
econometrics

Article

Inference Using Simulated Neural Moments

Michael Creel 1,2

����������
�������

Citation: Creel, Michael. 2021.

Inference Using Simulated Neural

Moments. Econometrics 9: 35.

https://doi.org/10.3390/

econometrics9040035

Academic Editor: Fredj Jawadi

Received: 25 February 2021

Accepted: 18 September 2021

Published: 24 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Economics and Economic History and MOVE, Universitat Autònoma de Barcelona,
08193 Bellaterra, Spain; michael.creel@uab.cat

2 Barcelona School of Economics, 08005 Barcelona, Spain

Abstract: This paper studies method of simulated moments (MSM) estimators that are implemented
using Bayesian methods, specifically Markov chain Monte Carlo (MCMC). Motivation and theory for
the methods is provided by Chernozhukov and Hong (2003). The paper shows, experimentally, that
confidence intervals using these methods may have coverage which is far from the nominal level,
a result which has parallels in the literature that studies overidentified GMM estimators. A neural
network may be used to reduce the dimension of an initial set of moments to the minimum number
that maintains identification, as in Creel (2017). When MSM-MCMC estimation and inference is
based on such moments, and using a continuously updating criteria function, confidence intervals
have statistically correct coverage in all cases studied. The methods are illustrated by application to
several test models, including a small DSGE model, and to a jump-diffusion model for returns of the
S&P 500 index.

Keywords: neural networks; Laplace-type estimators; approximate Bayesian computing; simulated
moments; jump diffusion

1. Introduction

It has long been known that classical inference methods based on first-order asymp-
totic theory, when applied to the generalized method of moments estimator, may lead
to unreliable results, in the form of substantial finite sample biases and variances, and
incorrect coverage of confidence intervals, especially when the model is overidentified
(Donald et al. 2009; Hall and Horowitz 1996; Hansen et al. 1996; Tauchen 1986). In another
strand of the literature, Chernozhukov and Hong (2003) introduced Laplace-type estima-
tors, which allow for estimation and inference with classical statistical methods (those
which are defined by optimization of an objective function) to be done by working with
the elements of a tuned Markov chain, so that potentially difficult or unreliable steps such
as optimization or computation of asymptotic standard errors, etc., may be avoided. A
third important strand of literature is simulation-based estimation. The strands of moment-
based estimation, simulation, and Laplace-type methods meet in certain applications. The
code by Gallant and Tauchen (Gallant and Tauchen 2010) for efficient method of moments
estimation (Gallant and Tauchen 1996), which has been used in numerous papers, is an
example. Another is Christiano et al. (2010) (see also Christiano et al. 2016), which proposes
a Laplace-type estimation methodology that uses simulated moments which are defined in
terms of impulse response functions for estimation of macroeconomic modes. Very similar
methodologies may be found in the broad Approximate Bayesian Computing literature,
some of which uses MCMC methods and criteria functions that involve simulated moments
(e.g., Marjoram et al. 2003).

Given the uneven performance of inference in classical GMM applications, one may
wonder how reliable are inferences made using the combination of Laplace-type methods
and simulated moments. Henceforth, this combination is referred to as MSM-MCMC,
because the specific Laplace-type method considered here is to use the criteria function
of the MSM estimator to define the likelihood that determines acceptance/rejection in

Econometrics 2021, 9, 35. https://doi.org/10.3390/econometrics9040035 https://www.mdpi.com/journal/econometrics

https://www.mdpi.com/journal/econometrics
https://www.mdpi.com
https://orcid.org/0000-0002-0944-8405
https://doi.org/10.3390/econometrics9040035
https://doi.org/10.3390/econometrics9040035
https://doi.org/10.3390/econometrics9040035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/econometrics9040035
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com/article/10.3390/econometrics9040035?type=check_update&version=2

Econometrics 2021, 9, 35 2 of 15

Metropolis-Hastings MCMC, as was the focus of Chernozhukov and Hong (2003). This
paper provides experimental evidence that confidence intervals derived from such esti-
mators may have poor coverage when the moments over-identify the parameters, a result
that parallels the above cited results for classical GMM estimators. It goes on to provide
evidence that the simulated neural moments that were introduced in Creel (2017), which
are just-identifying, when used with MSM-MCMC techniques, cause inferences to become
much more reliable, especially when the continuously updating version of the GMM crite-
ria is used. This paper is a continuation of the line of research in Creel (2017), its main new
contribution being the experimental confirmation that inferences based upon simulated
neural moments are reliable. The paper concludes with an example that uses the methods
to estimate a jump-diffusion model for returns of the S&P 500 index.

Section 2 reviews how Laplace-type methods may be used with simulated moments,
giving the MSM-MCMC combination, and Section 3 then discusses how neural networks
may be used to reduce the dimension of the moment conditions. Section 4 presents four test
models, and Section 5 gives results for these models. Section 6 illustrates the methods in the
context of an empirical analysis of a model of more complexity, concretely, a jump-diffusion
model for financial returns, and Section 7 summarizes the conclusions. The SNM archive
(release version 1.2) contains all the code and results reported in this paper. These results
were obtained using the Julia package SimulatedNeuralMoments.jl (release version 0.1.0),
which provides a convenient way to use the methods for other research projects.

2. Simulated Moments, Indirect Likelihood, and MSM-MCMC Inference

This section summarizes results from the part of the simulation-based estimation liter-
ature that bases estimation on a statistic, including (Gallant and Tauchen 1996; Gouriéroux
et al. 1993; McFadden 1989; Smith 1993), among others, which is reviewed in (Jiang and
Turnbull 2004). Suppose there is a model M(θ) which generates data from a probability
distribution P(θ) which depends on the unknown parameter vector θ. M(θ) is fully known
up to θ, so that we can make draws of the data from the model, given θ. Let Y = Y(θ) be a
sample drawn at the parameter vector θ, where θ ∈ Θ ⊂ Rk and Θ is a known parameter
space. Suppose we have selected a finite-dimensional statistic Z = Z(θ) = Z(Y(θ)) upon
which to base estimation, and assume that the statistic satisfies a central limit theorem,
uniformly, for all values of θ of interest:

√
n(Z− EθZ)→d N(0, Σ̄(θ)) (1)

Let Zs(θ) = Z(Ys(θ)) be the statistic evaluated using an artificial sample drawn from
the model at the parameter value θ. This statistic has the same asymptotic distribution
as does Z(θ), and furthermore, the two statistics are independent of one another. With S
such simulated statistics, define m(θ) = Z(θ)− S−1 ∑s Zs(θ) and V̄(θ) = (1 + S−1)Σ̄(θ).
We can easily obtain √

nm(θ)→d N(0, V̄(θ)). (2)

Now, suppose we have a real sample which was generated at the unknown true
parameter value θ0, and let Ẑ be the associated value of the statistic. Define m̂(θ) = Ẑ−
S−1 ∑s Zs(θ). With this, and Equation (2), we can define the indirect likelihood function1

L = L(θ|Ẑ) =
∣∣∣2π ˆ̄V(θ)

∣∣∣−1/2
exp(−1

2
H) (3)

where

H = H(θ|Ẑ) = n · m̂(θ)T ˆ̄V−1(θ)m̂(θ), (4)

where ˆ̄V(θ) is a consistent estimate of V̄(θ).

https://github.com/mcreel/SNM
https://github.com/mcreel/SimulatedNeuralMoments.jl

Econometrics 2021, 9, 35 3 of 15

To estimate V̄(θ), one possibility is to use a fixed sample-based estimate that does not
rely on an estimate of θ0 (see, for example, Christiano et al. 2010, 2016). Another possibility
is to (1) compute the estimate ˆ̄Σ(θ) of the covariance matrix in expression (1) as the sample
covariance of R draws of

√
nZs(θ):

ˆ̄Σ(θ) =
1
R

R

∑
r=1

(
√

nZr(θ)−M)(
√

nZr(θ)−M)′, (5)

where M = 1
R ∑r

√
nZr(θ) is the sample mean of the draws, and then (2) multiply the

result by 1 + S−1 to obtain the estimate

ˆ̄V(θ) = (1 + S−1) ˆ̄Σ(θ). (6)

This estimator may be used in a continuously updating fashion, by updating ˆ̄V(θ) in
Equations (3) or (4) every time the respective function is evaluated. Alternatively, if we obtain
an initial consistent estimator of θ0, then ˆ̄V(θ) can be computed at this estimate, and kept
fixed in subsequent computations, in the usual two-step manner. Please note that if a fixed
covariance estimator is used, then the maximizer of L is the same as the minimizer of H.

Extremum estimators may be obtained by maximizing log L, or minimizing H. Laplace-
type estimators, as defined by Chernozhukov and Hong (2003), may be defined by setting
their general criteria function, Ln(θ), as defined in their Section 3.1, to either log L, or
− 1

2 H. Once this is done, then the practical methodology is to use Markov chain Monte
Carlo (MCMC) methods to draw a chain C = {θr}, r = 1, 2, ..., R, given the sample
statistic Ẑ, where acceptance/rejection is determined using the chosen Ln(θ), along with
a prior, and standard proposal methods2. This specific version of Laplace-type methods
is referred to as MSM-MCMC in this paper. This paper will rely directly on the theory
and methods of Chernozhukov and Hong (2003), as MSM-MCMC falls within the class
of methods they study. In the following, a primary use of the Chernozhukov and Hong
(2003) methodology will be in order to obtain confidence intervals. For a function f (θ),
Theorem 3 of Chernozhukov and Hong (2003) proves that a valid confidence interval can
be obtained using the quantiles of { f (θr)}r=1,2,..R, based on the final chain C = {θr}, r =
1, 2, ..., R. For example, a 95% confidence interval for a parameter θj is given by the interval
(Qθj(0.025), Qθj(0.975)), where Qθj(τ) is the τth quantile of the R values of the parameter
θj in the chain C.

3. Neural Moments

The dimension of the statistics used for estimation, Z, can be made minimal (equal to
the dimension of the parameter to estimate, θ) by filtering an initial set of statistics, say,
W, through a trained neural net. Details of this process are explained in Creel (2017) and
references cited therein, and the process is made explicit in the code which accompanies this
paper3. A summary of this process is: Suppose that W is a p vector of statistics W = W(Y),
with p ≥ k, where k = dim θ. We may generate a large sample of (W, θ) pairs, following:

1. Draw θs from the parameter space Θ, using some prior distribution.
2. Draw a sample Ys from the model M(θ) at θs.
3. Compute the vector of raw statistics W(Ys).

We can repeat this process to generate a large data set {θs, Ws}, s = 1, 2, ..., S, which
can be used to train a neural network which predicts θ, given W. This process can be
done without knowledge of the real sample data, and can in fact be done before the
real sample data are gathered. The prediction from the net will be of the same dimen-
sion as θ, and, according to results collectively known as the universal approximation
theorem, will be a very accurate approximation to the posterior mean of θ conditional
on W (Hornik et al. 1989; Lu et al. 2017). The output of the net may be represented as
θ̂ = f (W, φ̂), where f (W, φ) : Rp → Rk is the neural net, with parameters φ, that takes

Econometrics 2021, 9, 35 4 of 15

as inputs the p statistics W, and has k = dim θ outputs. The parameters of the net, φ,
are adjusted using standard training methods from the neural net literature to obtain the
trained parameters, φ̂. Then we can think of θ̂ = f (W, φ̂) as a k−dimensional statistic
which can be computed essentially instantaneously once provided with W. We will use this
statistic θ̂ as the Z of the previous section. Because the statistic is an accurate approximation
to the posterior mean conditional on W (supposing the net was well trained), it has two
virtues: it is informative for θ (supposing that the initial statistics W contain information
on θ) and it has the minimal dimension needed to identify θ. From the related GMM
literature, GMM methods are known to lead to inaccurate inference when the dimension of
the moments is large relative to the dimension of the parameter vector (Donald et al. 2009).
Use of a neural net as described here reduces the dimension of the statistic to the minimum
required for identification.

When the statistic Z is the output of a neural net f (W, φ), where the parameter vector
of the net, φ, can have a very high dimension (hundreds or thousands of parameters are not
uncommon), the simulated likelihood of Equation (3) will be a wavy function, with many
local maxima. This will occur even if the net is trained using regularization methods. Because
of this waviness, gradient-based methods will not be effective when attempting to maximize
log L or to minimize H (Equations (3) and (4)), and attempts to compute the covariance matrix
of the estimator that rely on derivatives of the log likelihood function will also be unlikely to
succeed. However, derivative free methods can be used to compute extremum estimators, to
obtain point estimators or to initialize a MCMC chain, and the simulation-based estimator of
the covariance matrix Σ̄(θ) of Equation (1) discussed in the previous section does not depend
on derivatives. A major motivation of using Laplace-type estimators in the first place is to
overcome problems of local extrema, as Chernozhukov and Hong (2003) emphasize. It is
worth noting that the output of the net evaluated at the real sample statistic, θ̂, will also
provide an excellent starting value for computing extremum estimators, or for initializing
a MCMC chain. Likewise, the covariance estimator of Equation (6) can be used to define a
random walk multivariate normal proposal density for MCMC, by drawing the trial value
θs+1 from N(θs, ˆ̄V), where θs is the current value of the chain. Experience with this proposal
density, as reported below, is that it is easy to tune, by scaling the covariance by a scalar, to
achieve an acceptance rate withing the desired limits4 .

Creel (2017) used neural moments to compute a Laplace-type estimator, similarly to
what is done here. That paper used nonparametric regression quantiles applied to the
set of draws from the Laplace-type posterior to compute confidence intervals, and the
posterior draws were generated by a procedure similar to sequential Monte Carlo, rather
than MCMC. Additionally, the metric used for selection of particles was different from the
GMM criteria, which were used here. The use of nonparametric regression quantiles is
very costly to study by Monte Carlo. Thus, this paper focuses on straightforward use of
the methods that Chernozhukov and Hong (2003) focus on: traditional MCMC using the
GMM criteria function, with confidence intervals computed using the direct quantiles from
the posterior sample. These simplifications give a simpler and more tractable procedure
that can reasonably be studied and verified by Monte Carlo. For theoretical support, we
can note that the methods fall within the class of methods studied by Chernozhukhov and
Hong, with the only innovation being the use of statistics filtered through a previously
trained neural net. The neural nets used here consist of a finite series of nonstochastic
nonlinear mappings to the (−1, 1) interval, followed by a final linear transformation. As
such, the conjecture that the final statistics that are the output of the net follow a uniform
law of large numbers and a uniform central limit theorem seems reasonable, but this is not
formally verified in this paper.

4. Examples

This section presents example models that are used to investigate the performance of
the proposed methods. For all models, the code used (for the Julia language) is available in
an archive5, release version 1.2, where the details of each example may be consulted. The

Econometrics 2021, 9, 35 5 of 15

example models also serve as templates that may be used to apply to proposed methods to
models of the reader’s interest: one simply needs to provide similar functions to what is
found in the directory for each example, for the model of interest. These are, fundamentally,
(1) a prior from which to draw the parameters; (2) code to simulate the model given the
parameter value, and finally, (3) code to compute the initial statistics, W, given the data
generated from the model. For the examples, uniform and fairly uninformative priors were
used in all cases. The details regarding priors and statistics, W, may be consulted in the
links provided, below.

4.1. Stochastic Volatility

The simple stochastic volatility (SV) model is

yt = φ exp(ht/2)εt

ht = ρht−1 + σut

where εt and ut are independent standard normal random variables. We use a sample size
of 500 observations, and the true parameter values are θ0 = (φ0, ρ0, σ0) = (0.692, 0.9, 0.363).
These parameter values have been chosen to facilitate comparison with results of several
previous studies that have used the same SV model to check properties of estimators. For
estimation, 11 statistics are used to form the initial set, W, which include moments of y
and of |y|, as well as the estimated parameters of a heterogeneous autoregressive (HAR)
auxiliary model (Corsi 2009) fit to |y|.6

4.2. ARMA

The next example is a simple ARMA(1, 1) model

xt = αxt−1 + ft − β ft−1

ft ∼ I IN(0, σ2),

with true values θ0 = (α0, β0, σ2
0) = (0.95, 0.5, 1.0). The sample size is n = 300. The 13

statistics used to define the initial set, W, include sample moments and correlations, OLS
estimates of an AR(1) auxiliary model fit to xt, as well as another AR(1) model fit to the
residuals of the first model, plus partial autocorrelations of xt.7

4.3. Mixture of Normals

For the mixture of normals example, the variable y is drawn from the distribution
N(µ1, σ2

1) with probability p and from N(µ1 − µ2, σ2
1 +σ2

2) with probability 1− p. Samples
of 1000 observations are drawn. The true parameter values are θ0 = (µ1, σ1, µ2, σ2, p) =
(1.0, 1.0, 0.2, 1.8, 0.4), and the prior restricts all parameters to be positive. Thus, the parame-
terization and the prior together impose that the first component has a larger mean and a
lower variance than does the second component, in order to ensure identification. Addi-
tionally, the probability that either component is sampled is restricted to be at least 0.05.
The 15 auxiliary statistics are the sample mean, standard deviation, skewness, kurtosis,
and 11 quantiles of y.8

4.4. DSGE Model

The previous models are all simple, quickly simulated, and with relatively few pa-
rameters. This section presents a model which is more representative of an actual research
problem. The model is a simple dynamic stochastic general equilibrium model with two
shocks:

Econometrics 2021, 9, 35 6 of 15

At the beginning of period t, the representative household owns a given amount
of capital (kt), and chooses consumption (ct), investment (it) and hours of labor (nt) to
maximize expected discounted utility

Et

∞

∑
s=0

βs

(
c1−γ

t+s
1− γ

+ (1− nt+s)ηtψ

)

subject to the budget constraint ct + it = rtkt + wtnt, available time 0 ≤ nt ≤ 1, and the
accumulation of capital kt+1 = it + (1− δ)kt, each of which must hold for all t. The shock,
ηt, that affects the desirability of leisure relative to consumption, evolves according to
ln ηt = ρη ln ηt−1 + σηεt.

The single competitive firm maximizes profits yt − wtnt − rtkt from production of the
good (yt), taking wages (wt) and the interest rate (rt) as given, using the constant returns to
scale technology

yt = kα
t n1−α

t zt. (7)

The technology shock, zt, also follows an AR(1) process in logarithms: ln zt = ρz ln zt−1 +
σzut. The innovations to the preference and technology shocks, εt and ut, are independent
standard normal random variables. Production (yt) can be allocated by the consumer to
consumption or investment: yt = ct + it. The consumer provides capital and labor to the
firm, and is paid at the competitive rates rt and wt, respectively.

From this model, samples of size 160, which simulate 40 years of quarterly data, are
drawn, given the 9 parameters α, β, γ, δ, ρz, σz, ρη , ση and ψ. The variables available for
estimation are y, c, n, w, and r. It is possible to recover the parameters α and δ exactly, given
the observable variables, so these two parameters are set to fixed values, and the remaining
7 parameters are estimated. To facilitate setting priors, the steady state value of hours (n) is
estimated instead of ψ, which may then be recovered. For estimation, 45 statistics are used,
including means and standard deviations of the observable variables, and estimates from
auxiliary regressions9.

5. Monte Carlo Results

This section reports results for MSM-MCMC estimation of each of the test models,
using the GMM-like criteria function H (Equation (4)) as the Ln of Chernozhukov and
Hong (2003). Results using the criterion L (Equation (3)) were qualitatively very similar
in all cases where the two versions were computed, and are thus not reported10. In all
cases, 500 Monte Carlo replications were done. For all the test models, the number of
artificial samples used to train the neural net was 20,000 times the number of parameters
of the model. This is actually a fairly small number, given that generating the samples and
training the nets is an operation that takes only 10 min or less for the test models, other
than the DSGE model. The reason that a larger number of samples was not used is that it
was desired to obtain results that may be more relevant for cases where it is more costly to
simulate from the model, as is the case of the jump diffusion model studied below.

First, we report results for the SV and ARMA models, where MSM-MCMC estimators
were computed using both the overidentifying statistic, W, and the exactly identifying
neural moments, Z. For the plain overidentifying statistics, the results are computed using
the CUE GMM criteria. For the neural moments, both the two-step and the CUE criteria
were used. Table 1 reports RMSE. The three versions of the MSM-MCMC estimators lead to
similar RMSEs, generally speaking. The version that uses the raw statistics has somewhat
higher RMSE than do the versions based on the neural statistics, Z, in most cases, but the
differences are not important.

Tables 2–4 address the main point of the paper, inference, reporting confidence in-
terval coverage, which is the proportion of times that the true parameter lies inside the
computed confidence interval. Critical coverage proportions that would lead one to reject
correct coverage may be computed from the binomial(500, p) distribution, where p is the
significance level associated with the respective confidence interval. These critical coverage

Econometrics 2021, 9, 35 7 of 15

proportions are 0.864 and 0.932 for 90% intervals, 0.924 and 0.974 for 95% intervals, and
0.976–1.0 for 99% intervals. Looking at the column labeled W (CUE) in these tables, we
see that the results on the unreliability of inferences for overidentified GMM estimators,
which were reviewed in the Introduction, carry over to Bayesian MCMC methods, at least
for the models considered. In all entries but one, the coverage is significantly different
from correct coverage, erring on the side of being too low, and, in many cases, considerably
so. This implies that the probability of Type-I error is higher than the associated nominal
significance level. For the neural net statistics, Z, coverage is improved. For the two-step
version, coverage is in all cases closer to the correct proportion than when the raw statistics,
W, are used. In several cases, correct coverage is also statistically rejected, but now, the
error is on the side of conservative confidence intervals, which contain the true parameters
more often than the nominal coverage. In this case, the probability of Type-I error will be
less than the nominal significance level associated with the confidence intervals. For the
CUE version that uses the neural statistics, Z, coverage is very good, and is close to the
nominal proportion in all cases. Statistically correct coverage is never rejected when neural
moments and the CUE criteria are used.

Table 1. RMSE for SV and ARMA models, using raw (W) or neural net (Z) statistics.

Model Parameter True Value W (CUE) Z (Two-Step) Z (CUE)

SV
φ 0.692 0.123 0.064 0.076
ρ 0.90 0.086 0.082 0.086
σ 0.363 0.138 0.105 0.105

ARMA
α 0.95 0.030 0.028 0.047
β 0.5 0.078 0.067 0.068
σ2 1.0 0.099 0.091 0.084

Table 2. 90% confidence interval coverage for SV and ARMA models, using raw (W) or neural net
(Z) statistics. Correct coverage rejected when outside 0.864–0.932.

Model Parameter W (CUE) Z (Two-Step) Z (CUE)

SV
φ 0.876 0.884 0.912
ρ 0.732 0.976 0.910
σ 0.762 0.956 0.928

ARMA
α 0.786 0.988 0.916
β 0.814 0.954 0.918
σ2 0.808 0.920 0.912

Table 3. 95% confidence interval coverage for SV and ARMA models, using raw (W) or neural net
(Z) statistics. Correct coverage rejected when outside 0.924–0.974.

Model Parameter W (CUE) Z (Two-Step) Z (CUE)

SV
φ 0.916 0.938 0.954
ρ 0.796 0.990 0.944
σ 0.824 0.976 0.958

ARMA
α 0.838 0.994 0.966
β 0.856 0.984 0.942
σ2 0.880 0.966 0.954

Econometrics 2021, 9, 35 8 of 15

Table 4. 99% confidence interval coverage for SV and ARMA models, using raw (W) or neural net
(Z) statistics. Correct coverage rejected when outside 0.976–1.000.

Model Parameter W (CUE) Z (Two-Step) Z (CUE)

SV
φ 0.936 0.968 0.990
ρ 0.848 0.998 0.978
σ 0.888 0.994 0.986

ARMA
α 0.898 1.000 0.988
β 0.916 0.998 0.986
σ2 0.920 0.994 0.990

For the other two test models, MN and DSGE, results were computed only for the
neural moments, as the results for the SV and ARMA models, as well as the results from
the GMM literature, already indicated that inferences based on the raw statistics, W, were
very likely to be unreliable. Table 5 has the RMSE results for the MN and DSGE models.
We can see that the use of the two-step or CUE criteria makes little difference for RMSE,
in common with the above results for the SV and ARMA models. Tables 6–8 hold the
confidence interval coverage results for these two models. Again, the intervals based on
the two-step criteria often contain the true parameters more often than they should. The
coverage of intervals based on the CUE criteria is very good in all cases, and is never
statistically significantly different from correct.

In summary, this section has shown that confidence intervals based on raw overidenti-
fying statistics may be unreliable, rejecting the true parameter values more often than they
should. Intervals based on exactly identifying neural moments are more reliable, in general.
When the two-step version is used, the intervals are often too broad, so the probability of
Type-I error is less than what it should be, and power to reject false hypotheses is lower
than it could be. When the CUE version is used, coverage is very accurate: correct coverage
was never rejected in any of the cases.

It is to be noted that the CUE version is computationally more demanding than is
the two-step version, as the weight matrix must be estimated at each MCMC trial vector.
Each of these estimations requires a reasonably large number of simulations to be drawn,
to estimate the covariance matrix accurately. If a researcher is primarily concerned with
limiting the probability of Type-I error, and is willing to accept a loss of power to accelerate
computations, then the two-step version might be preferred. If one is willing to accept
more costly computations, all the examples considered here indicate that the CUE version
will lead to accurate confidence intervals.

Table 5. RMSE for MN and DSGE models.

Model Parameter True Value Z (Two-Step) Z (CUE)

MN

µ1 1.0 0.019 0.018
σ1 0.2 0.087 0.089
µ2 0.0 0.021 0.020
σ2 2.0 0.064 0.065
p 0.4 0.024 0.025

DSGE

β 0.99 0.001 0.000
γ 2.00 0.083 0.085
ρz 0.9 0.009 0.008
σz 0.02 0.001 0.001
ρη 0.7 0.050 0.055
ση 0.01 0.001 0.001
¯nss 1/3 0.001 0.001

Econometrics 2021, 9, 35 9 of 15

Table 6. 90% confidence interval coverage for MN and DSGE models. Correct coverage rejected
when outside 0.864–0.932.

Model Parameter Z (Two-Step) Z (CUE)

MN

µ1 0.920 0.914
σ1 0.934 0.922
µ2 0.906 0.918
σ2 0.934 0.920
p 0.922 0.908

DSGE

β 0.950 0.914
γ 0.968 0.920
ρz 0.928 0.928
σz 0.910 0.892
ρη 0.892 0.890
ση 0.972 0.906
¯nss 0.924 0.902

Table 7. 95% confidence interval coverage for MN and DSGE models. Correct coverage rejected
when outside 0.924–0.974.

Model Parameter Z (Two-Step) Z (CUE)

MN

µ1 0.956 0.962
σ1 0.976 0.962
µ2 0.944 0.952
σ2 0.964 0.958
p 0.960 0.958

DSGE

β 0.972 0.962
γ 0.990 0.962
ρz 0.960 0.958
σz 0.952 0.946
ρη 0.950 0.938
ση 0.996 0.952
¯nss 0.966 0.956

Table 8. 99% confidence interval coverage for MN and DSGE models. Correct coverage rejected
when outside 0.976–1.000.

Model Parameter Z (Two-Step) Z (CUE)

MN

µ1 0.990 0.990
σ1 0.996 0.992
µ2 9.986 0.984
σ2 0.992 0.994
p 0.996 0.986

DSGE

β 0.996 0.990
γ 1.000 0.986
ρz 0.976 0.980
σz 0.986 0.990
ρη 0.990 0.982
ση 1.000 0.992
¯nss 0.988 0.988

Econometrics 2021, 9, 35 10 of 15

6. Application: A Jump-Diffusion Model of S&P 500 Returns

The previous examples are mostly small models that are not costly to simulate, except
for the DSGE example. As an example of a more computationally challenging model that
may be more representative of actual research problems, this section presents results for
estimation of a jump-diffusion model of S&P 500 returns. Solving and simulating11 the
model for each MCMC trial parameter acceptance/rejection decision takes about 15 s, when
the CUE criteria are used, so training a net and estimation by MCMC is somewhat costly,
requiring approximately 2.5 days to complete using a moderate power workstation12 and
threads-based parallelization, where possible. This example is intended to show that the
methods are feasible for moderately complex models.

The jump-diffusion model is

dpt = µdt +
√

exp htdW1t + JtdNt

dht = κ(α− ht) + σdW2t

where pt is 100 times log price, ht is log volatility, Jt is jump size, and Nt is a Poisson process
with jump intensity λ0. W1t and W2t are two standard Brownian motions with correlation
ρ. When a jump occurs, its size is Jt = aλ1

√
exp ht, where a is 1 with probability 0.5 and

−1 with probability 0.5. Therefore, jump size depends on the current standard deviation,
and jumps are positive or negative with equal probability. Log price, pt, is simulated using
10-minute tics, and the observed log price adds a N(0, τ2) measurement error to pt, when τ
is greater than zero. From this model, 1000 daily observations on returns, realized volatility
(RV), and bipower variation (BV) are generated. Because log price has been scaled by 100 in
the parameterization of the model, returns, computed as the first difference of pt at the close
of trading days, are directly in percentage terms. Both RV and BV are informative about
volatility , and, because BV is somewhat robust to jumps, while RV is not, the difference
between the two can help to identify the frequency and size of jumps (Barndorff-Nielsen
and Shephard 2002). The model is simulated on a continuous 24-hour basis, and returns
are computed using the change in daily log closing price, for trading days only. Overnight
periods and weekends are simulated, but returns, RV and BV are recorded only at the
close of trading days. In summary, the seven parameters are θ = (µ, κ, α, σ, ρ, λ0, λ1, τ),
and simulated data consists of 1000 daily observations on returns, RV and BV. The model
studied here is quite similar to that studied in (Creel 2017; Creel and Kristensen 2015),
except that the drift process is simplified to be constant, and the jump process is modeled
somewhat differently, with constant intensity, and with the magnitude of a jump depending
on the current instantaneous volatility. These changes were motivated by the results of the
previous papers, and by the better tractability of the present specification.

The raw statistics, W, which are used to train the net and to do estimation, are a
combination of coefficients from auxiliary regressions between the three observed variables,
summary statistics, and functions of quantiles of the variables. The details of the 25 statistics
are found in the file JDlib.jl (this same file also gives details of the priors, which are uniform
over fairly broad supports, for all parameters). The neural net was fit using 160,000 draws
from the prior to generate the training and testing data. The importance of each of the
statistics can be assessed by examining the maximal absolute weights on each of the raw
statistics in the first layer of the neural net, as is discussed in Creel (2017). These may be
seen in Figure 1. We see that most of the 25 statistics have a non-negligible importance,
which means that these statistics are contributing information to the fit of the neural net.
The output of the net is of dimension 8, the same as the dimension of the parameters
of the model. The net is combining the information of the overidentifying statistics to
construct a just-identifying vector of statistics, which is then used to define the moments
for MSM-MCMC estimation.

https://github.com/mcreel/SNM/blob/master/JD/JDlib.jl

Econometrics 2021, 9, 35 11 of 15

Figure 1. Importance of statistics, jump-diffusion model.

The model was fit, using MSM-MCMC and the CUE criteria, to S&P 500 data13 from
16 December 2013 to 4 December 2017, which is an interval of 1000 trading days, the same
as was used to train the neural net. The data may be seen in Figure 2, where we observe
typical volatility clusters and some jumps. For example, the Brexit drop of June 2016 is
clearly seen, and the more extreme spike in RV versus BV at this point illustrates the fact
that jumps can be identified by comparing the two. Over the sample period, this price index
climbed from about 1800 to 2600, which is approximately a 44% increase, or approximately
0.04% per trading day.

(a) Returns

Figure 2. Cont.

Econometrics 2021, 9, 35 12 of 15

(b) RV and BV

Figure 2. Plot of returns, RV and BV, S&P 500, 16 December 2013–5 December 2017.

Ten MCMC chains of length 1000 were drawn independently using threads-based
parallelization, for a final chain of length 10,000. The estimation results are in Figure 3,
which shows nonparametric plots of the marginal posterior density for each parameter,
along with posterior means and medians, and 90% confidence intervals defined by the
limits of the green areas. All posteriors are considerably more concentrated than are the
priors. Drift (µ) is concentrated around a value slightly below 0.04, which is consistent
with the average daily returns over the sample period. There is quite a bit of persistence
in volatility, as mean reversion, κ, is estimated to be quite low, concentrated around 0.125.
Leverage (ρ) is quite strong, concentrated around −0.85. The jump probability per day (λ0)
is concentrated around 0.014, and is significantly different from zero. Therefore, jumps are
a statistically important feature of the model. When a jump does occur, its magnitude (λ1)
is approximately 4 times the current instantaneous standard deviation, but this parameter
is not very well identified, as the posterior is quite dispersed. An interesting result is that τ,
the standard deviation of measurement error of log price, is concentrated around 0.0055. It
is not significantly different from zero at the 0.10 significance level, but it is close to being
so. From the Figure, one can see that Ho : τ < 0 would be very close to being rejected
at the 10% significance level. The parameterization of the model is such that there is no
measurement error when τ ≤ 0. Thus, it appears that it is a safer option to allow for
measurement error in the model, as the evidence suggests that it is very likely present, and
its omission could bias the estimates of the other parameters.

Econometrics 2021, 9, 35 13 of 15

(a) µ (b) κ

(c) α (d) σ

(e) ρ (f) λ0

(g) λ1 (h) τ

Figure 3. MCMC results for the jump-diffusion model of S&P 500 data. Posterior mean in blue,
posterior median in black. The green-yellow borders define the limits of a 90% confidence interval.

Econometrics 2021, 9, 35 14 of 15

7. Conclusions

This paper has shown, through Monte Carlo experimentation, that confidence intervals
based upon quantiles of a tuned MCMC chain may have coverage which is far from the
nominal level, even for simple models with few parameters. The results on poor reliability
of inferences when using overidentified GMM estimators, which were referenced in the
Introduction, carry over to a Bayesian version of overidentified MSM, implemented using
the Chernozhukov and Hong (2003) methodology, for the models considered in this paper.
The paper proposes to use neural networks to reduce the dimension of an initial set of
moments to the minimum number of moments needed to maintain identification, following
Creel (2017). When estimation and inference using the MSM-MCMC methodology is based
on neural moments, which are exactly identifying, confidence intervals have statistically
correct coverage in all cases studied by Monte Carlo, when the CUE version of MSM is
used. Thus, there seems to be no generic problems with the MSM-MCMC methodology
for the purpose of inference. A potential problem has to do with the choice of moments
upon which MSM is based. Too much over-identification results in poor inferences, for the
models studied. The use of neural moments solves this problem, by reducing the number
of moments, without losing the information that they contain. The fact that RMSE does
not rise when one moves from raw to neural moments illustrates that the neural moments
do not lose the information that is contained in the larger set. The methods have been
illustrated empirically by the estimation of a jump-diffusion model for S&P 500 data. An
interesting result of the empirical work is that measurement error in log prices is likely to
be present.

It is to be noted that the step of filtering moments though a neural net is very easy and
quick to perform using modern deep learning software environments. The software archive
that accompanies this paper provides a function for automatic training, requiring no human
intervention. It only requires functions that provide simulated moments computed using
data drawn from the model at parameter values drawn from the prior. Filtering moments
through a neural net gives an informative, minimal dimension statistic as the output.
This provides a convenient and automatic alternative to moment selection procedures.
Uninformative moments are essentially removed, and correlated moments are combined.

This paper has examined how inference using the MSM-MCMC estimator may be
improved when neural moments are used instead of a vector of overidentifying moments. It
seems likely that other inference methods which are used with simulation-based estimators,
such as Hamiltonian Monte Carlo and sequential Monte Carlo, among others, may be
made more reliable if neural moments are used, as dimension reduction while maintaining
relevant information is likely to be generally beneficial.

Funding: This research was funded by Government of Spain/FEDER, grant number PGC2018-
094364-B-I00, and Government of Catalonia, Agència de Gestió d’Ajuts Universitaris i de Recerca
grant number 2017-SGR-1765.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://realized.oxford-man.ox.ac.uk/data/download.

Conflicts of Interest: The author declares no conflict of interest.

Notes
1 These definitions and notation are loosely based on Jiang and Turnbull (2004).
2 It may be noted that methods other than MCMC may be used to generate the set of draws from the posterior, C. For example, one

might use sequential Monte Carlo. Point estimation and inference using C remains the same regardless of how C is generated.
3 The function which specifies and trains the neural net is MakeNeuralMoments.jl
4 See the file MCMC.jl for the details of how this proposal density is implemented.
5 https://github.com/mcreel/SNM
6 See the file SVlib.jl for details.
7 Details are in the file ARMAlib.jl.

https://realized.oxford-man.ox.ac.uk/data/download
https://github.com/mcreel/SimulatedNeuralMoments.jl/blob/main/src/MakeNeuralMoments.jl
https://github.com/mcreel/SimulatedNeuralMoments.jl/blob/main/src/MCMC.jl
https://github.com/mcreel/SNM
https://github.com/mcreel/SNM/blob/master/SV/SVlib.jl
https://github.com/mcreel/SNM/blob/master/ARMA/ARMAlib.jl

Econometrics 2021, 9, 35 15 of 15

8 Details are in the file MNlib.jl.
9 The details of the model and priors may be seen at CKlib.jl. The model is solved using third order projection, making use of the

SolveDSGE.jl package. The model is discussed in more detail in Chapter 14 of the document econometrics.pdf.
10 These results are available for the SV and ARMA models, as well as an unreported additional model, in the WP branch of the

GitHub archive.
11 The model is solved and simulated using the SRIW1 strong order 1.5 solver from the DifferentialEquations.jl package for the Julia

language.
12 The workstation has 4 Opteron 6380 processors, each with 4 physical cores, running at 2500 MHz.
13 The data source is the Oxford–Man Institute’s realized library, v. 0.3, https://realized.oxford-man.ox.ac.uk/images/oxfordman

realizedvolatilityindices.zip

References
Barndorff-Nielsen, Ole E., and Neil Shephard. 2002. Econometric analysis of realized volatility and its use in estimating stochastic

volatility models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 253–80. [CrossRef]
Chernozhukov, Victor, and Han Hong. 2003. An MCMC approach to classical estimation. Journal of Econometrics 115: 293–346.

[CrossRef]
Christiano, Lawrence J., Martin S. Eichenbaum, and Mathias Trabandt. 2016. Unemployment and business cycles. Econometrica 84:

1523–69. [CrossRef]
Christiano, Lawrence J., Mathias Trabandt, and Karl Walentin. 2010. Dsge models for monetary policy analysis. In Handbook of

Monetary Economics. Amsterdam: Elsevier, vol. 3, pp. 285–367.
Corsi, Fulvio. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7: 174–96.

[CrossRef]
Creel, Michael. 2017. Neural nets for indirect inference. Econometrics and Statistics 2: 36–49. [CrossRef]
Creel, Michael, and Dennis Kristensen. 2015. Abc of sv: Limited information likelihood inference in stochastic volatility jump-diffusion

models. Journal of Empirical Finance 31: 85–108. [CrossRef]
Donald, Stephen G., Guido W. Imbens, and Whitney K. Newey. 2009. Choosing instrumental variables in conditional moment

restriction models. Journal of Econometrics 152: 28–36. [CrossRef]
Gallant, A. Ronald, and George Tauchen. 1996. Which moments to match? Econometric Theory 12: 363–90. [CrossRef]
Gallant, A. Ronald, and George Tauchen. 2010. Emm: A Program for Efficient Method of Moments Estimation, Version 2.6, User’S Guide.

Chapel Hill: University of North Carolina.
Gourieroux, Christian, Alain Monfort, and Eric Renault. 1993. Indirect inference. Journal of Applied Econometrics 8: S85–S118. [CrossRef]
Hall, Peter, and Joel L. Horowitz. 1996. Bootstrap critical values for tests based on generalized-method-of-moments estimators.

Econometrica 64: 891–916. [CrossRef]
Hansen, Lars Peter, John Heaton, and Amir Yaron. 1996. Finite-sample properties of some alternative GMM estimators. Journal of

Business & Economic Statistics 14: 262–80. [CrossRef]
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approximators. Neural

Networks 2: 359–66. [CrossRef]
Jiang, Wenxin, and Bruce Turnbull. 2004. The indirect method: Inference based on intermediate statistics a synthesis and examples.

Statistical Science 19: 239–63. [CrossRef]
Lu, Zhou, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. 2017. The expressive power of neural networks: A view

from the width. Paper presented at 31st International Conference on Neural Information Processing Systems, Long Beach, CA,
USA, December 4–9. pp. 6232–40.

Marjoram, Paul, John Molitor, Vincent Plagnol, and Simon Tavaré. 2003. Markov chain monte carlo without likelihoods. Proceedings of
the National Academy of Sciences 100: 15324–28. [CrossRef] [PubMed]

McFadden, Daniel. 1989. A method of simulated moments for estimation of discrete response models without numerical integration.
Econometrica 57: 995–1026. [CrossRef]

Smith, Anthony A. 1993. Estimating nonlinear time-series models using simulated vector autoregressions. Journal of Applied
Econometrics 8: S63–S84. [CrossRef]

Tauchen, George. 1986. Statistical properties of generalized method-of-moments estimators of structural parameters obtained from
financial market data. Journal of Business & Economic Statistics 4: 397. [CrossRef]

https://github.com/mcreel/SNM/blob/master/MN/MNlib.jl
https://github.com/mcreel/SNM/blob/master/DSGE/CKlib.jl
https://github.com/RJDennis/SolveDSGE.jl
https://github.com/mcreel/Econometrics/blob/master/econometrics.pdf
https://github.com/SciML/DifferentialEquations.jl
https://realized.oxford-man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices.zip
https://realized.oxford-man.ox.ac.uk/images/oxfordmanrealizedvolatilityindices.zip
http://doi.org/10.1111/1467-9868.00336
http://dx.doi.org/10.1016/S0304-4076(03)00100-3
http://dx.doi.org/10.3982/ECTA11776
http://dx.doi.org/10.1093/jjfinec/nbp001
http://dx.doi.org/10.1016/j.ecosta.2016.11.008
http://dx.doi.org/10.1016/j.jempfin.2015.01.002
http://dx.doi.org/10.1016/j.jeconom.2008.10.013
http://dx.doi.org/10.1017/S0266466600006976
http://dx.doi.org/10.1002/jae.3950080507
http://dx.doi.org/10.2307/2171849
http://dx.doi.org/10.1080/07350015.1996.10524656
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1214/088342304000000152
http://dx.doi.org/10.1073/pnas.0306899100
http://www.ncbi.nlm.nih.gov/pubmed/14663152
http://dx.doi.org/10.2307/1913621
http://dx.doi.org/10.1002/jae.3950080506
http://dx.doi.org/10.2307/1391493

	Introduction
	Simulated Moments, Indirect Likelihood, and MSM-MCMC Inference
	Neural Moments
	Examples
	Stochastic Volatility
	ARMA
	Mixture of Normals
	DSGE Model

	Monte Carlo Results
	Application: A Jump-Diffusion Model of S&P 500 Returns
	Conclusions
	References

