresponding to the analytics
below: (a) known Ut, (b) forecast Ût using the in-sample mean, and (c) forecast Ût using
Ut−1. Method (a) is infeasible; method (c) is the random walk forecast. When Ut is known,
model M3 outperforms M1 and M2, although the differences are not statistically significant.
As this is infeasible, the random walk forecast combined with selection matches the RMSFE
of knowing Ut. This shows that selection can be beneficial. The next four sections formalize
the framework to establish the optimal significance level for selection.

Table 1. Root mean square error of one-step forecast for ∆πt over the period 2014Q1–2017Q4.

Conditioning on M1 M2 M3

Known Ut 0.535 0.530 0.515
Mean forecast for Ut 0.519 0.530 0.542
Random walk forecast for Ut 0.549 0.530 0.515

3. The Analytic Design

In this section, we specify the analytic design, consisting of a three-variable DGP
and two different models for that DGP. In later sections, we introduce a third model
that involves selection. Together, these mimic the models M1, M2, and M3 that were
introduced above.
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The DGP is a static vector autoregression (VAR) for variables y, x1, x2 with coefficients
βi, µi and error terms ε, η1, η2 structured as: 1 −β1 −β2

0 1 0
0 0 1

 yt
x1,t
x2,t

 =

 β0
µ1
µ2

+

 εt
η1,t
η2,t

. (1)

Using y′t = (yt : x1,t : x2,t) and µ′ = (µy : µ1 : µ2), assuming normality, we can write (1) as:

yt ∼ IN3[µ, Σ]. (2)

IN3 denotes a three-dimensional independent normal distribution, here with mean µ and
variance Σ. Without loss of generality we set the variance of x1 and x2 to one, V[xi,t] =
σ2

ii = 1, and the correlation between x1 and x2 to ρ:

Σ =

 σ2
ε 0 0

0 1 ρ
0 ρ 1

. (3)

Unless otherwise noted, Figures 2–8 use the following parameter values in calculations:
β0 = 5, β1 = 1, σ2

ε = 1, µ1 = µ2 = 2, ρ = 0.5, M = 105, T = 50 and (when there is a break
in µ2) δ = 4.

Although a static DGP may seem restrictive, the main role of adding dynamics to
this three-variable VAR would be to slow adjustments to location shifts. Such dynamics
are considered in the simulation exercise in Section 9. The analytic design ensures the
assumptions required for valid application of a single t-test are satisfied. In practice,
selection from a carefully designed general model including long lags and saturation
estimators should deliver approximately martingale-difference normal residuals. While it
may be more intuitive to lag the exogenous regressors in the DGP for forecasting purposes,
none of the results would change. The current set up naturally leads to analyses of the
forecasting models for the contemporaneous exogenous regressors, allowing a comparison
of alternative devices and an assessment of open models, see Hendry and Mizon (2012).

Throughout, we assume that the sampling variation of estimates of µi can be neglected,
and use the population values to focus on the impacts of location shifts. Then (1) implies
E[yt] = µy = β0 + β1µ1 + β2µ2 with:

yt = µy + β1(x1,t − µ1) + β2(x2,t − µ2) + εt. (4)

Considering the conditional model (4), we compare M1, which includes both weakly
exogenous regressors, and M2, which excludes x2:

M1 : yt = β0 + β1x1,t + β2x2,t + εt, (5)

M2 : yt = φ0 + γ1x1,t + νt, (6)

where Appendix A.1 summarises φ0, γ1, νt and σ2
ν .

The choice between M1 and M2 will depend on a test of significance of x2,t. The usual
Student’s t-statistic for β2 is

tβ =
β̂2

s.e.
(

β̂2

) ∼ t
(
T − k, ψβ

)
,

where t
(
T − k, ψβ

)
indicates a singly noncentral Student’s t-distribution with ψβ nonzero

under the alternative hypothesis. Here, T − k is the degrees of freedom, and

ψ2
β =

Tβ2
2
(
1− ρ2)
σ2

ε
(7)
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is the squared noncentrality parameter under the alternative.

4. Selection in a Stationary DGP

We start by analysing the forecast errors of the two models that were introduced,
denoted M1 and M2, in the absence of breaks. The analysis is then augmented in Section 4.2
by introducing selection of regressors in M3, and the influence of the significance level on
the selection decision in Section 4.3. In this section, we assume that there are no breaks in
the DGP.

4.1. Known Future Values of Regressors

The one-step-ahead forecast errors from M1 are denoted ε̂ and those from M2 ε̃.
The mean square forecast errors are written as MSFE1 and MSFE2 respectively. We look
at the conditions for MSFE2 ≤ MSFE1. An estimated intercept is always retained which
maintains comparability between M1 and M2.

When there are no breaks, the parameter estimates for M1 are unbiased, E[ε̂T+1|T ] = 0,
so:

MSFE1 = E
[
ε̂2

T+1|T

]
= σ2

ε

(
1 +

3
T

)
, (8)

which is the unconditional MSFE formula for the impact of estimating 3 parameters under
the assumption of correct model specification. For M2, despite the misspecification when
β2 6= 0, E[ε̃T+1|T ] = 0 and the mean square forecast error is:

MSFE2 = E
[
ε̃2

T+1|T

]
= σ2

ν

(
1 +

2
T

)
, (9)

where σ2
ν = σ2

ε

(
1 + T−1ψ2

β

)
= σ2

ε . There is one less parameter to estimate, traded off
against a larger equation variance (see Appendix A.2 for derivations).

If the objective is to minimize MSFE, M2 should be used to forecast when MSFE2 ≤ MSFE1,
which requires:

σ2
ν

(
1 +

2
T

)
≤ σ2

ε

(
1 +

3
T

)
. (10)

From (7), this occurs when ψ2
β ≤ T/(T + 2).

Figure 2 records the one-step-ahead values of MSFE1 and MSFE2 for known xi,T+1, i =
1, 2, for the DGP given by (1) and (2). We let β2 vary along the horizontal axis to get a range
of noncentralities in the set ψβ = [0, 4] using (7).

The results confirm that x2 should be retained if its noncentrality exceeds approxi-
mately 1. The result converges to 1 as T → ∞, because the information content of the
regressor outweighs the parameter estimation cost for one-step forecasts, regardless of the
correlation between x1 and x2.
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1.0

1.2

(a) T=50

0 1 2 3 4

ψβ2
→

√(T/T+2)=0.981
← M2

M1

→
 M

SF
E

M1 (theory) M1 (simulation) M2 (theory) M2 (simulation) 

1.0

1.2

(b) T=100

0 1 2 3 4

√(T/T+2)=0.990
←

ψβ2
→

1.0

1.2

(c) T=500

0 1 2 3 4ψβ2
→

√(T/T+2)=0.998
←

Figure 2. MSFE1 (solid lines computed from (8), circles by simulation) and MSFE2 (dashed line computed from (9), squares
by simulation).

4.2. Selecting Regressors

Although M1 and M2 provide the extremes of always/never retaining x2, in prac-
tice, selection will be applied. From (5), x2,t will be omitted if t2

β2=0 < c2
α. Using the

approximation that:

tβ2=0 =
β̂2

s.e.
[

β̂2

] ≈ √T(1− ρ2)β̂2

σε
,

implies:

β̂2
2 <

c2
ασ2

ε

T(1− ρ2)
. (11)

Thus, retention of x2,t will depend on α and ψ2
β for a given draw.

Forecasts in repeated sampling will be based on a mixture of M1 and M2 depending
on whether x2,t is retained in each draw. The MSFE of the selected model, called M3, will be
a weighted average of the MSFEs of M1 and M2, with the weights given by the probability
that x2,t is retained:

MSFE3 = pα

(
ψβ

)
MSFE1 +

(
1− pα

(
ψβ

))
MSFE2

= MSFE1 +
(
1− pα

(
ψβ

))
(MSFE2 −MSFE1) (12)

≈ MSFE1 + σ2
ε T−1(1− pα

(
ψβ

))(
ψ2

β − 1
)

, (13)

where ψ2
β is given by (7), with:

pα

(
ψβ

)
= Pr

(
t2
β2=0 = c2

α

)
.

From the last term in (13), it is clear that MSFE3 ≤ MSFE1 whenever ψ2
β ≤ 1. Moreover,

pα

(
ψβ

)
will be low when ψ2

β ≤ 1, so M2 will usually be selected. Note that pα

(
ψβ

)
= α

when β2 = 0. However, MSFE3 is a highly nonlinear function of ψ2
β entering directly and

indirectly, as well as of α which also influences pα

(
ψβ

)
nonlinearly.

Figure 3 records the ratio of MSFE3 to MSFE1, for a range of ψ2
β, which from (13) is

given by:
MSFE3

MSFE1
≈ 1 + (T + 3)−1(1− pα

(
ψβ

))(
ψ2

β − 1
)

. (14)

Selection delivers a 1.8% improvement in MSFE relative to M1 under the null when ψ2
β = 0

with α = 0.05 or tighter, but for looser α, e.g., at 0.5, pα

(
ψβ

)
= 0.5 when x2,t is irrelevant so

the benefits of selection are halved. Selection is most costly at intermediate noncentralities
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under the alternative, where, e.g., the largest increase in MSFE relative to M1 is 3% at
α = 0.05 for T = 50, but is over 9% for α = 0.001 at its peak. The hump shape reflects
the nonlinear trade-off as the noncentrality of x2,t increases from the cost of omitting x2,t
rising as its signal is stronger, but the probability of retaining x2,t also increases. While the
magnitude of the maximal loss may seem small for intermediate values of α, this example
considers the selection of just one regressor. In practice, selection is applied when there are
multiple potential regressors, and the loss associated with selection at a given significance
level is cumulated across all potential regressors, as seen in the simulation results below.

The selection rule that x2,t should be retained if ψ2
β > 1 is evident ∀α, but unfortunately

the forecaster does not know ψ2
β. If it was known, the optimal α is 0 for ψ2

β < 1 and 1 for

ψ2
β > 1. We next look at the choice of α to minimize cost in terms of improvements in

MSFEs for an unknown ψ2
β.

1.00

1.02

1.04

1.06

1.08

1.10

α=0.05
    ↓

Ratio of MSFE3 to MSFE1 for T=50

C
os

t/b
en

ef
it 

of
 s

el
ec

tio
n

0.1 0.25 1 4 9 1612.256.52.25 ψ2→

α=0.1

α=0.16

α=0.32

α=0.001→
            

α=0.01
    ↓

↑α=0.5

Figure 3. The costs/benefits of selection measured by MSFE3
MSFE1

in (14).

4.3. The Choice of Significance Level

Equation (11) must hold for x2 to be excluded at the chosen significance level. On av-
erage, that inequality requires:

E
[

β̂2
2

]
= V

[
β̂2

]
+ β2

2 = β2
2 +

σ2
ε

T(1− ρ2)
<

c2
ασ2

ε

T(1− ρ2)
,

assuming unbiasedness. Equating that inequality for β2
2 with ψ2

β < 1 from (10) gives the
boundary for the critical value cα in which selection results in a smaller MSFE due to the
omission–estimation trade-off:

β2
2 =

σ2
ε

(
c2

α − 1
)

T(1− ρ2)
≤ σ2

ε

T(1− ρ2)
.

This implies that c2
α = 2 at the boundary, or an approximate significance level of α = 0.16.

The theoretical probability of retaining x2 for β2 > 0 at α = 0.16 using E[t
β̂2
] = ψβ is:

Pr
(

t
β̂2

= cα

)
= Pr

(
t
β̂2
− ψβ = cα − ψβ

)
.

This gives the retention probabilities recorded in Table 2.
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These results are close to the implied significance level for the AIC in Campos et al.
(2003). This can have a cumulative effect, as shown in Figure 4 which records values of
the term

(
1− pα

(
ψβ

))
where there are five independent regressors, all with the same ψ2

β.
The probability of retaining all five variables is low even at loose significance levels unless
the noncentralities are large. At ψ2

β = 9 the gap between α = 0.05 and α = 0.16 is 29%,
demonstrating large benefits to a looser significance level for the retention of relevant
regressors. The trade-off is that more irrelevant variables will be retained, and this can be
costly if those variables are subject to breaks, which we next explore.

α=0.001 
α=0.01 
α=0.05 
α=0.10 
α=0.16 
α=0.32 
α=0.50 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.250.1 1 2.25 4 6.5 9 12.25 16ψβ
2 →

Probability of not retaining all 5 variables at a common non-centrality

α=0.001 
α=0.01 
α=0.05 
α=0.10 
α=0.16 
α=0.32 
α=0.50 

Figure 4. Values of (1− pα

(
ψβ

)
) for five independent regressors with the same noncentrality for a

range of α and ψ2
β.

Table 2. Retention probabilities for individual t-tests given E[t
β̂2
] = ψβ.

ψβ 1 2 3 4

P0.16 0.34 0.72 0.94 0.995
P0.05 0.16 0.51 0.85 0.98

5. An Out-of-Sample Shift in the Regressors

The analysis of the previous section is augmented by the introduction of a break in
Section 5.1. This break is immediately after the estimation sample, while in Section 6 it
is applied to the last in-sample observation. We distinguish between whether the future
values of the regressors are known (Section 5.2) or unknown (Section 5.4). The role of
selection is studied again (Section 5.3), and we look at the random walk as a device to
forecast future values of the regressors in Section 5.5. Forecasting devices based on full in-
sample information and a random walk are the extremes of the class in Castle et al. (2015),
but there is no information in sample regarding the break to help either device.
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5.1. Specification of the Out-of-Sample Shift

Consider a mean shift of size δ in x2 at T + 1 with the forecast origin at T, so the shift
coincides with the one-step-ahead forecast. The DGP has the same structure as (1)–(3) with
the parameters (β1 β2) of the conditional model constant:

x1,t = µ1 + η1,t t = 1, . . . , T + 1,

x2,t =

{
µ2 + η2,t t = 1, . . . , T,
µ2 + δ + η2,t t = T + 1.

(15)

Since (15) entails:

yT+1 = β0 + β1x1,T+1 + β2x2,T+1 + εT+1

=
(
µy + β2δ

)
+ β1(x1,T+1 − µ1) + β2(x2,T+1 − µ2 − δ) + εT+1, (16)

then β2δ 6= 0 induces a location shift in the relationship between yT+1 and its in-sample
determinants unless the future x2,T+1 is known at time T. As shown in all forecast-error
taxonomies (see e.g., Clements and Hendry 1998), shifts in the equilibrium mean are the
most pernicious source of forecast failure, whereas changes in the parameters of mean-zero
variables have only a variance impact. Omitting x2,T+1 from (16) as in M2 will create the
same location shift. Thus, there is little loss of generality by only considering shifts in
the regressors.

We first evaluate the trade-off to omitting x2,t for known future exogenous regressors,
emulating the above results as the break which occurs in the forecast period is modeled in
the known x2,T+1.

5.2. Known Future Values of Regressors

The one-step-ahead forecasts for M1 given (15), in which values of xT+1 are assumed
to be known at T, are unbiased when the parameter estimates are unbiased. The mean
square forecast error of M1 (see Appendix A.3 for derivations) is:

MSFE1 = E
[
ε̂

2
T+1|T+1

]
= σ2

ε

(
1 +

1
T(1− ρ2)

(
δ2 + 2− ρ

))
, (17)

which does not depend on ψ2
β. Comparison with (8) highlights the effects of the location

shift: δ2 enters the MSFE despite the shift being ‘known’ given x2,T+1, and MSFE1 is no
longer independent of ρ. (17) also reveals the additional costs of including an irrelevant
regressor which shifts out of sample as δ2 enters even when β2 = 0, although it is scaled by
T
(
1− ρ2) so larger samples mitigate its effect.

For M2 (which omits the regressor x2,t), the expectation of the forecast error is
E[ε̃T+1|T+1] = β2δ, so the forecasts are biased by the shift in the omitted variable. The
one-step-ahead MSFE for M2 is:

MSFE2 = E
[
ε̃

2
T+1|T+1

]
= σ2

ε + β2
2

(
1− ρ2 + δ2

)
+ 2T−1σ2

ε

(
1 + T−1ψ2

β

)
, (18)

where β2
2 enters directly so the MSFE is a function of ψ2

β, unlike for M1. Comparison with (9)

reveals the role that ρ and δ2 play. When β2 = 0, so M2 is the correct model, (18) collapses
to (9).

Assuming a criterion of minimizing one-step-ahead MSFE, using (10), MSFE2 ≤ MSFE1

requires:
δ2
(

ψ2
β − 1

)
+ ψ2

β

(
1− ρ2

)(
1 + 2T−1

)
− ρ < 0, (19)

which depends on estimation uncertainty and therefore does not simplify neatly. However,
the solution is close to 1 for reasonable values of ρ. For example, when ρ = 0.5, T = 50 and
δ = 4, then ψ2

β < 0.983, or |ψβ| < 0.991, results in a smaller MSFE2 compared to MSFE1.
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Figure 5 demonstrates the close approximation to a trade-off at ψβ = 1 which holds
regardless of the break. Thus, even knowing there is a shift in x2 does not affect the choice
of forecasting model between including or omitting x2: always (never) include for ψ2

β ≥ 1

(ψ2
β < 1).

5.3. Selecting Regressors

Following Section 4.2, a t-test for statistical significance will be conducted on x2,t in
sample and a decision to retain or exclude x2,t will be made at cα for a given draw. Hence,
MSFE3 will be a weighted average of MSFE1 and MSFE2, using (12):

MSFE3 = MSFE1 +
(
1− pα

(
ψβ

))(
σ2

ε T−1
[

ψ2
β

{
1 +

δ2

(1− ρ2)

}
− δ2 + 2− ρ

(1− ρ2)

])
. (20)

The term in square brackets is scaled by T−1. As before, the difference between MSFE1

and MSFE3 diminishes as the sample size increases. When ψ2
β = 0, the first term in square

brackets in (20) drops out and the benefits of selection relative to MSFE1 are evident as the
second term must be negative. The magnitude of δ2 affects both MSFE1 and MSFE2 but,
from (20), the first δ2 term is multiplied by ψ2

β whereas the second offsetting term is not, so

the effect of the location shift is exacerbated if ψ2
β > 1.

Figure 5 compares the MSFEs of M1 from (17), M2 from (18), and M3 using (20) at
three illustrative values of α. The profiles of the MSFEs mirror the analytical results for
the no break case. Selection outperforms the estimated DGP for ψ2

β < 1 despite a break,

and remains close to the MSFE1 at α = 0.16 for ψ2
β > 1.

M1  
M2 
M3 at α=0.001 
M3 at α=0.05 
M3 at α=0.16 

1

2

3

4

5

6

7

8

MSFE

ψβ
2 →

MSFE

0 1 4 9 16

MSFEMSFE Break at T+1 of δ=4, Known regressors, T=50

α=0.001

α=0.05

α=0.16

M1  
M2 
M3 at α=0.001 
M3 at α=0.05 
M3 at α=0.16 

Figure 5. MSFE comparisons of M1, M2 and M3 at 3 illustrative values of α for known future
exogenous regressors where the break occurs in the mean of x2 at T + 1.

5.4. Unknown Future Values of Regressors

Now consider when the future values of the regressors are unknown. We use two
devices to obtain forecasts of xi,T+1, i = 1, 2: the in-sample mean or a random walk.
The random walk is biased for unanticipated location shifts but does not result in systematic
bias following a location shift, whereas the in-sample mean is persistently biased following
a location shift unless updated. The two devices comprise the two extremes of using either
the full in-sample data or only the last observation to produce the forecasts of the weakly
exogenous regressors.3
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Although the link between y and the xi stays constant, forecasts when the xi,T+1 are
unknown will fail if the shift at T + 1 is not anticipated, inducing a shift in yT+1. This will
lead to forecast failure as the in-sample mean µy shifts to (µy + β2δ) at T + 1 but would be
forecast to be µy.

The forecasts based on in-sample estimates from (15) when µ1 and µ2 are not zero are
given by:

x1,T+1|T = µ̂1 = 1
T ∑T

t=1 x1,t = µ1 + η1, (21)

x2,T+1|T = µ̂2 = 1
T ∑T

t=1 x2,t = µ2 + η2, (22)

so will miss the unknown break. When the break occurs in x2, the MSFEs will worsen for
β2 6= 0. As before, we consider the sampling variation in estimating the means as small
compared to the impact of shifts, so we approximate by taking T sufficiently large that
µ̂i ≈ µi.

Replacing the unknown xi,T+1 by µi leads to forecasting yT+1 by the in-sample mean
for both M1 and M2, see Appendix A.4. Both face the same forecast bias, E[̂̂εT+1|T ] =

E[˜̃εT+1|T ] = β2δ which is the same bias as M2 with known regressors. Parameter estimation
adds terms of Op

(
T−1). Hence, ignoring Op

(
T−1) terms, MSFE1 = MSFE2:

E
[̂̂ε2

T+1|T

]
= E

[˜̃ε2
T+1|T

]
= β2

2δ2 + σ2
ε +

(
β2

1 + β2
2 + 2ρβ1β2

)
. (23)

When β2 = 0, the MSFE is σ2
ε + β2

1, so is inflated relative to the known regressors case as
x1,T+1 must also be forecast. However, the in-sample mean forecast is the best forecast
device for x1,T+1 in this setting (in terms of minimum MSFE) as x1,T+1 is stationary and
not subject to a location shift. Selection will have little or no noticeable impact when
MSFE2 ≈ MSFE1, as this will also result in MSFE3 ≈ MSFE1.

Figure 6 records the MSFEs for M1 and M2 when there is a break in x2 at T + 1, compar-
ing known and unknown regressors using the in-sample mean to forecast xi,T+1, i = 1, 2 in
the unknown regressor case, i.e., the figure records (17), (18) and (23), (solid/dashed/dotted
lines). Simulation outcomes are checked to capture Op

(
T−1) effects but they are negligible

so are not recorded. Figure 6 includes the random walk forecasts and the M1 and M2 results
for the known regressor case are repeated from Figure 5 to facilitate comparison.

The simulation outcomes where parameters are estimated closely match the analytic
results. For known regressors for MSFE1, the break in µ2 does not affect the MSFE as it is
captured in x2,T+1: even at δ = 4 for T = 100, MSFE1 = 1.23 for the parameters given in
the figure which is only slightly greater than σ2

ε . However, when xT+1 is unknown both
M1 and M2 are affected by the break in x2,T+1. Simulation outcomes again closely match
the theory for the unknown break case, and show that the choice of whether to retain or
exclude x2,t is not important in a forecasting context. The unanticipated break dominates
any forecast error resulting from model misspecification. Increasing the sample size does
mitigate the MSFE costs but the MSFE premium relative to known regressors is maintained
for all ψ2

β. Increasing the number of relevant exogenous regressors that shift will increase

the MSFE at ψ2
β = 0, shifting the MSFE trajectories up.

These results show that in this static setting of location shifts, if the break occurs in the
forecast period and is unknown and unpredictable, then the retention of x2 is irrelevant
(other than parameter estimation uncertainty), as neither M1 nor M2 capture the shift which
dominates the MSFE. Parsimony, or lack thereof, neither helps nor hinders much in this setting.
Moreover, selection does not substantively affect the outcome as MSFE3 ≈ MSFE1.



Econometrics 2021, 9, 26 12 of 35

M1: known xT+1 
M2: known xT+1 
M1, M2 & M3: unknown xT+1 using in-sample mean 
M1: unknown xT+1 using random walk forecast 
M2: unknown xT+1 using random walk forecast 
M3: unknown xT+1 using random walk forecast, α=0.16 
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random walk 
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Unknown xT+1
in-sample mean 
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Break in mean of x2,T+1 for δ=4. 1-step ahead MSFE for T+1|T
T=50
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M1 forecasts

←

↑

M1: known xT+1 
M2: known xT+1 
M1, M2 & M3: unknown xT+1 using in-sample mean 
M1: unknown xT+1 using random walk forecast 
M2: unknown xT+1 using random walk forecast 
M3: unknown xT+1 using random walk forecast, α=0.16 

Figure 6. MSFE comparisons between M1, M2 and M3 for known and unknown future exogenous
regressors including in-sample mean and random walk forecasts, where the break occurs in the mean
of x2 at T + 1.

5.5. Forecasting Regressors with a Random Walk

We now consider using a random walk to forecast the exogenous variables:

x1,T+1|T = x1,T , (24)

x2,T+1|T = x2,T . (25)

Such a device is not robust in this setting as the forecasts are made before the shift, and ro-
bustness refers to forecasting properties that are insensitive to a feature in the DGP, such as
after a location shift.

Although the last in-sample observation is an imprecise measure of the out-of-sample
mean, it is unbiased when there are no location shifts (as there are no dynamics in the
DGP), so E[x1,T ] = µ1 and E[x2,T ] = µ2, and hence E[∆x1,T+1] = 0 and E[∆x2,T+1] = δ.

The forecasts from M1 will be biased by the bias in the random walk forecast of x2,T+1,
so (see Appendix A.5 for derivations) neglecting the small impact of ηi,T on βi − β̂i:

E
[
εT+1|T

]
= β2δ,

and the resulting mean square forecast error is:

MSFE1 = E
[
ε

2
T+1|T

]
= β2

2δ2 + 2
(

β2
1 + β2

2

)
+ 4ρβ1β2 + σ2

ε

(
1 + 2T−1

)
. (26)

Comparison with (23) highlights the additional cost of using the random walk relative
to the in-sample mean when neither forecasting device can predict the break, since:

E[̂̂ε2
T+1|T ]− E

[
ε

2
T+1|T

]
= −

(
β2

1 + β2
2 + 2ρβ1β2 + 2σ2

ε T−1
)

.

The in-sample mean of x1 is the optimal forecast of x1,T+1 given its in-sample stationarity,
so irrespective of the value of β2, the in-sample mean forecasts dominate when the shift is
during the forecast period. When β2 = 0, (26) collapses to ≈ σ2

ε + 2β2
1, ignoring Op

(
T−1)

terms, compared to σ2
ε + β2

1 for the in-sample mean forecasts. A random walk doubles the
error variance, so can be costly if there are no breaks or if the break occurs after the forecast
origin. As for the in-sample mean case, the MSFE of M1 is a function of the break.
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The forecast bias for M2 is the same as that for M1 by the same argument, although
MSFE2 (reported in Appendix A.5) does deviate from that for M1 as ψ2

β increases. This is
due to the correlation parameter ρ which is picking up part of the omitted variable x2,T+1
in M2 and has more effect as ψ2

β increases. When β2 = 0, MSFE2 ≈ σ2
ε + 2β2

1, which is the

same as for M1. Despite small but increasing deviations as ψ2
β increases, MSFE2 follows

a similar trajectory to MSFE1. The misspecification is less relevant for the random walk
forecasts of the marginal processes relative to the effect of the break, similar to the results
for the in-sample mean forecasts.

5.6. Selecting Forecasted Regressors

In practice, selection will be applied to determine whether to include x2,t or not. Then,
from (12), we can obtain the MSFE3 as:

MSFE3 = MSFE1 +
(
1− pα

(
ψβ

))(
σ2

ε T−1

[
ψ2

β

{(
1 + ρ2)
(1− ρ2)

+ T−1

}
+ 1

])
.

The trade-off between parameter estimation uncertainty and including x2 is essentially the
same as in the known variable case: if x2 has a noncentrality of zero, so β2 = ψ2

β = 0, then
the one-step MSFE is minimized by excluding x2 from the forecasting model. It should be
included if ψ2

β > 1. However, depending on the values of ρ and T, the switch point can be

smaller than ψ2
β = 1, although the impact is likely to be small given the scale factor σ2

ε T−1.
Even though the random walk forecast is highly uncertain by using just one observation,
if the variable that breaks is quite significant then it pays to include that variable when
using the random walk forecast.

Figure 6 also records the MSFEs for the random walk forecasts using the same pa-
rameter values. The increase in MSFE over the in-sample mean forecasts is evident. Both
MSFE1 and MSFE2 follow similar trajectories, although they do start to diverge for large ψ2

β,
with MSFE3 at α = 0.16 close to MSFE1.

6. An In-Sample Shift in the Regressors

In contrast to the previous section, the break is assumed to occur at T, which is the
last observation available for estimation. Now there is information available regarding the
break when the forecasts are made. Such a framework would also be relevant in sequential
forecasting. We consider forecasting using in-sample means. In common with the previous
section, we study selection (Sections 6.3 and 6.5), the random walk device to forecast the
regressors (Section 6.4), and finally using the random walk to forecast y (Section 6.6).

6.1. Specification of the In-Sample Shift

The DGP is adapted from (15) but the shift in µ2 occurs at T, rather than T + 1:

x1,t = µ1 + η1,t t = 1, . . . , T + 1,

x2,t =

{
µ2 + η2,t t = 1, . . . , T − 1,
µ2 + δ + η2,t t = T, T + 1.

(27)

6.2. Forecasting Regressors Using In-Sample Means

The relationship of interest, i.e., the conditional equation for yT+1, remains constant.
However, the in-sample mean µy is shifted to (µy + β2δ) at T. Although the only DGP
parameter to shift is µ2 to µ2 + δ, sample calculations will be altered as now E[x2] =
µ2 + T−1δ (see Appendix A.6 for derivations).

The impact on the estimated in-sample mean of {x2,t} will be small from the break,
unless δ is very large, so by using the in-sample means for their future unknown values,
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the forecasted mean of yT+1 for M1 will still be close to µy, and the resulting forecast error
bias is:

E
[̂̂εT+1|T+1

]
≈ β2δ

(
1− T−1

)
.

This is unbiased when β2 = 0, but could be badly biased if β2δ is large. The MSFE for M1 is:

MSFE1 = E
[̂̂ε2

T+1|T+1

]
= β2

2δ2
(

1− T−1
)2

+ β2
1 + β2

2 + σ2
ε . (28)

This is very similar to the MSFE1 in (23) for an out-of-sample break using the in-sample
means to forecast the exogenous regressors, and hence MSFE2 and MSFE3 as well, al-
though the correlation between the two regressors does not enter.

When β2 = 0, both (23) and (28) collapse to σ2
ε + β2

1. The dampening of the squared

location shift by
(
1− T−1)2 slightly improves the MSFE for the in-sample shift relative to

an out-of-sample shift at larger ψ2
β, as shown in Figure 7.

M1: Break at T 
M2: Break at T 
M3, α=0.16: Break at T 
M1, M2 & M3: Break at T+1 
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∆

ψ2→

Break at T or T+1 of δ=4

Break at T+1 →

    ↑
Break at T

Unknown xT+1 using 
in-sample mean as forecast, 
analytic calculations.

T=50

M1: Break at T 
M2: Break at T 
M3, α=0.16: Break at T 
M1, M2 & M3: Break at T+1 

Figure 7. MSFE1, MSFE2, and MSFE3 for unknown future exogenous regressors where the break
occurs in the mean of x2 at T and the in-sample mean is used as the forecast for the regressors.
Included are the results when the break occurs at T + 1.

For a break out of sample, we find the analytic results for M2 are identical to those
for M1 (see Section 5.4). For the in-sample break, the forecast error and MSFE for M2 does
differ to that of M1 (see Appendix A.6 for analytic results). This is because the in-sample
location shift affects ρ which introduces a term similar to the squared location shift scaled
by T in (28). Therefore, MSFE1 6= MSFE2 unless β2 = 0, with M2 incurring a larger MSFE
cost as ψ2

β increases due to misspecification, although the divergence is small even for small
T, and disappears asymptotically.

6.3. Selecting Regressors

Selection follows from (12) and hence:

MSFE3 ≈ MSFE1 +
(
1− pα

(
ψβ

))[
σ2

ε − β2
1 − ρ2β2

2 + 2T−1
(

σ2
ν + β2

2δ2
)]

.

The cost of omitting x2 rises with β2
2δ2, although increases in β2 will raise ψ2

β and hence

raise the probability of retaining x2, albeit unconnected with the magnitude of δ2. As the
location shift is scaled by T, MSFE3 → MSFE1 as T → ∞.
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6.4. Forecasting Regressors Using a Random Walk

From the previous analysis in Section 6.2, knowledge of the break at T brought little
benefit when using in-sample means as forecasts. However, the random walk should do
better when the break occurs at T as opposed to T + 1. As before:

˜̃x1,T+1|T = x1,T and ˜̃x2,T+1|T = x2,T ,

but now E[x1,T ] = µ1 and E[x2,T ] = µ2 + δ, and hence E[∆x1,T+1] = 0 and E[∆x2,T+1] = 0
as well.

Given the unbiased forecasts of the exogenous regressors, it follows that the forecasts
for M1 are unbiased (see Appendix A.7) when the parameter estimates are unbiased.
The MSFE for M1 is:

MSFE1 = E
[
ε̂

2
T+1|T

]
= 2

(
β2

1 + β2
2

)
+ 4ρβ1β2 + σ2

ε

(
1 +

2
T
+

δ2

T(1− ρ2)

)
. (29)

When β2 = 0, the MSFE is similar to that of the out-of-sample break case, where the random
walk is costly as forecasts of both x1,T+1 and x2,T+1 are inefficient. However, (29) does
depend on the magnitude of the shift independently of β2, unlike (26). MSFE1 is a function
of ψ2

β, increasing as ψ2
β increases, unlike in the known regressor case. But it does so more

slowly than for breaks out of sample, or breaks in sample using the in-sample mean. As ψ2
β

increases, the break at T in µ2 has a larger effect on the dependent variable, and hence the
benefits of using a random walk forecast of x2,T+1 are larger.

M2 will suffer when β2 6= 0 as the forecasts will be biased. The MSFE for M2 is:

MSFE2 = E
[
ε̃

2
T+1|T

]
= β2

2

(
δ2 + ρ2 + 1

)
+ 2β2

1 + 4ρβ1β2 + σ2
ε

(
1 + T−1 + T−2ψ2

β

)
, (30)

so no robustness in the sense of reducing bias is achieved unless β2 = 0. When β2 = 0,
MSFE2 < MSFE1, but the bias from not including a random walk, and hence unbiased,
forecast of x2,T+1 quickly outweighs parameter estimation costs as ψ2

β increases.
Solving for MSFE2 < MSFE1 results in:

ψ2
β <

(
1− ρ2)+ δ2

(1− ρ2)(T−1 − 1) + δ2 . (31)

The break term dominates and offsets on the numerator and denominator, leading to a
trade-off at ≈1 with deviations scaled by T−1. For ρ = 0.5, T = 100 and δ = 4, MSFE2

dominates when ψβ = 1.05. Interestingly, the cut-off is slightly above 1 for this case,
compared to slightly below 1 for the known breaks out-of-sample case, but the results
still imply that a selection significance level of approximately 16% would be optimal to
trade-off the cost of estimating an additional parameter.

Figure 8 records the MSFEs from M1 (29), M2 (30) and three values of M3 (A4) for the
analytic results. There is a clear trade-off at ψ2

β ≈ 1, just as in the known breaks case.

6.5. Selecting Forecasted Regressors

The final step is to compute the MSFE for M3 for the random walk forecast, reported
in Appendix A.7. Just as regression models are usually selected, that will occur for any
forecasting devices designed to minimize systematic bias. As with Figure 5, selection
between M1 and M2 can be advantageous even for these forecasting devices as seen in
Figure 8. Selection outperforms M1 for ψ2

β < 1, and remains close to the MSFE1 at α = 0.05
and α = 0.16, again in all cases matching or outperforming always using M2.

A comparison with the MSFE for the in-sample mean forecasts, also recorded in
Figure 8, suggests a possible forecast improvement. If the regressor that breaks at T is
known, combining the in-sample mean forecast for M1 with the random walk forecast
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for M2 will improve forecast performance (shifting the MSFE curves for the random walk
forecast down by approximately 1). As the number of regressors increases, the forecasting
method for each contemporaneous regressor will have a cumulative impact. However,
as the break occurs in sample, methods to detect breaks at the forecast origin such as im-
pulse indicator saturation (IIS) could be used to guide the forecaster to the most appropriate
forecasting device.4 Selection between forecasting devices that minimize systematic bias
versus those that trade-off bias and variance requires pre-testing and would only help for
in-sample shifts; see, e.g., Chu et al. (1996).

M1 Random walk 
M2 Random walk 
M3 at α=0.16 Random walk 
M1: In-sample mean 
M2: In-sample mean 
~yT+1|T = yT 
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0 1 4 9 16
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ψ2
β   2

→

Break at T of δ=4 T=50

~yT+1|T=yT

↓

In-sample mean
forecasts

←Random walk
forecasts

↑

M1 Random walk 
M2 Random walk 
M3 at α=0.16 Random walk 
M1: In-sample mean 
M2: In-sample mean 
~yT+1|T = yT 

Figure 8. MSFE comparisons between M1, M2 and M3 at α = 0.16 for unknown future exogenous
regressors where the break occurs in the mean of x2 at T and the last in-sample observation is used
as the forecast for the conditioning regressors. Also recorded is the MSFE for M1 and M2 using
in-sample means and a misspecified random walk for yT+1 directly.

Thus, selection can be valuable for forecasting to the extent that it retains relevant
regressors that shift (here, x2), and also if it eliminates irrelevant regressors that shift,
as considered in Section 9.

6.6. Forecasting the Dependent Variable Using a Random Walk

If a break is suspected, an alternative to the approaches considered so far is to use a
knowingly misspecified model of the conditional DGP. One possibility is to use a random
walk forecast for y, with the advantage that yT is known and avoids the need to forecast
x1,T+1 and x2,T+1. Hendry and Mizon (2012) derive a forecast-error taxonomy for open
models that demonstrates the numerous additional forecast errors that arise from forecast-
ing regressors offline in open models. They show that, in some cases, it can pay to use a
misspecified model rather than to forecast the regressors offline. The forecast device is:

˜̃yT+1|T = yT .

Then
yT = µy + β2δ + β1η1,T + β2η2,T + εT

is a noisy one-observation estimator of
(
µy + β2δ

)
. The outturn at T + 1 is:

yT+1 =
(
µy + β2δ

)
+ β1∆η1,T+1 + β2∆η2,T+1 + εT+1 + β1η1,T + β2η2,T .
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The forecast error is given by:

˜̃εT+1|T = yT+1 − ˜̃yT+1|T = β1∆η1,T+1 + β2∆η2,T+1 + ∆εT+1,

which is unbiased and has a MSFE of:

MSFE4 = E
[˜̃ε2

T+1|T

]
= 2

(
β2

1 + β2
2

)
+ 4ρβ1β2 + 2σ2

ε .

This is independent of δ so should perform relatively the best when δ2 is large, although per-
forms worse than random walk forecasts for x1,T+1 and x2,T+1 when ψ2

β is small; see
Figure 8. The forecasts are invariant to omitting x2 since this random walk forecast is
independent of the regressors, which is a major advantage and negates the role of selection.
However, there is a cost when the model is correctly specified. The results in the simulation
below suggest that such an approach should be viewed as complementary, with forecast
pooling across selected conditional models and misspecified robust devices designed to
mitigate bias frequently outperforming individual methods.

7. Summary of Analytic Results and the Impact of Selection

The theoretical analysis has established four results.

1. Regressors should be retained if ψβ ≥ 1. This is established for DGPs that are
stationary or with a break out of sample for known regressors and a break in sample
for random walk forecasts.

2. For the two-regressor case, ψβ = 1 maps to α ≈ 0.16. Selection delivers improve-
ments to the one-step-ahead MSFE for ψβ < 1 and can be close to the correct model
specification for ψβ > 1, with the largest deviations occurring at intermediate values
of ψβ.

3. If there are breaks out of sample and contemporaneous regressors need to be forecast,
the break dominates the MSFE and selection plays almost no role. Similar results are
found even if the break occurs at the end of the sample, but the in-sample mean is
used to forecast the regressors.

4. Random walk forecasts are costly if there are no breaks (forecasting x1,T+1) or if the
breaks are unpredictable (a break at T + 1 and forecasting T + 1|T). However, they
improve MSFE when the break is predictable (break at T and forecasting T + 1|T).

Table 3 summarises the results for specific parameters using T = 50 (T = 100 is
in Table A1 in Appendix B). For each scenario, the ratio of MSFEj/MSFE1 for j = 2, 3 is
reported. MSFE2 has no selection, and is therefore listed as α = 0, while three values of α
are used for MSFE3. The squared noncentralities ψ2

β = 0, 1, 4, 9, 16 capture the full hump
shape seen in the figures above.

M2 is the correct model in the column labelled ψ2
β = 0, so the ratio of MSFE2/MSFE1

measures the cost of over-specification. The gains can be substantial in some cases, almost
30% for a break out of sample with known regressors, but in other cases including x2,t is
not at all costly despite its irrelevance. Tighter selection for M3 is close to M2 as x2,t will be
omitted more frequently, but even at α = 0.16 the ratio for M3 is close to the ratio for M2,
suggesting that selection is not costly.

Moving to the next column highlights the ψβ = 1 trade-off, with all cases almost
exactly equal to one. A cut-off slightly lower than one was found in (19), which is reflected
in the ratio marginally greater than one. Conversely, (31) found a cut-off slightly larger
than one, resulting in a ratio slightly below one, but the differences are small.

Next, consider the columns labelled ψ2
β = 4, 9, and 16. M1 is the correct model so the

objective is to minimize the ratio. In some cases M2 performs poorly, but M3 at α = 0.16 is
frequently very close to 1, i.e., MSFE1. Selection forecast performance tends to be worse at
ψ2

β = 4, but as the signal for x2 increases, the probability of retaining x2 increases so the
selected model is closer to M1. The benefits of selection vary by case. For example, for
a break at T using in-sample means, selection at α = 0.16 delivers a 2.4% improvement
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relative to M2 for ψβ = 4, compared to a halving of the ratio for the random walk. In almost
every setting, MSFE3 is close to MSFE1 so the costs of selection are usually small, irrespective
of the noncentrality. In that sense, model selection acts to reduce the risk relative to the
worst model. Conversely, the costs of unmodeled shifts are very large, up to almost 8-fold
greater than the baseline stationary MSFE1.

Table 3. Ratio of MSFE to that of MSFE1, T = 50. M2 has no selection (α = 0); selection in M3 at α.

MSFE Relative to MSFE1
Model ψ2

β = 0 ψ2
β = 1 ψ2

β = 4 ψ2
β = 9 ψ2

β = 16

Sections 4.1 and 4.2 No shift with known future regressors
α = 0 (M2) 0.981 1.001 1.060 1.158 1.295
α = 0.001 0.981 1.000 1.051 1.093 1.068
α = 0.05 0.982 1.000 1.027 1.023 1.006
α = 0.16 0.984 1.000 1.016 1.008 1.001

Sections 5.2 and 5.3 Out-of-sample shift with known future regressors
α = 0 (M2) 0.709 1.014 1.927 3.450 5.582
α = 0.001 0.709 1.013 1.836 2.505 2.095
α = 0.05 0.724 1.011 1.449 1.366 1.095
α = 0.16 0.756 1.009 1.256 1.136 1.022

Section 5.4 Out-of-sample shift with mean forecast of future regressors
α = 0 (M2) 1.000 1.000 1.000 1.000 1.000
α = 0.001 1.000 1.000 1.000 1.000 1.000
α = 0.05 1.000 1.000 1.000 1.000 1.000
α = 0.16 1.000 1.000 1.000 1.000 1.000

Section 5.5 Out-of-sample shift with random walk forecast of future regressors
α = 0 (M2) 0.993 1.004 1.020 1.034 1.043
α = 0.001 0.993 1.004 1.018 1.021 1.010
α = 0.05 0.994 1.003 1.010 1.005 1.001
α = 0.16 0.994 1.002 1.006 1.002 1.000

Sections 6.2 and 6.3 In-sample shift with mean forecast of future regressors
α = 0 (M2) 1.020 1.021 1.022 1.023 1.024
α = 0.001 1.020 1.021 1.020 1.014 1.006
α = 0.05 1.019 1.017 1.011 1.004 1.000
α = 0.16 1.017 1.014 1.006 1.001 1.000

Sections 6.4 and 6.5 In-sample shift with random walk forecast of future regressors
α = 0 (M2) 0.871 0.990 1.273 1.653 2.078
α = 0.001 0.871 0.990 1.246 1.401 1.258
α = 0.05 0.878 0.991 1.132 1.097 1.022
α = 0.16 0.892 0.993 1.075 1.036 1.005

These results show that even facing breaks, the well-known trade-off for selecting
variables in forecasting models, namely that variables should be retained if their noncen-
tralities exceed 1, still applies, resulting in much looser significance levels than typically
used. The problem with such an approach is that when many β2,i = 0 but are subject
to location shifts, M1, which erroneously includes x2,t in the model, will perform worse.
Loose significance levels increase the chance that irrelevant variables with ψβ = 0 are
retained by being adventitiously significant for that draw. To evaluate this effect, the next
section undertakes a simulation study of selection in models with ten irrelevant and five
relevant exogenous regressor variables confronting a variety of shifts.

8. Simulation Design

We generalize the above analysis using Monte Carlo analysis, formalizing the DGP
and models that are estimated. We consider larger models with dynamics, evaluating for a
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range of strategies to forecast future values of the regressors, different significance levels,
and different configurations of out-of-sample breaks. The next section then evaluates the
simulation results.

8.1. Data Generation Process

The DGP is for a scalar dependent variable yt, and N regressors xt = (x1,t, . . . , xN,t)
′.

There are n regressors that are relevant, i.e., have a nonzero coefficient in the DGP for yt,
and N − n that are irrelevant with coefficient zero.

We wish to introduce breaks either in relevant, or irrelevant, or both types of regressors.
For convenience we assume that the regressors are ordered by increasing significance
(i.e., squared noncentrality ψ2

βi
). The DGP for y is an AR(1) with regressors:

y∗t = β0 + βyy∗t−1 +
N

∑
j=1

β jxj,t + εt, εt ∼ IN[0, σ2
ε ], t = −Q + 1, . . . , 0, 1, . . . , T+H. (32)

The regressors are independent of each other and (in sample) have a common autoregres-
sive coefficient λ and mean δ/(1− λ). We allow for a break in observations T + 1 and
T + 2, using subscript I if the break applies to xs that are irrelevant in (32) (i.e., have a
coefficient of zero) and R for those that are relevant:

xj,t = δ + λxj,t−1 + ηj,t, ηj,t ∼ IN[0, 1], j = 1, . . . , N, t = −Q + 1, . . . , T, T+3, . . . ,

xj,t = δI + λI xj,t−1 + ηj,t, ηj,t ∼ IN[0, 1], j = 1, . . . , N−n, t = T+1, T+2, (33)
xj,t = δR + λRxj,t−1 + ηj,t, ηj,t ∼ IN[0, 1], j = N−n+1, . . . , t = T+1, T+2.

Throughout, we set σ2
ε = 1, β0 = 5, βy = 0.5, δ = 2, N = 15. Fifty initial observations are

discarded (Q = 50). We set observation zero equal to twenty in each replication, giving the
generated data as:

yt = y∗t + 20− y∗0 . (34)

The remaining coefficients in (32) are specified through their noncentralities. We run
three alternative experiments:

ψ(1) : ψβ = (0, 0, 0, 0, 0, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2)′,
ψ(2) : ψβ = (0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1.5, 2, 3, 4)′,
ψ(4) : ψβ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4)′.

(35)

Then β j = ψβ j

{
(T − N − 2)V[xj,t]

}−1/2, using the in-sample variances computed over
t = 1, . . . , T. This ensures that the t-values in the estimates of (32) will be equal to ψβ j
on average. Note that the noncentralities in each specification sum to twelve, and have
n = 10, 6, 3 respectively.

With common coefficients δ and λ, the regressors are exchangeable in analytical
calculations. The unconditional process of each xj, in the absence of any break, has mean
x = δ/(1− λ) and variance (1− λ2)−1. When δ = 2 and λ = 0.75, the steady state for y∗t
is then y = 10 + 2× 8× 12× {83/(1− 0.752)}−1/2 ≈ 10 + 16× 0.87 = 23.9, using total
noncentrality of 12, x = 8, T = 100, N = 15. The degrees-of-freedom adjustment counts N,
the intercept, and the lagged dependent variable.

Breaks in the process for the target variable y are introduced through breaks in the
regressors. During the break, δR = −0.3 ≡ δ∆, so δ drops by −2.3. Keeping λ unchanged,
the equilibrium changes from x = 8 to x∆ = −1.2, which is a shock of six unconditional
standard errors. The impact on yt depends on the coefficients β j. To quantify this, it is
convenient to assume that the processes are at their unconditional means, after which we
follow the shocks through the dynamic system, ignoring the disturbances. The impact on x
when the coefficients change from (δ, λ) = (2, 0.75) to (δ∆, λ∆) is given in Table 4.
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Table 4. Impact on x when coefficients change from (δ, λ) = (2, 0.75) to (δ∆, λ∆).

(δ∆, λ∆) = (2, 0.75) (−0.3, 0.75) (−0.3, 0.95) (−0.3, 0.05) (2, 0.05) (2, 0.95)

xj,T+1|T 8 5.7 7.3 0.1 2.4 9.6
xj,T+2|T+1 8 4.0 6.6 −0.3 2.1 11.1
xj,T+3|T+2 8 5.0 7.0 1.8 3.6 10.3

The process reverts to the original coefficients at T + 3, aiming to capture qualitatively
aspects of a sustained but temporary structural break, such as the Great Financial Crisis
or the COVID-19 pandemic. The impact of the break on yj,T+1|T is 0.87 times the new x.
For (−0.3, 0.95) this is a change of 0.6, well below y’s conditional standard error of unity.

Table 5 lists the break settings we consider. The upward break in slope (a) pushes
the process towards a unit root, while the downward break in slope (b) makes it almost
white noise. Figure 9 plots the second half of yt for one replication of the DGP and for each
of the five specifications of the break. This is for T = 100 and after discarding the initial
observations. The break lasts for two observations in the forecast period, after which the
DGP reverts to the settings without break. Figure 9 illustrates the low impact of the break
in mean and slope when (δ∆, λ∆) = (−0.3, 0.95).

Table 5. Configurations of breaks in the simulations.

δ∆ λ∆

No break 2 0.75
Break in mean −0.3 0.75
Break in slope (a) 2 0.95
Break in slope (b) 2 0.05
Break in mean and slope (a) −0.3 0.95
Break in mean and slope (b) −0.3 0.05

The design (33) allows for breaks in relevant variables, in irrelevant variables, or in
both. In the last case: δR = δI = δ∆ and λR = λI = λ∆. Breaks in irrelevant variables
do not affect y, but can have an impact on forecasts if the irrelevant variables are used in
the forecasts’ construction. However, when forecasting for T + 1|T, such breaks have no
impact at all, because the future xT+1s are not yet known.

Break in mean 
Break in mean and slope (a) 

Break in slope (a) 
Break in mean and slope (b) 

Break in slope (b) 
No break 

15

20

25

30
ψ(1)

Break in mean 
Break in mean and slope (a) 

Break in slope (a) 
Break in mean and slope (b) 

Break in slope (b) 
No break 

15

20

25

30
ψ(2)
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Figure 9. One replication of the DGP without break (solid line) and breaks as in Table 5, T = 100, H = 5.



Econometrics 2021, 9, 26 21 of 35

8.2. Models and Forecast Devices

We generate Q + T + H observations from DGP (32)–(34), discarding the initial Q.
The starting point for modeling is the general unrestricted model (GUM):

yt = β0 + βyyt−1 +
N

∑
j=1

β∗j xj,t +
N

∑
j=1

γ∗j xj,t−1 + εt, for t = 1, . . . , T. (36)

An asterisk indicates that model selection is used, so the intercept and lagged y are not
selected over but are always retained. Model selection is only performed once for each
replication, but the selected model is re-estimated by ordinary least squares (OLS) each
time that we forecast given data up to T+h−1:

yt = β0 + βyyt−1 + ∑
β̂∗j 6=0

β jxj,t + ∑
γ̂∗j 6=0

γjxj,t−1 + εt, for t = h, . . . , T + h− 1. (37)

Only one-step-ahead forecasts are generated and evaluated:

ŷT+h|T+h−1 = β̂0 + β̂yyT+h−1 + ∑
β̂∗j 6=0

β̂ j x̃j,T+h + ∑
γ̂∗j 6=0

γ̂jxj,T+h−1 for h = 1, ..., H. (38)

The out-of-sample values x̃j,T+h of the regressors in (38) are unknown when forming
the forecasts. We consider a range of forecast devices that can supply these missing values:

INF: future outcomes: x̃j,T+h = xj,T+h;

AVG: the in-sample average: x̃j,T+h = ∑T+h−1
t=h xj,t/T;

ARX: an AR(1) for each regressor: x̃j,T+h = µ̂j + ρ̂jxj,T+h−1, estimated by OLS for each
horizon from:

xj,t = µj + ρjxj,t−1 + uj,t, t = h, . . . , T + h− 1; (39)

RWX: the random walk forecast: x̃j,T+h = xj,T+h−1;

RDX: a random walk with differencing (Hendry 2006), using differenced estimates from (39):

x̃j,T+h = xj,T+h−1 + ρ̂j∆xj,T+h−1.

CAX: Cardt forecast of x̃j,T+h.

In addition, several alternatives that ignore the regressors are considered:

RWY: a random walk forecast: ŷT+h = yT+h−1;

ARY: an AR(1) forecast: ŷT+h = γ̂0 + γ̂1yT+h−1, estimated by OLS for each horizon;

CAY: Cardt forecasts of ŷT+h.

Model selection is performed using Autometrics (Doornik 2009) for a range of target
significance levels α = (0.001, 0.01, 0.05, 0.1, 0.16, 0.32). Forecasting from a re-estimated
GUM (37) without selection is also considered (i.e., α = 1). Dropping all regressors (i.e.,
α = 0) leaves the AR(1) model for yt.

The devices that forecast the regressors supply plug-in values to allow forecasting with
the GUM (36), as well as the reductions (37) of the GUM, at a range of nominal significance
levels. Device INF uses future outcomes, making it infeasible for stochastic variables. Note
that all devices using regressors benefit from some knowledge that is not available in
practice, namely that the DGP is nested in the GUM, and the GUM is not misspecified.
The fact that the regressors are exchangeable and break at the same time in the same way
may also help: finding just one that matters could already improve the forecasts.
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Cardt is a slightly improved version of Card (calibrated average of rho and delta meth-
ods), see Doornik et al. (2020a), which performed very well in the M4 forecast competition
of Makridakis et al. (2020). Cardt averages forecasts from a differenced, autoregressive,
and a moving average model. These are then treated as future observations in a calibra-
tion model with richer autoregressive structure. The full procedure is documented in
Castle et al. (2021). Cardt pays particular attention to seasonality, which is irrelevant here.
We use Cardt to make four forecasts, then use the first of these. The method will take
logarithms by default. Switching that off makes little difference in these experiments. Cardt
is used in daily COVID-19 forecasts of Doornik et al. (2020b).

8.3. Selecting Regressors

The noncentrality ψβ in the DGP affects the probabilities of retaining a variable in the
model selection procedure. Table 6 shows the probability of retaining one or all relevant
regressors assuming independent t-tests. While the probability of retaining one variable
may be quite large, the joint probability of retaining all can be extremely low. Thus,
even using a significance level of 16%, many relevant variables will be omitted if their
noncentralities are small. However, their contribution to explaining the dependent variable
is also small and breaks in such variables will have a smaller effect.

Table 6. Probability of retaining one or all variables when the coefficients have the specified noncentrality, assuming
independence at nominal significance α and Student-t(83) distribution.

ψβ = 1.2 ψβ = 0.5 ψβ = 1 ψβ = 1.5 ψβ = 2 ψβ = 3 ψβ = 4 Joint Average ψβ = 4

α n = 1 n = 10 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 6 n = 6 n = 1 n = 3

0.001 0.015 0.000 0.002 0.009 0.030 0.081 0.341 0.721 0.000 0.197 0.721 0.375
0.01 0.077 0.000 0.018 0.053 0.130 0.263 0.641 0.912 0.000 0.336 0.912 0.758
0.05 0.216 0.000 0.070 0.163 0.313 0.504 0.843 0.976 0.001 0.478 0.976 0.930
0.1 0.322 0.000 0.124 0.254 0.435 0.631 0.907 0.989 0.008 0.557 0.989 0.968
0.16 0.414 0.000 0.181 0.339 0.533 0.719 0.941 0.994 0.022 0.618 0.994 0.983
0.32 0.579 0.004 0.309 0.500 0.691 0.840 0.976 0.998 0.087 0.719 0.998 0.995

The fraction of relevant variables that is retained in the Monte Carlo experiment is
denoted the potency, and the fraction of irrelevant variables that is retained is denoted
the gauge. We always retain the intercept and lagged y, so the GUM (36) has 2N possible
variables to select over, of which n are relevant. For m = 1, . . . , M replications we define
the indicator function 1{·} and:

gaugem =
1

2N − n

[
N−n

∑
j=1

1{β̂ j,m 6= 0}+
N

∑
j=1

1{γ̂j,m 6= 0}
]

,

potencym =
1
n

N

∑
j=N−n+1

1{β̂ j,m 6= 0}.

This is then averaged over all replications.
Table 7 shows that the empirical gauge matches the theoretical probabilities in Table 6

when using Autometrics for selection: the gauge is higher than α but not by much. Poten-
cies are close to the powers of one-off t-tests with the same noncentralities, up to α = 0.1,
beyond that they fall behind. Consequently, it is appropriate to use Autometrics to in-
vestigate the theoretical results by simulating a more general setting, without concern
that the selection algorithm will influence the results relative to the single t-test approach
analyzed above.
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Table 7. Gauge and potency for three noncentrality designs, M = 10,000 replications.

Gauge Potency

α ψ(1) ψ(2) ψ(4) ψ(1) ψ(2) ψ(4)

0.001 0.005 0.006 0.006 0.034 0.205 0.712
0.01 0.025 0.024 0.020 0.113 0.345 0.884
0.05 0.079 0.075 0.069 0.231 0.458 0.919
0.1 0.126 0.124 0.121 0.297 0.507 0.919
0.16 0.181 0.180 0.178 0.355 0.545 0.923
0.32 0.328 0.328 0.327 0.479 0.634 0.941

9. Simulation Evidence

Simulation evidence is presented using the design of Section 8.1 and forecast devices
of Section 8.2. All experiments use M = 10,000 and are implemented in Ox 9 (Doornik
2018) and PcGive (Hendry and Doornik 2018). We start with out-of-sample forecasts in
Section 9.1, when the break is unanticipated. Then Section 9.2 compares breaks in relevant
and irrelevant variables, Section 9.3 looks at forecasts after the break, Section 9.4 considers
selection, Section 9.5 introduces pooled forecasts, and Section 9.6 summarizes.

9.1. Forecasting before the Break

The top half of Table 8 is for the case without breaks, when forecasting T+1|T is
similar to forecasting T + 2|T + 1, etc. The table reports the ratio of the MSFE for devices
INF, AVG, ARX, RWX respectively to the MSFE of ARY for a range of significance levels α.
Selection at α = 0 implies dropping all the regressors, leaving an AR(1) in y, denoted ARY.
The bottom row of each half gives the MSFE of ARY. Not selecting at all (α = 1) coincides
with the GUM.

Table 8. No break and out-of-sample break. Ratio of MSFE to MSFEARY forecasting T + 1|T.

ψ(1) ψ(2) ψ(4)

INF AVG ARX RWX INF AVG ARX RWX INF AVG ARX RWX

Ratio No break
α = 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α = 0.001 1.03 1.01 1.02 1.03 0.95 1.06 0.99 1.02 0.83 1.13 0.94 0.99
α = 0.01 1.08 1.06 1.05 1.08 0.93 1.11 0.98 1.02 0.79 1.17 0.93 0.97
α = 0.05 1.13 1.13 1.08 1.12 0.95 1.19 0.99 1.03 0.83 1.23 0.95 0.99
α = 0.1 1.16 1.18 1.09 1.13 0.99 1.23 1.01 1.06 0.87 1.27 0.97 1.02
α = 0.16 1.19 1.23 1.11 1.15 1.01 1.28 1.04 1.08 0.91 1.31 1.00 1.04
α = 0.32 1.25 1.36 1.15 1.19 1.09 1.38 1.09 1.13 0.99 1.41 1.05 1.09
GUM 1.34 1.51 1.20 1.23 1.18 1.50 1.13 1.17 1.08 1.52 1.10 1.14

MSFEARY 1.15 1.31 1.43

Ratio Average over five break types in relevant regressors
α = 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α = 0.001 0.90 1.00 1.00 1.01 0.58 1.02 0.99 1.00 0.37 1.05 0.97 0.98
α = 0.01 0.74 1.01 1.01 1.02 0.42 1.04 0.99 0.99 0.28 1.06 0.97 0.97
α = 0.05 0.57 1.03 1.01 1.02 0.37 1.06 0.99 0.99 0.28 1.08 0.97 0.98
α = 0.1 0.52 1.05 1.02 1.03 0.37 1.07 0.99 1.00 0.29 1.09 0.98 0.98
α = 0.16 0.50 1.06 1.02 1.03 0.37 1.08 1.00 1.01 0.30 1.10 0.99 0.99
α = 0.32 0.48 1.10 1.03 1.04 0.38 1.11 1.01 1.02 0.32 1.13 1.00 1.01
GUM 0.49 1.13 1.05 1.05 0.41 1.14 1.03 1.03 0.35 1.16 1.01 1.02

MSFEARY 18.58 18.80 18.98

Without a break, knowing the future value of regressors, device INF, is only useful
when they are significant. Using the sample mean AVG never improves one-step forecasting
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relative to ARY. This also holds when there is a break, and is even more pronounced for
T + 2|T + 1 and T+3|T+2 (not shown). We see that MSFEARY increases when there are
more highly significant variables. There is an improvement over ARY from forecasting the
regressors with ARX at strict significance levels for ψ(4). In this stationary DGP without
breaks, ARX dominates RWX: it is better to model the regressors by an autoregression (the
true model) than taking the last known value.

The bottom half of Table 8 is for the cases with an out-of-sample break in the relevant
variables only. The ratios for the five break settings (in mean, in slope, and in mean and
slope, for (a) and (b)) are averaged. Now it really would help to know the future. There is
only a small penalty for including irrelevant regressors, as their influence is swamped by
the break. Except for the sample means, both feasible methods perform on a par with ARY.
The infeasible device is best with loose selection, as was found theoretically.

9.2. Selection and Location of the Break

The design of the experiments allows for three locations of the break. Table 9 gives the
mean square forecast errors for a break in mean and slope (b), listing three cases.

Table 9. Break in mean and slope (b). MSFE for different locations of the break.

T + 1|T T + 2|T + 1 T + 3|T + 2

ψ Where INF AVG ARX RWX INF AVG ARX RWX INF AVG ARX RWX

α = 0 ARY ψ(1) Relevant 54.42 50.41 6.75
α = 0.1 ψ(1) Relevant 16.44 54.49 54.50 54.60 10.67 60.24 18.33 11.24 3.51 33.30 3.03 3.48
GUM ψ(1) Relevant 11.43 54.78 54.63 54.77 10.15 60.60 13.56 9.76 2.89 41.42 2.43 4.15

α = 0 ARY ψ(1) All 54.42 50.41 6.75
α = 0.1 ψ(1) All 18.32 54.49 54.50 54.60 11.19 61.32 18.71 11.70 3.32 33.28 2.89 3.61
GUM ψ(1) All 16.42 54.78 54.63 54.77 14.12 64.35 17.41 13.64 3.05 42.12 2.55 4.21

α = 0 ARY ψ(1) Irrel. 1.15 1.19 1.18
α = 0.1 ψ(1) Irrel. 3.19 1.36 1.26 1.31 2.86 2.59 2.55 2.80 1.82 2.04 1.80 1.89
GUM ψ(1) Irrel. 6.71 1.75 1.39 1.42 5.74 6.16 5.38 5.52 2.18 3.39 2.02 2.00

α = 0 ARY ψ(2) Relevant 54.71 43.20 6.02
α = 0.1 ψ(2) Relevant 7.90 54.86 54.82 54.98 4.84 61.25 12.40 5.43 2.64 37.40 2.51 3.87
GUM ψ(2) Relevant 7.60 55.05 54.94 55.17 6.73 58.20 10.67 6.58 2.68 40.60 2.47 4.31

α = 0 ARY ψ(2) All 54.71 43.20 6.02
α = 0.1 ψ(2) All 11.05 54.86 54.82 54.98 6.76 62.80 13.90 7.23 2.65 37.15 2.59 4.27
GUM ψ(2) All 16.45 55.05 54.94 55.17 13.99 64.88 17.65 13.72 3.02 42.09 2.71 4.41

α = 0 ARY ψ(2) Irrel. 1.31 1.39 1.35
α = 0.1 ψ(2) Irrel. 4.44 1.61 1.33 1.38 3.71 3.70 3.43 3.72 1.93 2.66 2.04 2.14
GUM ψ(2) Irrel. 10.46 1.97 1.48 1.53 8.90 9.47 8.59 8.78 2.36 4.11 2.28 2.26

α = 0 ARY ψ(4) Relevant 54.98 39.74 5.66
α = 0.1 ψ(4) Relevant 4.38 54.98 55.03 55.31 2.64 61.84 9.54 3.19 2.00 38.64 2.21 4.54
GUM ψ(4) Relevant 4.56 55.27 55.21 55.51 4.20 56.23 8.50 4.27 2.42 39.53 2.45 4.47

α = 0 ARY ψ(4) All 54.98 39.74 5.66
α = 0.1 ψ(4) All 8.45 54.98 55.03 55.31 5.27 63.59 11.82 5.71 2.31 38.55 2.55 5.00
GUM ψ(4) All 16.47 55.27 55.21 55.51 13.89 65.37 17.89 13.79 3.00 42.11 2.85 4.59

α = 0 ARY ψ(4) Irrel. 1.43 1.52 1.49
α = 0.1 ψ(4) Irrel. 5.20 1.82 1.39 1.45 4.09 4.37 3.92 4.23 1.92 3.09 2.16 2.25
GUM ψ(4) Irrel. 13.46 2.17 1.57 1.63 11.33 12.03 11.05 11.29 2.47 4.62 2.44 2.43
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Break in relevant regressors (δR = −0.3, λR = 0.05, δI = δ, λI = λ)

The break shows up in y through the relevant variables. Inclusion of irrelevant vari-
ables in the forecasting model is not costly relative to the impact of the break. Loose
selection is preferred, because it includes more relevant variables. For T+1|T selec-
tion has no impact because the break is not observed (except for known regressors).
Including regressors in ARX and RWX gives a substantial improvement over ARY.

Break in irrelevant regressors (δI = −0.3, λI = 0.05, δR = δ, λR = λ)

There is no break in y, so any inclusion of irrelevant variables is costly, as their
break offsets the small estimated coefficients. The more irrelevant variables included,
the stronger this effect. The autoregression in y is almost always preferred.

Break in all regressors (δR = δI = −0.3, λR = λI = 0.05)

The y variable is identical to that of a break in relevant variables only. Selection is
now a trade-off between including variables that matter and help with forecasting,
and irrelevant variables that make forecasts worse. Including regressors in ARX and
RWX gives a substantial improvement over ARY.

9.3. Forecasting after the Break

We now dispense of INF for its infeasibility, and AVG because it has the highest MSFE
in all experiments. Table 10 reports the ratio of the MSFE for all other devices to that of ARY.
For the devices that forecast regressor values, results are reported after selection at 10%.

Table 10. Ratio of MSFE to that of MSFEARY. Selection at α = 0.1 for ARX, RWX, RDX, and CAX.

T + 2|T + 1 T + 3|T + 2 T + 4|T + 3

ARX RWX RDX CAX RWY CAY ARX RWX RDX CAX RWY CAY ARX RWX RDX CAX RWY CAY

No break
ψ(1) 1.10 1.15 1.31 1.15 1.21 1.29 1.11 1.16 1.31 1.16 1.21 1.29 1.10 1.14 1.30 1.15 1.21 1.28
ψ(2) 1.00 1.04 1.24 1.05 1.14 1.19 1.02 1.07 1.29 1.08 1.15 1.22 1.01 1.06 1.25 1.06 1.15 1.21
ψ(4) 0.96 1.00 1.23 1.01 1.12 1.16 0.97 1.02 1.26 1.03 1.12 1.17 0.96 1.00 1.23 1.00 1.12 1.17

Break in mean and slope (b) of irrelevant regressors
ψ(1) 2.14 2.35 3.30 2.33 1.21 1.29 1.53 1.61 1.75 1.64 1.21 1.29 1.20 1.25 1.35 1.25 1.21 1.28
ψ(2) 2.47 2.68 3.80 2.66 1.14 1.19 1.51 1.59 1.78 1.62 1.15 1.22 1.13 1.17 1.31 1.17 1.15 1.21
ψ(4) 2.58 2.79 3.90 2.76 1.12 1.16 1.45 1.51 1.73 1.53 1.12 1.17 1.07 1.11 1.29 1.11 1.12 1.17

Break in mean of all regressors
ψ(1) 0.62 0.50 0.34 0.50 0.63 0.57 0.48 0.47 0.75 0.48 0.28 0.26 0.72 0.69 0.82 0.69 0.67 0.67
ψ(2) 0.57 0.42 0.25 0.42 0.69 0.62 0.50 0.58 1.19 0.60 0.37 0.34 0.79 0.84 0.92 0.85 0.85 0.85
ψ(4) 0.54 0.37 0.22 0.37 0.72 0.65 0.51 0.69 1.61 0.72 0.43 0.40 0.81 0.96 0.98 0.96 0.94 0.94

Break in slope (a) of all regressors
ψ(1) 0.69 0.59 0.43 0.58 0.69 0.58 0.57 0.57 0.85 0.57 0.37 0.36 0.77 0.75 0.87 0.75 0.71 0.76
ψ(2) 0.64 0.51 0.34 0.50 0.73 0.63 0.58 0.66 1.29 0.68 0.48 0.46 0.82 0.87 0.98 0.86 0.87 0.92
ψ(4) 0.61 0.46 0.30 0.46 0.76 0.65 0.60 0.77 1.69 0.80 0.55 0.53 0.83 0.95 1.03 0.94 0.95 1.00

Break in slope (b) of all regressors
ψ(1) 0.41 0.28 0.42 0.29 0.38 0.33 0.42 0.41 0.49 0.42 0.21 0.21 0.85 0.86 0.99 0.84 1.16 1.03
ψ(2) 0.36 0.21 0.59 0.22 0.44 0.38 0.43 0.54 0.70 0.57 0.28 0.28 0.87 1.03 1.04 0.98 1.29 1.17
ψ(4) 0.32 0.19 0.78 0.19 0.49 0.41 0.45 0.69 0.91 0.74 0.33 0.34 0.87 1.18 1.05 1.11 1.35 1.24

Break in mean and slope (a) of all regressors
ψ(1) 0.83 0.78 0.75 0.78 0.86 0.87 0.88 0.91 1.11 0.92 0.79 0.82 0.99 1.01 1.14 1.01 1.00 1.05
ψ(2) 0.76 0.69 0.67 0.69 0.86 0.87 0.87 0.94 1.31 0.95 0.86 0.88 0.97 1.01 1.17 1.01 1.06 1.10
ψ(4) 0.73 0.65 0.63 0.64 0.87 0.87 0.85 0.95 1.42 0.96 0.88 0.91 0.93 1.00 1.18 1.00 1.08 1.10

Break in mean and slope (b) of all regressors
ψ(1) 0.37 0.23 0.39 0.25 0.35 0.32 0.43 0.53 0.67 0.60 0.21 0.22 0.86 1.09 1.07 1.03 1.64 1.44
ψ(2) 0.32 0.17 0.55 0.18 0.42 0.37 0.43 0.71 0.94 0.82 0.26 0.27 0.83 1.25 1.04 1.17 1.66 1.51
ψ(4) 0.30 0.14 0.71 0.16 0.46 0.40 0.45 0.88 1.19 1.04 0.30 0.31 0.82 1.41 1.02 1.30 1.67 1.55

Average over all breaks in all regressors
ψ(1) 0.58 0.48 0.47 0.48 0.58 0.54 0.56 0.58 0.77 0.60 0.37 0.37 0.84 0.88 0.98 0.87 1.04 0.99
ψ(2) 0.53 0.40 0.48 0.40 0.63 0.58 0.56 0.69 1.08 0.72 0.45 0.45 0.86 1.00 1.03 0.97 1.15 1.11
ψ(4) 0.50 0.36 0.53 0.36 0.66 0.60 0.57 0.80 1.37 0.85 0.50 0.50 0.85 1.10 1.05 1.06 1.20 1.17
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When there is no break, only ARX is able to gain on ARY, and then only for the design
with significant regressors (but stricter selection would help; see Table 8). Otherwise,
and always for the break in irrelevant variables only, the AR(1) in y has the smallest mean
square forecast error. This matches an oft-found outcome. This model is misspecified,
ignoring all information from the exogenous regressors, but misspecification need not entail
forecast failure. Indeed, the costs of forecasting the exogenous regressors can outweigh
their inclusion. However, the DGP design is also an AR(1) in y so this forecasting device
has the advantage of correctly specifying the dynamics. It may not perform so well if the
DGP contains more complex dynamics.

The AR(1) in y performs poorly when relevant regressors break. Now we see sub-
stantial gains in Table 10 from modeling the regressors, even shortly after the break has
finished (the break is active for T + 1 and T + 2).

Device RDX improves on RWX when the process shifts towards a unit root, but not
otherwise. Cardt behaves quite similar to the random walk forecasts in this DGP: CAX is
close to RWX in most cases. Cardt on y is usually a small improvement on RWY in the cases
with a break.

The AR(1) for x always improves on ARY in the cases with break. In the first period
with an observed break, T + 2, it is the worst of the methods that forecast regressors, while
in subsequent periods it is the best of these. But note that at T + 3 the naive random walk
forecast of y and Cardt are better still.

9.4. Is Selection Costly When Forecasting?

Comparing selection to using the GUM to forecast regressors, we find that selection
is always advantageous. Table 11 gives the average MSFE ratio relative to ARY, where the
average is taken over the three noncentrality settings, and different break cases. The top
panel of the table combines cases where there is no change in y, either because nothing
breaks, or for the break in mean and slope for irrelevant variables only. In that case ARY

tends to dominate, so tight selection is advantageous. The exception is highly significant
regressors in a stationary setting.

Table 11. Ratio of MSFE to that of MSFEARY. Average over noncentralities.

T + 2|T + 1 T + 3|T + 2 T + 4|T + 3

INF ARX RWX RDX CAX INF ARX RWX RDX CAX INF ARX RWX RDX CAX

No break in y: no break and break in irrelevant variables
α = 0.01 1.13 1.15 1.22 1.55 1.22 0.99 1.07 1.13 1.26 1.13 0.93 1.01 1.04 1.16 1.04
α = 0.05 1.52 1.47 1.59 2.14 1.57 1.14 1.21 1.27 1.45 1.28 0.99 1.05 1.10 1.25 1.10
α = 0.1 1.78 1.71 1.84 2.46 1.81 1.21 1.26 1.33 1.52 1.33 1.03 1.08 1.12 1.29 1.12
GUM 3.69 3.55 3.64 4.17 3.61 1.46 1.41 1.42 1.60 1.41 1.21 1.17 1.19 1.41 1.19
DGP 0.82 0.92 0.96 1.12 0.96 0.83 0.93 0.97 1.14 0.97 0.82 0.93 0.96 1.13 0.96

Break in y: break in all variables
α = 0.01 0.40 0.63 0.52 0.52 0.52 0.59 0.62 0.68 0.94 0.70 0.82 0.87 0.99 1.00 0.97
α = 0.05 0.31 0.56 0.43 0.48 0.44 0.54 0.56 0.67 1.02 0.70 0.82 0.85 0.99 1.01 0.96
α = 0.1 0.30 0.54 0.41 0.49 0.42 0.55 0.56 0.69 1.07 0.72 0.83 0.85 0.99 1.02 0.97
GUM 0.38 0.54 0.44 0.64 0.43 0.67 0.65 0.79 1.26 0.83 0.96 0.91 1.00 1.09 0.98
DGP 0.17 0.44 0.29 0.41 0.30 0.36 0.40 0.61 1.11 0.66 0.64 0.72 1.02 0.86 0.97

The bottom panel of Table 11 averages over the five cases where all variables break.
There we often see a U-shaped effect of selection, with a loose selection best. This is
particularly so at T + 2|T + 1, as was found in the theoretical results.

The bottom row in each panel of Table 11 gives the result when the specification of the
DGP is known but its parameters need estimated. The entries under INF have the most
information: the DGP as well as the future values of the regressors. Moving to the other
columns shows the cost of not knowing the latter.
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9.5. Forecast Combinations

Many investigations of forecasting have shown that combined forecasts can outper-
form the individual forecasts. The main candidates here are ARX in combination with a
random walk style forecast of y. Although there are many other possibilities, we restrict
ourselves to:

APOOL (ARX + RWY)/2;

CPOOL (ARX + CAY)/2.

In both cases ARX is used in the model that is selected from the GUM at 10%.
To summarize the results, we consider again the MSFE relative to ARY, with a three-

way average across noncentralities, break types and horizons T + 2, T + 3, T + 4. Table 12
illustrates that in this setting pooling can be advantageous as well. It is even competitive
with the infeasible device.

Table 12. Ratio of MSFE to that of MSFEARY. Selection at α = 0.1. Average over noncentralities and
horizons T + 2, . . . , T + 4. Lowest two in bold (excluding INF).

INF AVG ARX RWX RDX CAX RWY CAY APOOL CPOOL ARY

No break 0.99 1.22 1.03 1.07 1.27 1.07 1.16 1.22 0.96 1.00 1.00
Break irrelevant 1.69 1.99 1.68 1.78 2.25 1.77 1.16 1.22 1.13 1.20 1.00
All breaks 0.56 2.93 0.65 0.70 0.86 0.70 0.73 0.70 0.73 0.58 1.00

Sum 3.24 6.14 3.36 3.55 4.38 3.54 3.05 3.14 2.82 2.78 3.00

9.6. Summary of the Simulation Results

We can infer some general results from the experiments. First, using the in-sample
mean to forecast the exogenous regressors is always dominated by other approaches.

Next, when the break occurs out of sample, so forecasts are computed for T + 1, all
methods struggle, and incorporating regressors is worse than simply using the AR(1) for
y. Moving to the case when the break occurs in sample, so the forecasts are computed
for T + 2 when the break occurs at T + 1, the random walk forecasts of the regressors is
preferred when the break occurs in the relevant or all regressors. Looser significance levels
tend to do well here. If the breaks occur in the irrelevant regressors, including even one
can already be poisonous, and the AR(1) in y performs best.

There are substantial differences in the forecast performance of the two robust devices
RWX and RDX. The former is the random walk for the regressor, and works best, except if
the break drives the process towards a unit root. In that case, the differenced AR(1) for x
gives a higher weight to the previous value. However, when the type of break is unknown,
represented by the average performance here, the simple random walk dominates.

Table 12, rather arbitrarily, averages over all experiments and horizons. It shows that
pooling provides some protection against different states of nature, just inching ahead of
the autoregression in y. After that come the methods that ignore regressors, followed by
using an AR(1), random walk, or Cardt, to forecast the regressors. However, if we know
that a break has happened in the regressors, we should switch to modeling them, at least
until the break is out of the system again.

The variation in MSFEs across α is very small for intermediate values of α relative
to the variation in MSFEs across break types and DGP designs. For moderate α the selec-
tion significance level does not have a large impact on forecast performance. This is an
encouraging finding showing that forecast performance is relatively unaffected by the
precise choice of significance level for selection when using Autometrics, despite a range of
noncentralities and numbers of relevant and irrelevant exogenous variables.

10. Conclusions

This paper investigates the choice of significance level and its associated critical value
when selecting forecasting models, both analytically in a static bivariate setting where
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there are location shifts at the forecast origin, and in more general simulation experiments.
The theory suggests that variables should be retained if their noncentralities exceed 1,
which translates to c2

α = 2 at the boundary. This result holds regardless of whether location
shifts affect the variable about which a retention decision is made. Undertaking selection at
such loose significance levels implies that fewer relevant variables will be excluded when
they contribute to forecast accuracy, but that more variables will be retained by chance
because they happen to be in a draw that results in statistical significance at the proposed
critical value. Although retaining irrelevant variables that are subject to location shifts
usually worsens forecast performance, their coefficient estimates will be driven towards
zero when updating estimates as the horizon moves forward.

Although the static design is simple, it produces several generic analytical results.
Those results hold regardless of whether the regressors are contemporaneous or lagged,
although the timing of location shifts is fundamental. Dynamics will slow adjustment
to new equilibria, but this would not change the essence of the results. The inflation
forecasts illustrated the analytic results, with a loose selection significance level of 16%
being preferred for both the known regressors and the random walk forecasts for unknown
regressors case.

The simulation evidence examines a wide range of experimental designs and despite
the disparate outcomes, they provide some guidance for forecasting. The ideal scenario
is obviously to have complete knowledge of the DGP, such that the empirical modeller
knows the number and magnitude of both relevant and irrelevant regressors, and their
future values, and hence whether and where breaks are likely to occur. In practice, no-one
has the benefit of omniscience, and once the future values of regressors need to be forecast,
selecting from a GUM that nests the DGP may cost little, relative to knowing the precise
specification of the DGP.

The simulation results suggest that if the model is being used primarily for one-step-
ahead forecasting with the aim of minimizing MSFE, selection at looser than standard
selection significance levels may well help, and doing so will rarely hinder forecast per-
formance. The results provide some support for selecting models at around 10% when
there are approximately 15 regressors, many of which are irrelevant. This is close to the
16% derived theoretically in this paper when the number of irrelevant regressors is small.
The simulation results also highlight the degree of complexity in pinning down the optimal
selection rule for forecasting, with results depending on all aspects of the experimental
design. A take-away for the forecaster is that pooling works well across many settings,
suggesting a combination of a robust device which minimizes systematic bias and model-
based forecast based on univariate methods as a good insurance policy. Moreover, methods
that did not nest the DGP, such as the direct AR(1) forecast of the dependent variable and
Cardt, also performed well, both matching commonly found empirical outcomes. However,
if we know that a break has happened, one-step forecasts are improved by incorporating
forecasts of the regressors.
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Appendix A. Analytic Calculations

Appendix A.1

Derivations for the equations reported in Section 3.
The DGP given in (1)–(3) results in

√
T

(
β̂1 − β1
β̂2 − β2

)
∼ N2

[(
0
0

)
,

σ2
ε

σ2
11σ2

22(1− ρ2)

(
σ2

22 −ρσ11σ22
−ρσ11σ22 σ2

11

)]
,

with: √
T
(
µy − µ̂y

)
∼ N

[
0, σ2

ε

]
,

where we subsequently set σ11 = σ22 = 1 without loss of generality.
M2 in (6) partials out x2,t. From (2) we can write in deviations from means for

t = 1, . . . , T:
x2,t − µ2 = ρ(x1,t − µ1) + et,

such that et = η2,t − ρη1,t, so γ1 = (β1 + β2ρ) and φ0 = µy − γ1µ1. Hence M2 is:

yt = µy + (β1 + β2ρ)(x1,t − µ1) + β2et + εt

= γ0 + γ1(x1,t − µ1) + νt,

with γ0 = µy. The error for M2 is given by:

νt = β2(η2,t − ρη1,t) + εt,

where
σ2

ν = σ2
ε + β2

2

(
1− ρ2

)
= σ2

ε

(
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ε . (A1)
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Appendix A.2

Derivations for the equations reported in Section 4.
The one-step-ahead forecast error from M1 is:

ε̂T+1|T = yT+1 − ŷT+1|T

=
(
µy − µ̂y

)
+
(

β1 − β̂1

)
(x1,T+1 − µ1) +

(
β2 − β̂2

)
(x2,T+1 − µ2) + εT+1.

When there are no breaks, the parameter estimates are unbiased, E
[
ε̂T+1|T

]
= 0 so the

MSFE of M1 is:

E
[
ε̂2

T+1|T

]
= σ2

ε

(
1 +

1
T
+

2
T(1− ρ2)

− 2ρ2

T(1− ρ2)

)
= σ2

ε

(
1 +

3
T

)
.

The one-step-ahead forecast error from M2 in which x2,t is omitted is:

ε̃T+1|T = yT+1 − ỹT+1|T
= β2η2,T+1 + εT+1 + (γ0 − γ̃0) + (β1 − γ̃1)η1,T+1.
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Therefore, despite the misspecification, E
[
ε̃T+1|T

]
= 0 and the MSFE is:

E
[
ε̃2

T+1|T

]
= E

[
(β2η2,T+1 + εT+1 + (γ0 − γ̃0) + (β1 − γ̃1)η1,T+1)

2
]
= σ2

ν

(
1 +

2
T

)
.

Appendix A.3

Derivations for the equations reported in Section 5.2.
The regression equation itself stays constant so:

yT+1 =
(
µy + β2δ

)
+ β1(x1,T+1 − µ1) + β2(x2,T+1 − µ2 − δ) + εT+1. (A2)

Consequently, using β̂0 = µy − β̂1µ1 − β̂2µ2 to match the formulation of M2, the forecast
for M1 is:

ŷT+1|T+1 = µy + β̂2δ + β̂1(x1,T+1 − µ1) + β̂2(x2,T+1 − µ2 − δ),

and the one-step-ahead forecast error for M1 is:

ε̂T+1|T+1 = yT+1 − ŷT+1|T+1

=
(

β2 − β̂2

)
δ +

(
β1 − β̂1

)
η1,T+1 +

(
β2 − β̂2

)
η2,T+1 + εT+1,

and a one-step-ahead MSFE of:

E
[
ε̂

2
T+1|T+1

]
= σ2

ε

(
1 +

δ2 + 2− ρ

T(1− ρ2)

)
.

Next consider the one-step-ahead forecast for M2, given γ0 = µy and γ1 = (β1 + β2ρ):

ỹT+1|T+1 = γ̃0 + γ̃1(x1,T+1 − µ1).

The one-step-ahead forecast error is given by:

ε̃T+1|T+1 = yT+1 − ỹT+1|T+1

= β2δ + (γ0 − γ̃0) + (γ1 − γ̃1)η1,T+1 − β2ρη1,T+1 + β2η2,T+1 + εT+1,

and the one-step-ahead MSFE for M2 is:

E
[
ε̃

2
T+1|T+1

]
= σ2

ε + β2
2

(
1− ρ2 + δ2

)
+ 2T−1σ2

ν .

Appendix A.4

Derivations for the equations reported in Section 5.4.
For β̂0 = µy − β̂1µ1 − β̂2µ2, replacing the unknown xi,T+1 by µi leads to forecasting

yT+1 by the in-sample mean:

̂̂yT+1|T = µy,

so the forecast error for M1 is:

̂̂εT+1|T = yT+1 − ̂̂yT+1|T
= β2δ + β1η1,T+1 + β2η2,T+1 + εT+1,

and the forecast error bias is:
E
[̂̂εT+1|T

]
= β2δ.
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The MSFE1 is:
E
[̂̂ε2

T+1|T

]
= β2

1 + β2
2

(
1 + δ2

)
+ 2ρβ1β2 + σ2

ε .

Parameter estimation adds terms of Op
(
T−1).

Similarly, for M2, from (6) forecasting x1,T+1 by µ1 leads to:

˜̃yT+1|T = µy,

and hence for ‘known’ µy the forecast error is:

˜̃εT+1|T = β2δ + β1η1,T+1 + β2η2,T+1 + εT+1 = ̂̂εT+1|T ,

with
E
[˜̃εT+1|T

]
= β2δ,

and MSFE2 is given by (23). Hence, ignoring Op
(
T−1) terms, MSFE2 = MSFE1.

Appendix A.5

Derivations for the equations reported in Section 5.5.
From (A2) the regression equation for yT+1 can also be written as:

yT+1 =
(
µy + β2δ

)
+ β1∆x1,T+1 + β2(∆x2,T+1 − δ) + εT+1 + β1η1,T + β2η2,T .

Furthermore, the forecast for M1 using (24) and (25) is:

yT+1|T = µy + β̂1(x1,T − µ1) + β̂2(x2,T − µ2),

so the forecast error for M1 is:

εT+1|T = yT+1 − yT+1|T

= β2δ + β1∆x1,T+1 + β2(∆x2,T+1 − δ) +
(

β1 − β̂1

)
η1,T +

(
β2 − β̂2

)
η2,T + εT+1.

Consequently, neglecting the small impact of ηi,T on βi − β̂i:

E
[
εT+1|T

]
= β2δ,

and hence MSFE1 is:

E
[
ε

2
T+1|T

]
= 2β2

1 + β2
2

(
2 + δ2

)
+ 4ρβ1β2 + σ2

ε

(
1 + 2T−1

)
.

Next, we compute the equivalent bias and MSFE for M2, noting γ1 = β1 + β2ρ, so that
the forecast is given by:

ỹT+1|T = γ̃0 + γ̃1(x1,T − µ1).

As γ̃0 = γ0 = µy, the forecast error for M2 using the random walk is:

ε̃T+1|T = yT+1 − ỹT+1|T

= β2δ + β1∆η1,T+1 + β2∆η2,T+1 + εT+1 + (β1 − γ̃1)η1,T + β2η2,T ,

where, as before:
E
[
ε̃T+1|T

]
= β2δ.

Neglecting the small impact of η1,T on γ̃1 the MSFE for M2 is:

E
[
ε̃

2
T+1|T

]
= 2β2

1 + β2
2

(
3 + ρ2 + δ2

)
+ 4ρβ1β2 + σ2

ε

(
1 + T−1 + T−2ψ2

β

)
.



Econometrics 2021, 9, 26 32 of 35

Appendix A.6

Derivations for the equations reported in Section 6.2.
The conditional DGP for the forecast observation is:

yT+1 = β0 + β1x1,T+1 + β2x2,T+1 + εT+1

=
(
µy + β2δ

)
+ β1(x1,T+1 − µ1) + β2(x2,T+1 − µ2 − δ) + εT+1, (A3)

where the in-sample mean µy is shifted to (µy + β2δ) at T. Sample calculations will be
altered as now E[x2] = µ2 + T−1δ from:

x2 =
1
T

T

∑
t=1

x2,t = µ2 + T−1δ + η2,

and neglecting terms of T−2 or smaller:

(σ∗22)
2 ≈ σ2

22 + T−1δ2,

with σ∗12 = σ12 implying that:

ρ∗ =
σ12

σ11σ∗22
.

The intercept is again included with β̂0 = µy − β̂1µ1 − β̂2µ2 to match the formulation
of M2. ̂̂yT+1|T+1 ≈ β̂0 + β̂1µ1 + β̂2

(
µ2 + T−1δ

)
= µy + β̂2T−1δ,

and hence neglecting terms of T−2 or smaller, the forecast error for M1 is:

̂̂εT+1|T+1 = yT+1 − ̂̂yT+1|T+1

≈ β2δ
(

1− T−1
)
+ β1η1,T+1 + β2η2,T+1 + εT+1,

so the forecast error bias is given by:

E
[̂̂εT+1|T+1

]
≈ β2δ

(
1− T−1

)
.

The MSFE for M1 is:

E
[̂̂ε2

T+1|T+1

]
≈ β2

2δ2
(

1− T−1
)2

+ β2
1 + β2

2 + σ2
ε .

Omitting x2 from the forecasting equation leads to a forecast error of:

ε̂T+1|T+1 = yT+1 − ŷT+1|T+1

≈ β2δ + (γ0 − γ̃0) + (γ1 − γ̃1)η1,T+1 + vT+1,

with an MSFE for M2 given by:

E
[
ε̂

2
T+1|T+1

]
≈ β2

2δ2 + σ2
ε + σ2

ν

(
1 +

2
T

)
,

where σ2
ν is given in (A1).
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Appendix A.7

Derivations for the equations reported in Sections 6.4 and 6.5.
Following a similar strategy as the previous analysis, including the intercept for

comparability where β̂0 = µy − β̂1µ1 − β̂2µ2, then the forecast for M1 is:

ŷT+1|T+1 = β̂0 + β̂1˜̃x1,T+1|T + β̂2˜̃x2,T+1|T = µy + β̂2δ + β̂1η1,T+1 + β̂2η2,T+1,

so that the forecast error for M1 is:

ε̂T+1|T = yT+1 − ŷT+1|T

=
(

β2 − β̂2

)
δ + β1∆η1,T+1 + β2∆η2,T+1 + εT+1 +

(
β1 − β̂1

)
η1,T +

(
β2 − β̂2

)
η2,T ,

with E
[
ε̂T+1|T

]
= 0 when the parameter estimates are unbiased. The MSFE for M1 is:

E
[
ε̂

2
T+1|T

]
= 2

(
β2

1 + β2
2 + 2ρβ1β2

)
+ σ2

ε

(
1 + T−1

(
2 +

δ2

(1− ρ2)

))
.

Next we compute the random walk forecast for M2 so γ1 = β1 + β2ρ and γ0 = µy,
leading to the forecast given by:

ỹT+1|T = γ̃0 + γ̃1(x1,T − µ1),

and the forecast error for M2 is:

ε̃T+1|T = yT+1 − ỹT+1|T

= β2δ + β1∆η1,T+1 + β2∆η2,T+1 + εT+1 + (β1 − γ̃1)η1,T + β2η2,T ,

which is now biased for β2δ 6= 0. The MSFE for M2 is:

E
[
ε̃

2
T+1|T

]
= 2β2

1 + β2
2

(
δ2 + 1 + ρ2

)
+ 4ρβ1β2 + σ2

ε

(
1 + T−1 + T−2ψ2

β

)
.

From (12):

MSFE3 = MSFE1 +
(
1− pα

(
ψβ

))[
β2

2
(
δ2 + ρ2 − 1

)
+ σ2

ε

(
−δ2

T(1−ρ2)
− T−1 + T−2ψ2

β

)]
. (A4)

Appendix B

Table A1. Ratio of MSFE to that of MSFE1. T = 100, otherwise as Table 3.

MSFE Relative to MSFE1
Model ψ2

β = 0 ψ2
β = 1 ψ2

β = 4 ψ2
β = 9 ψ2

β = 16

Sections 4.1 and 4.2 No shift with known future regressors
α = 0 (M2) 0.990 1.000 1.030 1.079 1.149
α = 0.001 0.990 1.000 1.026 1.048 1.035
α = 0.05 0.991 1.000 1.014 1.012 1.003
α = 0.16 0.992 1.000 1.008 1.004 1.001

Sections 5.2 and 5.3 Out-of-sample shift with known future regressors
α = 0 (M2) 0.827 1.008 1.551 2.457 3.724
α = 0.001 0.827 1.008 1.497 1.895 1.651
α = 0.05 0.836 1.007 1.267 1.217 1.056
α = 0.16 0.855 1.005 1.152 1.081 1.013

Section 5.4 Out-of-sample shift with mean forecast of future regressors
α = 0 (M2) 1.000 1.000 1.000 1.000 1.000
α = 0.001 1.000 1.000 1.000 1.000 1.000
α = 0.05 1.000 1.000 1.000 1.000 1.000
α = 0.16 1.000 1.000 1.000 1.000 1.000
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Table A1. Cont.

MSFE Relative to MSFE1
Model ψ2

β = 0 ψ2
β = 1 ψ2

β = 4 ψ2
β = 9 ψ2

β = 16

Section 5.5 Out-of-sample shift with random walk forecast of future regressors
α = 0 (M2) 0.997 1.002 1.013 1.024 1.033
α = 0.001 0.997 1.002 1.012 1.015 1.008
α = 0.05 0.997 1.002 1.006 1.004 1.001
α = 0.16 0.997 1.001 1.004 1.001 1.000

Sections 6.2 and 6.3 In-sample shift with mean forecast of future regressors
α = 0 (M2) 1.010 1.009 1.008 1.007 1.007
α = 0.001 1.010 1.009 1.008 1.005 1.002
α = 0.05 1.010 1.008 1.004 1.001 1.000
α = 0.16 1.008 1.006 1.002 1.000 1.000

Sections 6.4 and 6.5 In-sample shift with random walk forecast of future regressors
α = 0 (M2) 0.931 0.994 1.155 1.386 1.661
α = 0.001 0.931 0.994 1.140 1.237 1.158
α = 0.05 0.934 0.995 1.075 1.058 1.014
α = 0.16 0.942 0.996 1.043 1.021 1.003

Notes
1 Clements and Hendry (1993) argue that the generalized forecast error second moment should be used to evaluate forecast

performance instead of MSFE. In this case the results would be equivalent, because we focus on one-step-ahead forecasts.
2 UK quarterly consumer price index (CPI) is given by ONS series D7BT, which is the quarterly average of the monthly index.

Annual inflation percentage is defined as πt = 100∆4 log D7BTt. UK Unemployment is the quarterly average of ONS series
MGUK, LFS ILO unemployment rate (UK, All, Aged 16 and over, %, NSA).

3 Intermediate alternatives such as sub-sample estimation, recursive or rolling estimation could also be used.
4 Castle et al. (2012) demonstrate the ability of IIS to detect breaks in the form of location shifts at any point in the sample.
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