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Abstract: Recently, the world of cryptocurrencies has experienced an undoubted increase in interest.
Since the first cryptocurrency appeared in 2009 in the aftermath of the Great Recession, the popularity
of digital currencies has, year by year, risen continuously. As of February 2021, there are more than
8525 cryptocurrencies with a market value of approximately USD 1676 billion. These particular assets
can be used to diversify the portfolio as well as for speculative actions. For this reason, investigating
the daily volatility and co-volatility of cryptocurrencies is crucial for investors and portfolio managers.
In this work, the interdependencies among a panel of the most traded digital currencies are explored
and evaluated from statistical and economic points of view. Taking advantage of the monthly Google
queries (which appear to be the factors driving the price dynamics) on cryptocurrencies, we adopted
a mixed-frequency approach within the Dynamic Conditional Correlation (DCC) model. In particular,
we introduced the Double Asymmetric GARCH–MIDAS model in the DCC framework.

Keywords: cryptocurrency; covariance matrix; Dynamic Conditional Correlation; Double Asymmet-
ric GARCH–MIDAS

1. Introduction

During the last few years, interest in the world of cryptocurrencies has exploded,
as underlined by the huge rise in Google queries concerning digital currencies. Unlike a
standard currency, which is supported by a government or central bank, a digital currency
has the feature of allowing online payments linking the giver and the recipient directly,
without using a financial institution. The first digital currency, named Bitcoin, dates back
to 2008. It was developed in the middle of the Great Recession period based on the paper
of Nakamoto (2008). At that time, the stability of the global banking system was highly
strained. As pointed out by Weber (2016), Bitcoin took advantage of these circumstances
and gained popularity among practitioners, academics, and the financial press. After the
European sovereign debt crisis (2010–2013), the confidence in the banking system’s stability
sharply reduced. As a consequence, Bitcoin notably rose in value. At present, the diffusion
of cryptocurrencies has reached unprecedented levels. The popularity of cryptocurrencies
has been underlined by several works. For instance, ElBahrawy et al. (2017) analyzed
the statistical properties of the whole cryptocurrency market, Hileman and Rauchs (2017)
focused on the cryptocurrency industry and how these digital currencies can be used,
and Gandal and Halaburda (2016) investigated the appreciation and depreciation of six
different cryptocurrencies.

According to the site https://coinmarketcap.com/ accessed on 30 June 2021, at the
time of writing, there were 8525 cryptocurrencies, with a market value of approximately
USD 1676 billion. Among all these cryptocurrencies, Bitcoin has the largest market share
(around 61%), followed by Ethereum (13%). The reason behind this increasing popularity
remains debatable, but probably lies in the heterogeneous nature of digital currencies.
In fact, the question of whether cryptocurrencies are a real currency (Yermack 2015),
a speculative investment (Baek and Elbeck 2015), a safe haven (Bouri et al. 2017, 2020)
or even a general financial asset (Elendner et al. 2018) is still debated. Because of this,
investigating the volatility and co-volatility among the cryptocurrencies is crucial and of
primary interest for investors and portfolio managers.
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Since the seminal paper of Engle (1982), the literature on financial econometrics has
focused on volatility modeling and forecasting through the Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) model, surveyed by Teräsvirta (2009). Modeling
cryptocurrencies’ volatility using the GARCH specification has become standard among
practitioners and scholars. For instance, Chu et al. (2017) analyzed the volatility of seven
cryptocurrencies using twelve GARCH specifications; Catania et al. (2018), using GARCH
and other models, predicted the volatility of four cryptocurrencies (Bitcoin, Ethereum,
Litecoin, and Ripple) and Caporale and Zekokh (2019) used more than one thousand
GARCH models for four cryptocurrencies. Taking advantage of the Mixing-Data Sampling
(MIDAS) methods (Ghysels et al. 2007), the GARCH–MIDAS (Engle et al. 2013) models
have also been used within the cryptocurrency framework. Conrad et al. (2018) investigated
Bitcoin’s volatility in detail by including additional macroeconomic and financial variables
(observed at a monthly frequency) as potential drivers of the volatility. Walther et al. (2019)
used GARCH–MIDAS to forecast the volatility of five cryptocurrencies (Bitcoin, Etherium,
Litecoin, Ripple, and Stellar) by including some monthly economic and financial drivers.

Recently, the literature has also been interested in the interdependencies among
cryptocurrencies and other financial assets. For instance, Cebrián-Hernández and Jiménez-
Rodríguez (2021) used the Dynamic Conditional Correlation (DCC) model of Engle (2002)
on a mixed portfolio composed of Bitcoin and ten other assets. Mensi et al. (2020) applied
the DCC model to four cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple). Katsi-
ampa et al. (2019) applied the Diagonal BEKK (Engle and Kroner 1995) and its asymmetric
version to eight cryptocurrencies. Using a multivariate factor stochastic volatility model
in a Bayesian framework, Shi et al. (2020) investigated the dynamic correlations among
six cryptocurrencies. García-Medina and Chaudary (2020) studied the interconnections of
cryptocurrencies in a network context by estimating the multivariate transfer entropy. Ji
et al. (2019) investigated the volatility spillovers among six cryptocurrencies, finding that
Bitcoin and Litecoin played a prominent role.

Despite the literature on multivariate analysis of cryptocurrencies is rich, some ques-
tions still remain: (i) how to deal with the inclusion of the variables observed at lower
frequencies, with a potential separate effect if positive or negative, and influencing daily
cryptocurrencies in a multivariate context; (ii) what benefit these variables can give from
statistical and economic points of view. The present paper aims to address these points. In
particular, the contribution of this work is twofold. First, we analyze the interdependencies
among seven cryptocurrencies for the period 2017–2020 by using a set of popular DCC
specifications—that is, the corrected DCC (cDCC) of Aielli (2013), the DCC-MIDAS of
Colacito et al. (2011), and the Dynamic Equicorrelation (DECO) of Engle and Kelly (2012),
as well as a popular non-parametric specification, the RiskMetrics (RM) model, which
is also used in Amendola et al. (2020). The DCC class of models is a standard tool for
investigating the dynamic interdependencies between financial assets (Hemche et al. 2016).
In this paper, the DCC models also include a monthly variable in a context where the
dependent variable—that is, the digital currency—is observed daily. The chosen monthly
variable is the Google searches of each digital currency. This choice is motivated by Kris-
toufek (2013), who argued that the Google queries on the digital currencies are the factors
determining the cryptocurrencies’ prices. The specification used for including the Google
trend data on cryptocurrencies in the univariate specifications is the Double Asymmetric
GARCH–MIDAS (DAGM), which was recently proposed by Amendola et al. (2019). The
DAGM model is able to take into account the separate effects that positive and negative
variations in the low-frequency variable—in this case, the monthly Google searches—may
have on the daily (cryptocurrency) volatility. The second contribution of our work is that
we evaluate the models from statistical and economic perspectives, as has been done by
Amendola and Candila (2017), among others. The statistical evaluation is based on the
distance between each predicted conditional covariance matrix and a covariance proxy. The
economic evaluation refers to the portfolio Value-at-Risk (VaR) obtained from the global
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minimum variance (GMV) strategy. As in Elendner et al. (2018), we analyzed a portfolio
entirely composed of cryptocurrencies.

The estimation of all the models employed in this work was carried out using the Gaus-
sian distribution. The fat tails and severe skewness are very well-known features of cryp-
tocurrency returns (see, for instance, the works of Bariviera et al. (2017), Zhang et al. (2018),
and Näf et al. (2019), among others). The univariate analysis can involve distributions,
different from the Normal one, handling efficiently these stylized facts. However, as stated
by Pesaran and Pesaran (2010), when the DCC models are estimated using a non-normal
distribution, some problems may arise. First of all, there could exist different local maxima.
Moreover, the possibility of splitting the estimate stage into two steps is lost. This aspect
means that the DCC models’ estimation is problematic, as many parameters have to be opti-
mized jointly. Recently, a viable approach that addresses and solves this issue was proposed
in Paolella and Polak (2015) and Paolella et al. (2019). This is accomplished via the use
of an expectation–maximization algorithm to jointly estimate all model parameters amid
a non-Gaussian distribution. Thus, it is also applicable to high dimensions. We did not
pursue this methodology in this paper, leaving it for future work. Instead, we continued to
use the Gaussian distribution, because it is the dominant choice in this context (it has been
recently used in Canh et al. (2019), Guesmi et al. (2019), and Kumar and Anandarao (2019),
for instance).

In terms of results, the inclusion of the monthly Google searches as additional deter-
minants for the daily volatilities of the chosen digital currencies is extremely important. In
fact, only the models using Google searches belong to the set of superior models (SSM),
identified through the Model Confidence Set (MCS, Hansen et al. 2011) procedure. These
results hold both for the statistical and economic evaluations. Moreover, only the models
employing the Google trends and the RM model have satisfactory residual diagnostics.
Finally, all the estimated time-varying conditional correlations obtained from the models
within the SSM are relatively high, approximately ranging between 0.6 and 0.8 in the last
part of the sample.

The rest of the paper is structured as follows. Section 2 illustrates the methodology
used. Section 3 is devoted to the empirical analysis. Finally, Section 4 provides the
concluding remarks.

2. Methodology

Let ri,t = [ri,t,1, · · · , ri,t,n]
′

be the vector of n daily log-returns observed at time i of
period t. Typically, the frequency of period i is higher than the frequency of t in order
to take into account the additional volatility determinants which, in this work, will be
observed at a monthly frequency. Globally, there are Nt days within each period t, and
there are T low-frequency periods. Then, we assume that:

ri,t ∼ MVN(0, Hi,t) (1)

Hi,t = Di,tRi,tDi,t, (2)

where MVN is the multivariate normal distribution; Hi,t is the (n× n) conditional covari-
ance matrix; Di,t is the diagonal matrix, which includes the conditional standard deviations
on the main diagonal; and Ri,t is the correlation matrix, which is formulated as:

Ri,t = Ei−1,t

[
ξ i,tξ

′
i,t

]
(3)

ξ i,t = D−1
i,t ri,t. (4)
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In Equation (3), Ei−1,t[·] denotes the conditional expectation made at time i− 1 of the
period t. By means of this formulation, ξ i,t are the standardized residuals obtained from
the univariate volatility models. Therefore, under the Equations (1)–(4), we have that:

ri,t = H0.5
i,t ξ i,t (5)

ξ i,t
iid∼ MVN(0, In), (6)

where In is the n× n dimensional identity matrix.
The main appeal of DCC models is the possibility of splitting the estimation phase

into two steps. In the first step, the univariate models are separately estimated in order to
form the matrix Dt. Then, in the second step, the correlation models are estimated. The
advantage of such a procedure is that it makes the estimation feasible even for moderately
large portfolios of assets. In particular, let Θv and Θc be the parameter spaces of the
volatility and correlation models, respectively, with Θ = {Θv, Θc}. Hence, following
Engle (2002), the global log-likelihood function, labelled as L(Θ), can be written as:

L(Θ) = L(Θv) + L(Θc) (7)

= −
T

∑
t=1

Nt

∑
i=1

[
n log(2π) + 2 log |Di,t|+ r

′
i,tD
−2
i,t ri,t

]
−

T

∑
t=1

Nt

∑
i=1

[
log |Ri,t|+ ξ

′
i,tR
−1
i,t ξ i,t + ξ

′
i,tξ i,t

]
. (8)

The univariate specifications used in this work are the GARCH and the DAGM models.
In the first case, the volatility dynamics of each asset is:

σ2
i,t,j = const + αr2

i−1,t,j + βσ2
i−1,t,j, with j = 1, · · · , n. (9)

In the case of the DAGM model, the volatility of each asset is decomposed into two
multiplicative components, short-run and long-run terms. The former is labeled as gi,t,j
and varies each day i. The long-run component instead, labeled as τt,j, varies with the
same frequency as the additional variable Xt,j. Formally, the model for ri,t,j is:

ri,t,j =
√

gi,t,j × τt,jzi,t,j, with j = 1, · · · , n (10)

gi,t,j = (1− α− β) + α

(
ri−1,t,j

)2

τt,j
+ βgi−1,t,j (11)

τt,j = exp

(
m + θ+

K

∑
k=1

δk(ω)+Xt−k,j1(Xt−k,j≥0)+

= θ−
K

∑
k=1

δk(ω)−Xt−k,j1(Xt−k,j<0)

)
, (12)

where zi,t,j follows a standard normal distribution. Note that Equation (12) considers the
influence of positive and negative Xt realizations separately via θ+ and θ−. These two
parameters, respectively, give the contribution to τt of the positive and negative weighted
summation of the K Xt lagged realizations. The specifications in Equations (9) and (11)
could be further enriched by the inclusion of some asymmetric terms, linked to negative
returns, as was implemented by Conrad and Loch (2015), for instance.

The three parametric specifications for the correlations used in this work, belonging
to the class of DCC models, are the cDCC, DCC-MIDAS, and DECO models. Another
popular specification is the RiskMetrics model, which does not require any estimation.
All the functional forms of the models are illustrated in Table 1. It is worth noting that
the cDCC, DCC-MIDAS, and DECO models employed in this work use the standardized
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residuals coming from the univariate GARCH and DAGM models. Therefore, the model
universe consists of six parametric models and one non-parametric model.

Table 1. Functional forms of the covariance models.

Model Functional Form

cDCC (Aielli 2013)

Hi,t = Di,tRi,tDi,t
Di,t = diag(σi,t,1, · · · , σi,t,j, · · · , σi,t,n)

Ri,t = (diag(Qi,t))
−1/2Qi,t(diag(Qi,t))

−1/2

Qi,t = (1− a− b)Ψ + a(ξ i−1,tξ
′

i−1,t)+

Qi,t =bQi−1,t
ξ i,t = D−1

i,t ri,t

Ψ = E
(

ξ i,tξ
′

i,t

)

DCC-MIDAS (Colacito et al. 2011)

Hi,t = Di,tRi,tDi,t
Di,t = diag(σi,t,1, · · · , σi,t,j, · · · , σi,t,n)

Ri,t = (diag(Qi,t))
−1/2Qi,t(diag(Qi,t))

−1/2

Qi,t = (1− a− b)Ri,t(ω) + a(ξ i−1,tξ
′

i−1,t)+

Qi,t =bQi−1,t
ξ i,t = D−1

i,t ri,t

DECO (Engle and Kelly 2012)

Hi,t = Di,tRDECO
i,t Di,t

Di,t = diag(σi,t,1, · · · , σi,t,j, · · · , σi,t,n)

RDECO
i,t = (1− ρi,t)In + ρi,t Jn

ρi,t =
1

n(n−1)

(
ι
′
Ri,tι− n

)
RiskMetrics

Hi,t = λri−1,tr′i−1,t + (1− λ)Hi−1,t
λ = 0.94

Notes: The table reports the multivariate model dynamics of the different specifications employed in the empirical
section. Ri,t(ω) represents the long-run correlation as in Equation (2.12) of Colacito et al. (2011). In denotes the
identity matrix, Jn a matrix of ones, and ι a n× 1 vector of ones.

Once estimating Hi,t, it would be necessary to test the adequacy of the model used
in terms of the remaining presence of conditional heteroscedasticity in the (standardized)
residuals. However, as argued by Bauwens et al. (2006), the tests at disposal for this aim are
still at a preliminary stage, with respect to those for the univariate case. Among these works,
the test proposed by Ling and Li (1997) (LL) has some undoubted advantages. The test
uses the squared standardized residuals to test the null of no conditional heteroscedasticity.
Formally, the LL test statistic is:

LL(M) = N
M

∑
h=1

R̃2(h), (13)

where N is the total number of days used, obtained as N = ∑T
t=1×Nt, and R̃(h) represents

the residual autocorrelation at lag h—that is:

R̃(h) =
∑T

t=1 ∑Nt
i=h+1

(
r
′
i,tĤ−1

i,t ri,t − n
)(

r
′
i−h,tĤ−1

i−h,tri−h,t − n
)

∑T
t=1 ∑Nt

i=h+1

(
r′i,tĤ−1

i,t ri,t − n
)2 . (14)

The LL test, under the null, is asymptotically distributed as a χ2
(M). Interestingly, the

asymptotic distribution of the test statistic does not require the normality assumption of the
error term, meaning that the test also appears to be robust in the presence of misspecified
distribution.
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3. Empirical Analysis

In this work, seven cryptocurrencies were used: Bitcoin, Ethereum, Lithium, Stellar,
Ripple, Dashcoin, and Dogecoin. All the quotes for these series were collected from the
Yahoo Finance site. The sample period is from June 2016 up to December 2020 for 1671
daily observations. The additional low-frequency volatility determinant is the Google
trend series for each cryptocurrency. These Google trend series are reported monthly and
enter Equation (12) as the first difference. The patterns of the cryptocurrencies and Google
trend prices are illustrated in Figures 1 and 2, respectively. In line with the literature,
the connection between online searches and the prices’ movements appears evident. As
of January 2018, all the online searches present a peak. Correspondingly, all the prices
observed in January 2018 are at their maximum.
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Figure 1. Plots of prices. Sample period: June 2016 to December 2020. Number of observations: 1671.
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Figure 2. Plots of Google trends. Sample period: June 2016 to December 2020. Number of monthly
observations: 55.

The main summary statistics for the close-to-close log-returns are reported in Table 2.
All the returns exhibit a high kurtosis, sometimes a very high kurtosis, probably due to
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some exceptional values. Except for Bitcoin and Ethereum, all the returns are positively
skewed. As also discussed in the Introduction, even though alternative approaches dealing
with the fat tails and severe skewness are available in the literature, we use the Gaussian
distribution for the estimation. Moreover, it has to be remarked that all the standard errors
reported are based on Quasi-Maximum Likelihood methods, as was recently done by
Guesmi et al. (2019), among others. Moreover, once Hi,t is achieved, the resulting portfolio
VaR will take care of the fat tails of the cryptocurrencies.

Table 2. Summary statistics.

Min. Max. Mean SD Skew. Kurt.

Bitcoin −0.465 0.225 0.002 0.041 −0.911 13.535
Ethereum −0.551 0.290 0.002 0.056 −0.538 9.586
Lithium −0.449 0.511 0.002 0.058 0.717 11.599
Stellar −0.410 0.723 0.003 0.077 1.968 17.156
Ripple −0.616 1.027 0.002 0.071 2.407 39.494
Dashcoin −0.459 0.438 0.001 0.058 0.605 9.009
Dogecoin −0.493 0.477 0.002 0.062 0.792 12.843

Notes: The table presents the main statistics (the minimum (Min.) and maximum (Max.), the mean, standard
deviation (SD), skewness (Skew.) and excess kurtosis (Kurt.)) for the close-to-close log-returns. Sample period:
June 2016–December 2020. Number of observations: 1671.

All the estimations performed in this work were executed in R using the package
dccmidas (Candila 2021). The summary diagram in Figure 3 illustrates the phases of
our research.

The results of the first step, concerning the univariate models, are reported in
Tables 3 and 4. The number of lagged realizations of the Google searches entering the
long-run equation is K = 24. Interestingly, the parameters associated with the Google
searches are almost always all significant. This means that such queries effectively help in
estimating the volatility of digital currencies.

Table 3. M1, M2 and M3: univariate models.

Estimate Std. Error t Value Pr(>|t|) Sig.

Bitcoin
const 0.000 0.000 2.856 0.004 ***
α 0.181 0.053 3.393 0.001 ***
β 0.790 0.029 27.214 0.000 ***

Ethereum
const 0.000 0.000 2.892 0.004 ***
α 0.182 0.044 4.103 0.000 ***
β 0.733 0.059 12.424 0.000 ***

Lithium
const 0.000 0.000 1.493 0.135
α 0.071 0.028 2.562 0.010 **
β 0.878 0.046 19.096 0.000 ***

Stellar
const 0.000 0.000 1.744 0.081 *
α 0.219 0.070 3.135 0.002 ***
β 0.752 0.079 9.534 0.000 ***

Ripple
const 0.000 0.000 2.281 0.023 **
α 0.374 0.152 2.455 0.014 **
β 0.609 0.117 5.225 0.000 ***
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Table 3. Cont.

Estimate Std. Error t Value Pr(>|t|) Sig.

Dashcoin
const 0.000 0.000 2.663 0.008 ***
α 0.236 0.070 3.394 0.001 ***
β 0.744 0.062 11.990 0.000 ***

Dogecoin
const 0.000 0.000 2.585 0.010 ***
α 0.230 0.044 5.276 0.000 ***
β 0.769 0.039 19.623 0.000 ***

Notes: The table reports the estimates of the univariate GARCH models used in the M2, M3 and M4 specifications.
Column Std. Error reports the Quasi-Maximum Likelihood standard errors. Sample Period: June 2016 to December
2020. Number of daily observations: 1671. *, ** and *** represent the significance at levels 10%, 5%, 1%, respectively.

Version June 28, 2021 submitted to Econometrics 8 of 19

Figure 3. Summary diagram.Figure 3. Summary diagram.
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Table 4. M4, M5 and M6: univariate models.

Estimate Std. Error t Value Pr(>|t|) Sig.

Bitcoin
α 0.192 0.048 4.037 0.000 ***
β 0.765 0.027 27.837 0.000 ***
m −6.381 0.977 −6.532 0.000 ***
θ+ 0.364 0.169 2.156 0.031 **
ω+

2 1.739 0.720 2.415 0.016 **
θ− 0.183 0.129 1.421 0.155
ω−2 2.698 0.976 2.763 0.006 ***

Ethereum
α 0.189 0.041 4.548 0.000 ***
β 0.698 0.066 10.622 0.000 ***
m −6.029 0.314 −19.201 0.000 ***
θ+ 0.218 0.080 2.729 0.006 ***
ω+

2 2.323 0.638 3.639 0.000 ***
θ− 0.071 0.049 1.434 0.152
ω−2 8.893 4.558 1.951 0.051 *

Lithium
α 0.072 0.034 2.156 0.031 **
β 0.849 0.073 11.560 0.000 ***
m −5.876 0.294 −19.970 0.000 ***
θ+ 0.043 0.022 1.944 0.052 *
ω+

2 2.148 1.036 2.074 0.038 **
θ− 0.033 0.027 1.194 0.233
ω−2 3.764 4.435 0.849 0.396

Stellar
α 0.274 0.091 2.991 0.003 ***
β 0.501 0.156 3.217 0.001 ***
m −5.000 0.275 −18.181 0.000 ***
θ+ 0.059 0.020 2.988 0.003 ***
ω+

2 1.758 0.334 5.263 0.000 ***
θ− 0.092 0.020 4.677 0.000 ***
ω−2 1.209 0.158 7.676 0.000 ***

Ripple
α 0.346 0.114 3.031 0.002 ***
β 0.569 0.110 5.174 0.000 ***
m −5.313 0.629 −8.447 0.000 ***
θ+ 0.036 0.014 2.628 0.009 ***
ω+

2 4.307 1.350 3.190 0.001 ***
θ− 0.013 0.006 2.218 0.027 **
ω−2 8.188 1.714 4.777 0.000 ***

Dashcoin
α 0.347 0.114 3.039 0.002 ***
β 0.652 0.114 5.696 0.000 ***
m −0.074 0.309 −0.238 0.812
θ+ −0.046 0.049 −0.957 0.339
ω+

2 1.992 0.908 2.193 0.028 **
θ− 0.077 0.041 1.895 0.058 *
ω−2 1.986 0.827 2.402 0.016 **
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Table 4. Cont.

Estimate Std. Error t Value Pr(>|t|) Sig.

Dogecoin
α 0.226 0.042 5.374 0.000 ***
β 0.743 0.052 14.204 0.000 ***
m −5.615 0.613 −9.167 0.000 ***
θ+ 0.060 0.022 2.663 0.008 ***
ω+

2 2.064 0.570 3.618 0.000 ***
θ− 0.021 0.025 0.827 0.408
ω−2 1.465 0.761 1.925 0.054 *

Notes: The table reports the estimates of the univariate DAGM models used in the M4, M5 and M6 specifications.
Column Std. Error reports the Quasi-Maximum Likelihood based standard errors. The MIDAS variables are
represented by the first difference of the Google trends. Sample Period: June 2016 to December 2020. Number of
daily observations: 1671. *, ** and *** represent the significance at levels 10%, 5%, 1%, respectively.

Once we obtained the standardized residuals, the second step of the estimation
concerns the correlation models, whose estimated coefficients are reported in Table 5. The
same table presents the averages of three robust (Laurent et al. 2013) loss functions—namely,
the Euclidean, Squared Frobenius, and Root Mean Squared Error (RMSE). The losses
evaluate the distance of the estimated1 conditional covariance matrix from the covariance
proxy, which is represented by the matrix of the cross-products of ri,t. Finally, the SSM
obtained from the MCS is highlighted in shades of gray. Surprisingly, under two out of
three losses (i.e., the Euclidean and the Squared Frobenius), all the models using DAGM in
the first step are in the SSM. When the RMSE is used, the DAGM-cDCC specification (that
is, the model labeled as M4) is the only model belonging to the SSM. Therefore, it appears
evident that including the (monthly) Google searches in the first step through a mixed-
frequency approach results in better conditional covariance predictions. This observation is
corroborated by the results of the LL test, which was applied to the standardized residuals
obtained after the estimation of the conditional covariance matrix. Remarkably, the null
hypothesis of no conditional heteroscedasticity was rejected for models M1, M2, and M3—
that is, the parametric models without the Google trend information. Instead, both the
parametric models using the MIDAS variable and the RM model do not reject the null
hypothesis.

A graphical analysis of the correlation plots of the models belonging to the SSM
(according to Euclidean and Squared Frobenius loss functions) is fundamental to visualize
the time-varying patterns of the estimated correlations. Figures 4–6 are dedicated to these
plots, respectively, for models M4 (DAGM + cDCC), M5 (DAGM + DCC-MIDAS), and
M6 (DAGM + DECO). Independently of the model adopted for the correlations, all the
cryptocurrencies appear to be highly correlated. In particular, if the correlations seem low at
the beginning of the considered sample, during the last period the digital currencies exhibit
larger and generally very high interdependencies, almost always ranging between 0.6 and
0.8. From a portfolio manager’s perspective, these interconnections are fundamental to
deciding the assets in which to invest.
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Table 5. Correlation estimates, MCS and residual diagnostics.

M1 M2 M3 M4 M5 M6 M7

a 0.017 ∗∗ 0.038 0.086 ∗∗ 0.018 ∗∗∗ 0.034 0.089 ∗∗∗

(0.008) (0.031) (0.044) (0.006) (0.161) (0.022)

b 0.982 ∗∗∗ 0.931 ∗∗∗ 0.913 ∗∗∗ 0.981 ∗∗∗ 0.937 ∗ 0.91 ∗∗∗

(0.008) (0.089) (0.054) (0.007) (0.483) (0.019)

ω
1.001 1.001
(1.793) (11.109)

Euclidean 4.496 4.503 4.515 4.413 4.419 4.447 6.683
Sq. Frobenius 2.630 2.630 2.630 2.556 2.556 2.556 3.650
RMSE 1.526 1.531 1.528 1.515 1.522 1.519 1.563

LL(1) 11.941 ∗∗∗ 14.631 ∗∗∗ 8.657 ∗∗∗ 5.659 6.281 5.448 0.004
LL(2) 12.487 ∗∗∗ 15.525 ∗∗∗ 8.744 ∗∗ 5.756 6.521 5.525 0.004

Notes: Top panel reports the estimates for the correlation models. Numbers in parentheses are the Quasi-Maximum Likelihood standard
errors. Bottom panel reports the average losses, according to the three loss functions in the first column. Sq. Frobenius stands for Squared
Frobenius and RMSE for Root Mean Squared Error. The reported averages for the Euclidean, Squared Frobenius, and RMSE have been
multiplied by 1000, 1000, and 10, respectively. Shades of gray denote inclusion in the SSM at significance level α = 0.10. LL(1) and LL(2)
report the LL test statistics, whose null is of no conditional heteroscedasticity. *, ** and *** represent the significance at levels 10%, 5%, 1%,
respectively. Estimation period: June 2016 to December 2020, number of daily observations: 1671. Evaluation period: January 2017 to
December 2020, number of daily observations: 1457.
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Figure 4. Plots of volatilities (main diagonal) and correlations for the model M4: DAGM for the univariate part and cDCC
for the correlations. Sample period: January 2017 to December 2020. Number of daily observations: 1457.
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Figure 5. Plots of volatilities (main diagonal) and correlations for the model M5: DAGM for the univariate part and
DCC-MIDAS for the correlations. Red lines represent the long-run correlation. Sample period: January 2017 to December
2020. Number of daily observations: 1457.
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Figure 6. Plots of volatilities (main diagonal) and correlations for the model M6: DAGM for the univariate part and DECO for the
correlations. Sample period: January 2017 to December 2020. Number of daily observations: 1457.
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The last part of our analysis concerns the economic evaluation of the models. In
particular, starting from each conditional covariance matrix Hi,t, we calculated the optimal
(daily) weights minimizing the portfolio variance (Markowitz 1952), as has also been done
by Symitsi and Chalvatzis (2019), where the portfolio investigated consists of Bitcoin and
other asset classes. Figure 7 summarizes the patterns of the estimated weights across
time, cryptocurrencies, and models. Similar to Cipollini et al. (2021), each bar in the figure
represents the rescaled summation of the daily weights by month. Overall, it can be noted
that the GMV portfolio is mainly made up of Bitcoin for the parametric models. In other
words, Bitcoin has the largest importance relative to the other digital currencies in the
GMV portfolio. The optimal weights are then used for obtaining the portfolio return and
variance. In particular, we calculated the VaR at τ level using the following parametric
(Jorion 1997) approach:

VaRi,t(τ) = µi,t + σi,tG−1
ν (τ)

√
ν− 2

ν
(15)

where µi,t is the conditional mean of the portfolio, σi,t is the portfolio standard deviation,
and G−1

ν is the inverse of Student’s t cumulative density function with ν degrees of freedom.
Note that in Equation (15), we use a Student’s t distribution to explicitly take into account
the fat tails of the cryptocurrencies. Finally, each VaR series coming from models M1 to
M7 is evaluated through the MCS procedure using the following quantile loss (QL), as in
González-Rivera et al. (2004):

QL(τ) =
(

τ − 1(rp
i,t<V̂aRi,t(τ))

)(
rp

i,t − V̂aRi,t(τ)
)

, (16)

where rp
i,t is the portfolio return and 1(·) is an indicator function that is equal to one if the

argument is true. The estimations of the degrees of freedom ν, as well as the results of
the MCS tests, are reported in Table 6. The VaR series are calculated according to three
different τ levels: 0.01, 0.05, and 0.10. The estimated degrees of freedom ν are very low,
which is in agreement with the fat tails reported in Table 2. Interestingly, all the models
belonging to the SSM as described by the statistical evaluation are again included in the
SSM. To conclude, the inclusion of the Google trends in the univariate part of the DCC
specifications dramatically improves the performance of the models from statistical and
economic points of view.
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Figure 7. Plots of weights’ importance by month, according to the GMV portfolio.
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Table 6. Portfolio evaluation.

M1 M2 M3 M4 M5 M6 M7

ν 2.224 2.249 2.204 2.369 2.380 2.368 2.199
QL(0.01) 0.208 0.2 0.209 0.185 0.183 0.184 0.904
QL(0.05) 0.576 0.562 0.584 0.542 0.537 0.542 1.201
QL(0.10) 0.803 0.788 0.813 0.781 0.776 0.783 1.323

Notes: Top panel reports the estimates for the degrees of freedom ν of the Student’s t distribution, used to
calculate the VaR series. Bottom panel reports the average QL losses, according to the three τ levels in the first
column. Shades of gray denote inclusion in the SSM at significance level α = 0.10. Estimation period: June 2016 to
December 2020, number of daily observations: 1671. Evaluation period: January 2017 to December 2020, number
of daily observations: 1457.

4. Conclusions

The literature on financial econometrics has recently shown an enormous interest in
cryptocurrencies. The first and most well-known digital currency, Bitcoin, dates back to
2009; today, thousands of cryptocurrencies are traded. From this aspect, cryptocurrencies
can be used for speculative or hedging purposes. For this reason, investigating the volatility
as well as the correlations of digital currencies appears to be extremely important. Although
there are several contributions concerning the cryptocurrencies’ single variability and co-
movements, the interdependencies of the daily cryptocurrencies potentially driven by
additional variables, observed at lower frequencies, still remain unexplored. This paper
aims to fill this gap. In particular, this work aims to estimate the conditional covariance
matrix for a panel of cryptocurrencies using some specifications belonging to the Dynamic
Conditional Correlation (DCC) class of models. The original contribution of this paper is
the inclusion of the monthly Google queries regarding the cryptocurrencies as an additional
volatility determinant in the DCC models’ univariate step. The inclusion of the monthly
Google searches in models where the dependent variable is observed daily took place
using the mixed-frequency proposed by Ghysels et al. (2007). In particular, for the first
time, the Double Asymmetric GARCH–MIDAS (Amendola et al. 2019) was inserted within
some DCC specifications. In doing so, the daily conditional covariance matrices also
depended on the additional MIDAS variable—that is, the (first difference of the) Google
trends. Once the time series of the conditional covariance matrices were obtained, statistical
and economic evaluations of all the specifications employed were carried out. Both the
evaluations were based on the selection of the set of superior models (SSM) according to
the Model Confidence Set (MCS, Hansen et al. 2011) procedure. The statistical evaluation
used robust (Laurent et al. 2013) loss functions. The economic evaluation was based
on the estimation of the global minimum variance (GMV) portfolio, and then, on the
analysis of the resulting Value-at-Risk (VaR). In terms of results, we found that the mixed-
frequency approach provided good performances from both the statistical and economic
perspectives. In particular, only the models employing the monthly Google searches
belonged to the SSM. Instead, the excluded models were the DCC-based models using the
simple GARCH specification for the univariate step and the RiskMetrics specification. The
time-varying correlations of the models from the SSM showed that all the cryptocurrencies
co-move together, mainly in the last part of the considered sample (June 2016–December
2020). In particular, the estimated correlations generally varied between 0.6 and 0.8,
mainly in 2020. The economic analysis largely confirmed what was found in the statistical
evaluation. In greater detail, the parametric approach was used to calculate the VaR of
the GMV portfolio, with specific attention paid to the fat tails of the cryptocurrencies.
Then, the VaR measures were evaluated through the MCS procedure according to the
quantile loss (González-Rivera et al. 2004). Interestingly, again all the models based on a
mixed-frequency approach entered the SSM. Last but not least, Bitcoin was the digital
currency with the largest share in the considered GMV portfolio, independently of the
specifications adopted.
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Future research could enlarge the set of assets under investigation by including, for
instance, standard currencies as well. Moreover, using different portfolio strategies could
also be extremely useful. Furthermore, adopting some rolling forecasting schemes would
be interesting. Finally, the multivariate models could also include specifications able to deal
with the typical skewness and high kurtosis of the cryptocurrencies, such as the copula-
based multivariate GARCH model of Lee and Long (2009) or the approach proposed by
Paolella and Polak (2015) and then generalized in Paolella et al. (2019).
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Abbreviations
The following abbreviations are used in this manuscript:

DCC Dynamic conditional correlation model (Engle 2002)
cDCC Corrected DCC (Aielli 2013)
DECO Dynamic equicorrelation (Engle and Kelly 2012)
RM RiskMetrics
MIDAS Mixing-Data Sampling
DAGM Double Asymmetric GARCH–MIDAS model (Amendola et al. 2019)
M1 GARCH for the univariate part and cDCC for the correlations
M2 GARCH for the univariate part and DCC-MIDAS for the correlations
M3 GARCH for the univariate part and DECO for the correlations
M4 DAGM for the univariate part and cDCC for the correlations
M5 DAGM for the univariate part and DCC-MIDAS for the correlations
M6 DAGM for the univariate part and DECO for the correlations
M7 RiskMetrics
SSM Set of Superior Models
MCS Model Confidence Set (Hansen et al. 2011)
GMV Global Minimum Variance

Note
1 In the case of the RiskMetrics model, the covariance matrix is calculated and not estimated.
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