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Abstract: This paper used cross-sectional aggregation as the inspiration for a model with long-
range dependence that arises in actual data. One of the advantages of our model is that it is
less brittle than fractionally integrated processes. In particular, we showed that the antipersistent
phenomenon is not present for the cross-sectionally aggregated process. We proved that this has
implications for estimators of long-range dependence in the frequency domain, which will be
misspecified for nonfractional long-range-dependent processes with negative degrees of persistence.
As an application, we showed how we can approximate a fractionally differenced process using
theoretically-motivated cross-sectional aggregated long-range-dependent processes. An example
with temperature data showed that our framework provides a better fit to the data than the fractional
difference operator.

Keywords: long memory; antipersistence; fractional differencing; aggregation; strong persistence

1. Introduction

Long-range dependence has been a topic of interest in econometrics since Granger’s
study on the shape of the spectrum of economic variables (Granger 1966). The author found
that long-term fluctuations in economic variables, if decomposed into frequency components, are
such that the amplitudes of the components decrease smoothly with decreasing period. As shown
by Adenstedt (1974), this type of behavior implies long-lasting autocorrelations, that is they
exhibit long-range dependence. In finance, long-range dependence has been estimated
in volatility measures, inflation, and energy prices; see, for instance, Baillie et al. (2019),
Vera-Valdés (2021b), Hassler and Meller (2014), and Ergemen et al. (2016)

In the time series literature, the fractional difference operator has become one of the
most popular methods to model long-range dependence. Notwithstanding its popularity,
Granger argued that processes generated by the fractional difference operator fall into the
area of “empty boxes”, about theory—either economic or econometric—on topics that do not arise
in the actual economy (Granger 1999). Moreover, Veitch et al. (2013) showed that fractionally
differenced processes are brittle in the sense that small deviations such as adding small
independent noise change the asymptotic variance structure qualitatively.

This paper developed an econometric-based model for long-range dependence to alle-
viate these concerns. One of the most cited theoretical explanations behind the presence of
long-range dependence in real data is cross-sectional aggregation (Granger 1980). We used
cross-sectional aggregation as the inspiration for a nonfractional long-range-dependent
model that arises in the actual economy.

The proposed model is simple to implement in real applications. In particular, we
present two algorithms to generate long-range dependence by cross-sectional aggregation
with similar computational requirements as the fractional difference operator. One is based
on the linear convolution form of the process, while the second uses the discrete Fourier
transform. The proposed algorithms are exact in the sense that no approximation to the
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number of aggregating units is needed. We showed that the algorithms can be used to
reduce computational times for all sample sizes.

Moreover, we proved that cross-sectionally aggregated processes do not possess the
antipersistent properties. We argue that these are restrictions imposed by the fractional
difference operator that may not hold in real data. In this regard, the proposed model
relaxes these restrictions, and it is thus less brittle than fractional differencing.

We showed that relaxing the antipersistent restrictions has implications for semi-
parametric estimators of long-range dependence in the frequency domain. In particular,
we proved that estimators based on the log-periodogram regression are misspecified for
long-range-dependent processes generated by cross-sectional aggregation. To solve the mis-
specification issue, we developed the maximum likelihood estimator for cross-sectionally
aggregated processes. We used the recursive nature of the Beta function to speed up the
computations. The estimator inherits the statistical properties of the maximum likelihood.

Finally, as an application, this paper illustrated how we can approximate a fractionally
differenced process with a theoretically-based cross-sectionally aggregated one. Thus, we
demonstrated that we can model similar behavior as the one induced by the fractional
difference operator while providing theoretical support. Moreover, we used temperature
data to show that the model provides a better, theoretically supported, fit to real data
than the fractional difference operator when the source of long-range dependence is cross-
sectional aggregation.

This paper proceeds as follows. In Section 2, we present two distinct ways to generate
long-range-dependent processes. Section 3 discusses three different ways to generate cross-
sectionally aggregated processes, two of them with similar computational requirements
as for the fractional difference operator. Section 4 discusses the antipersistence properties.
Section 5 develops the maximum likelihood estimator for cross-sectionally aggregated
processes. Section 6 shows a way to generate cross-sectionally aggregated processes that
closely mimic the ones generated using the fractional difference operator and shows that
the model provides a better fit to real data when the source of long-range dependence is
cross-sectional aggregation. Section 7 concludes.

2. Long-Range-Dependent Models

This section presents two mechanisms to generate long-range dependence: the frac-
tional difference operator and cross-sectional aggregation.

2.1. The Fractional Difference Operator

References Granger and Joyeux (1980) and Hosking (1981) proposed to use the fractional
difference operator to model long-range dependence in the time series literature. It is defined
as:

xt = (1− L)dεt, (1)

where εt is a white noise process with variance σ2 and d ∈ (−1/2, 1/2). Following the
standard binomial expansion, the fractional difference operator, (1− L)d, is decomposed
to generate a series given by:

xt =
∞

∑
k=0

πkεt−k, (2)

with coefficients πk = Γ(k + d)/(Γ(d)Γ(k + 1)) for k ∈ N, where Γ() denotes the Gamma
function. We write xt ∼ I(d) to denote a process generated by the fractional difference
operator (1), that is a fractionally integrated process with parameter d.

For d ∈ (0, 1/2), we call xt a long memory process, while for d ∈ (−1/2, 0), we call xt
an antipersistent process. To avoid confusion, in this paper, we maintained that a series shows
long-range dependence if it has hyperbolic decaying autocorrelations, while we reserved the
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long memory and antipersistent terminology to specific signs of the parameter d; see Haldrup
and Vera-Valdés (2017) for a discussion about the different long-range dependence definitions.

Using Stirling’s approximation, it can be shown that the coefficients in (2) decay at a
hyperbolic rate, πk ≈ kd−1 as k→ ∞, where we used the notation f (k) ≈ g(k) as k→ k0 to
denote that limk→k0 f (k)/g(k) = 1. In turn, the autocorrelation function for a fractionally
integrated process, γI(d)(k), is given by:

γI(d)(k) =
Γ(k + d)Γ(1− d)
Γ(k− d + 1)Γ(d)

. (3)

Thus, γI(d)(k) ≈ k2d−1 as k → ∞, so that I(d) processes exhibit long-range dependence
regardless of the sign of the parameter d.

The properties of the fractional difference operator have been well documented in,
among others, Baillie (1996) and Beran et al. (2013). Moreover, fractionally integrated
models obtain good forecasting performance when working with series that exhibit long-
range dependence regardless of their generating process; see Bhardwaj and Swanson
(2006) and Vera-Valdés (2020). Furthermore, fast algorithms have been developed to
generate series using the fractional difference operator; see Jensen and Nielsen (2014). Thus,
the fractional difference operator has become the canonical construction for long-range
dependence modeling in the time series literature.

Even though the fractional difference operator provides a representation of long-range
dependence, there are insufficient theoretical arguments linking the fractional difference
operator with the long-range dependence found in real data. Chevillon et al. (2018) pre-
sented the only argument to date linking fractional integration to economic models. The
authors showed that a large-dimensional vector autoregressive model can generate frac-
tional integration in the marginalized univariate series. Nonetheless, the argument requires
strong assumptions regarding the form of the system, and it is only capable of generating
fractionally integrated processes with positive degrees of long-range dependence, that is
antipersistence is omitted in the analysis.

Granger commented on the lack of theoretical support by arguing that fractionally
integrated processes fall in the “empty box” category of topics that do not arise in the real
economy. In this regard, the next subsection discusses cross-sectional aggregation, the most
common theoretical motivation behind long-range dependence in real data.

2.2. Cross-Sectional Aggregation

Robinson (1978) was the first to analyze the statistical properties of autoregressive
processes with random coefficients. He considered a series given by:

xj,t = αjxj,t−1 + εj,t (4)

where ε j,t is an independent identically distributed process with E[εj,t] = 0 and E[ε2
j,t] = σ2,

∀t ∈ Z. Furthermore, α2
j is sampled from the Beta distribution, independent of ε j,t, with

the following density:

B(α; a, b) =
1

B(a, b)
αa−1(1− α)b−1 for α ∈ (0, 1), (5)

with a, b > 0 and where B(a, b) is the Beta function. Then, the autocorrelations of xj,t
exhibit hyperbolic decay instead of the standard geometric one.

One inconvenience of the model studied by Robinson is that the process defined by
(4) is not ergodic. A sample from the process has a different autocorrelation function than
the one from the generating process. Once the autoregressive coefficient, αj, is realized,
the autocorrelation function simplifies to the one from a standard AR(1) process with a
constant coefficient.
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The lack of ergodicity was solved by Granger (1980) by considering the cross-sectional
aggregation of N independent autoregressive processes with random coefficients. The
author considered a process given by:

xt =
1√
N

N

∑
j=1

xj,t, (6)

where j = 1, · · · , N ∈ N, and xj,t are given by (4). Taking a large number in the cross-
sectional dimension, the resulting process will have the same autocorrelation function as
the autoregressive process with a random coefficient. Hence, cross-sectional aggregated
processes are ergodic by construction.

Haldrup and Vera-Valdés (2017) obtained the autocorrelation function of xt in (6) for
b ∈ (1, 2) as N → ∞. For completeness, Proposition 1 extends their result to b ∈ (1, 3).

Proposition 1. Let xt be defined as in (6) for a ∈ (0, 3), b ∈ (1, 3), and let γCSA(a,b)(k) be its
autocorrelation function. Then, as N → ∞, γCSA(a,b)(k) can be computed as:

γCSA(a,b)(k) =
B(a + k/2, b− 1)

B(a, b− 1)
. (7)

Proof. Appendix A shows the proof.

Using Stirling’s approximation, Proposition 1 proves that the autocorrelations of xt
decay at a hyperbolic rate with parameter 1− b. Thus, xt shows long-range dependence
for b ∈ (1, 3). By making b = 2(1− d), the hyperbolic rate is the same as the one from
an I(d) process. Moreover, note that for b ∈ (2, 3), the hyperbolic decay is quite slow,
corresponding o the rate of decay of the autocorrelation function of an antipersistent
process generated using the fractional difference operator, d = 1− b/2 ∈ (−1/2, 0).

The cross-sectional aggregation result has been extended in several directions, including
to allow for general ARMA processes, as well as to other distributions; see, for instance,
Linden (1999), Oppenheim and Viano (2004), and Zaffaroni (2004). As argued by Haldrup and
Vera-Valdés (2017), we obtain closed-form representations by maintaining the Beta distribution.

In economic data, cross-sectional aggregation plays a significant role in the generation
of long-range dependence. For example, cross-sectional aggregation has been cited as the
source of long-range dependence for inflation, output, and volatility; see Balcilar (2004),
Diebold and Rudebusch (1989), Altissimo et al. (2009), and Osterrieder et al. (2019). In this
regard, we argue that long-range dependence by cross-sectional aggregation does arise in
the actual economy, and it is thus not in the “empty box.”

Haldrup and Vera-Valdés (2017) proved that processes generated by cross-sectional
aggregation do not belong to the class of processes generated using the fractional difference
operator. Thus, fractionally integrated models are misspecified for long-range dependence
generated by cross-sectional aggregation. This paper solved the misspecification issue by
developing a framework to model long-range dependence by cross-sectional aggregation.
Our framework has similar computational requirements as the ones for the fractional
difference operator.

Moreover, Haldrup and Vera-Valdés (2017) did not analyze the antipersistent range
of long-range dependence. We showed that the antipersistence property does not occur
for cross-sectionally aggregated processes. Hence, this paper argues that the antipersistent
properties are a restriction imposed by the use of the fractional difference operator. An
example with temperature data showed that the framework provides a better fit to the data
than the fractional difference operator while providing theoretical support for the presence
of long-range dependence.

3. Nonfractional Long-Range Dependence Generation

We denote by xt ∼ CSA(a, b) a series generated by cross-sectional aggregation with
autoregressive parameters sampled from the Beta distribution, B(a, b). The notation makes
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explicit the origin of the long-range dependence by cross-sectional aggregation and its
dependence on the two parameters of the Beta distribution.

One practical difficulty of generating long-range dependence by cross-sectional aggrega-
tion is its high computational demands. For each cross-sectionally aggregated process, we
need to simulate a vast number of AR(1) processes; see (6). Haldrup and Vera-Valdés (2017)
suggested that the cross-sectional dimension should increase with the sample size to obtain a
good approximation to the limiting process. The computational demands are thus particularly
large for long-range dependence generation by cross-sectional aggregation. We argue that
the large computational demand may be one of the reasons behind the current reliance on
using the fractional difference operator to model long-range dependence. In what follows,
we present two algorithms to generate long-range-dependent processes by cross-sectional
aggregation with similar computational requirements as fractional differencing.

Haldrup and Vera-Valdés (2017) obtained the infinite moving average representation of
the limiting process in (6) for the long memory case, that is d ∈ (0, 1/2) or b ∈ (1, 2). Proposi-
tion 2 extends their results to the long-range-dependent case with a negative parameter.

Proposition 2. Let xt ∼ CSA(a, b) for a ∈ (0, 3) and b ∈ (1, 3) be defined as in (6). Then, as
N → ∞, xt can be computed as:

xt =
t

∑
k=0

φkεt−k, (8)

where φk = [B(a + k, b)/B(a, b)]1/2 and εt−k ∼ i.i.d.N (0, σ2), for k ∈ N.

Proof. Appendix A shows the proof.

The moving average representation for cross-sectionally aggregated processes ob-
tained in Proposition 2 compares to the moving average representation of the fractional
difference operator (2), that is Proposition 2 shows that cross-sectional aggregation can
be computed as a linear convolution of the sequences Φ = {φk}T

k=1 and E = {εk}T
k=1. A

practitioner could use this formulation to generate long-range-dependent processes with
similar computational requirements as the one for the fractional difference operator.

Furthermore, Theorem 1 presents a way to use the discrete Fourier transform to speed
up computations for large sample sizes.

Theorem 1. Let {xt}T−1
t=0 be a sample of size T ∈ N of a CSA(a, b) process with a ∈ (0, 3) and

b ∈ (1, 3), that is let xt be defined as in (8), then xt can be computed as the first T elements of the
(2T − 1)× 1 vector:

F−1(FΦ̃� FẼ),

where F is the discrete Fourier transform, F−1 is the inverse transform, � denotes multiplication
element-by-element, and Φ̃ = [Φ′, 0T−1]

′, Ẽ = [E ′, 0T−1]
′, where 0T−1 is a vector of zeros

of size T − 1. Furthermore, E = {εk}T−1
k=0 , Φ = {φk}T−1

k=0 , where εk ∼ i.i.d.N(0, σ2
ε ) and

φk = [B(a + k, b)/B(a, b)]1/2, ∀k ∈ N.

Proof. Let {xt}T−1
t=0 be the sample of size T of a CSA(a, b) process with a ∈ (0, 3) and

b ∈ (1, 3), that is let xt be the linear convolution of the series Φ = {φj}T−1
j=0 and E = {ε j}T−1

j=0 .

Define Φ̃ = [Φ′, 0T−1]
′ and Ẽ = [E ′, 0T−1]

′, where 0T−1 is a vector of zeros of size T − 1,
and consider them as periodic sequences of period 2T − 1, that is we consider the circular
convolution of Φ̃ and Ẽ . First, note that by construction:

xt =
t

∑
j=0

φ̃j ε̃t−j =
t

∑
j=0

φ̃j ε̃t−j +
T−1

∑
j=t+1

φ̃j ε̃2T+t−j−1 +
2T−2

∑
j=T

φ̃j ε̃2T+t−j−1 =
2T−2

∑
j=0

φ̃j ε̃t−j,
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where the second equality arises given that φ̃j = 0 for j = T, · · · , 2T− 2 and ε̃2T+t−j−1 = 0
for j = t + 1, · · · , T − 1. The last equality is true due to the periodicity of Ẽ .

Now, let ξ̃ = FẼ and Ψ̃ = FΦ̃ be the discrete Fourier transform of Ẽ and Φ̃, respec-
tively, that is:

φ̃j = (2T − 1)−1
2T−2

∑
k=0

ψ̃kλjk, ε̃t−j = (2T − 1)
2T−2

∑
s=0

ξ̃sλ(t−j)s,

where λ = ei2π/(2T−1) with i =
√
−1. Then, for t = 0, 1, · · · , T − 1, we obtain:

xt =
2T−2

∑
j=0

φ̃j ε̃t−j+1 =
2T−2

∑
j=0

(
(2T − 1)−1

2T−2

∑
k=0

ψ̃kλjk

)(
(2T − 1)−1

2T−2

∑
s=0

ξ̃sλ(t−j)s

)

= (2T − 1)−2
2T−2

∑
j=0

2T−2

∑
k=0

2T−2

∑
s=0

ψ̃k ξ̃sλjk+(t−j)s = (2T − 1)−2
2T−2

∑
k=0

2T−2

∑
s=0

ψ̃k ξ̃s

2T−2

∑
j=0

λts+j(k−s)

= (2T − 1)−2
2T−2

∑
k=0

2T−2

∑
s=0

ψ̃k ξ̃sλts
2T−2

∑
j=0

λj(k−s) = (2T − 1)−1
2T−2

∑
s=0

ψ̃s ξ̃sλts, (9)

where the last equality follows from:

2T−2

∑
j=0

λjr =

{
2T − 1 if r ≡ 0 mod 2T − 1
0 if r 6≡ 0 mod 2T − 1.

Hence, (9) proves that we can compute the coefficients of the discrete Fourier transform of xt
via element-by-element multiplication of the coefficients of the discrete Fourier transforms
of Φ̃ and Ẽ . We obtain the desired result by applying the inverse Fourier transform.

Theorem 1 is an application of the periodic convolution theorem; see Cooley et al. (1969),
and Oppenheim and Schafer (2010). In this sense, it is in line with the discrete Fourier
transform algorithm of Jensen and Nielsen (2014) for the fractional difference operator, and
thus, it achieves similar computational efficiency. Moreover, the algorithm is exact in the
sense that no approximation regarding the number of cross-sectional units is required.

Figure 1 shows the computational times for a MATLAB implementation of the algo-
rithms presented in this paper. The algorithms were run on a computer with an Intel Core
i7-7820HQ at 2.90GHz running Windows 10 Enterprise and using the MATLAB 2019b
release. Following the results of Haldrup and Vera-Valdés (2017), we generated the same
number of AR(1) processes as the sample size for the standard aggregation algorithm
(6). To make fair comparisons, we used MATLAB’s built-in filter function to generate
the individual AR(1) processes and in the linear convolution algorithm. We generated
the coefficients in the moving average representation using the recursive form instead of
relying on the built-in Beta function, that is:

φk =
(a + k− 2)1/2

(a + k− 2 + b)1/2 φk−1,

where φ0 = 1.
The figure shows that the linear convolution and discrete Fourier transform algorithms

are several times faster than aggregating independent AR(1) processes for all sample
sizes. In particular, the figure shows that generating long-range-dependent processes by
aggregating AR(1) series becomes computationally infeasible as the sample size increases.
Regarding the two proposed methods, the figure shows that the discrete Fourier transform
algorithm is faster than the linear convolution algorithm for sample sizes greater than
750 observations. Moreover, the relative performance of the discrete Fourier transform
algorithm increases with the sample size. Table 1 presents a subset of the computational
times for all algorithms considered.
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Figure 1. Computational times at several sample sizes for a MATLAB implementation of the algo-
rithms. Axes are logarithmic. The reported times are the average of 100 replications for all sample
sizes for the linear convolution and discrete Fourier transform algorithms and for sample sizes up to
1000 for the AR(1) aggregation algorithm. For larger sample sizes, the AR(1) aggregation algorithm
was computed once due to computational restrictions.

Table 1. Computational times in seconds of the MATLAB implementation of the different algorithms
to generate long-range dependence. LC and DFT stand for Linear Convolution and Discrete Fourier
Transform, respectively. The reported times are the average of 100 replications for all sample sizes for the
LC and DFT algorithms and for sample sizes up to 1000 for the AR(1) aggregation algorithm. For larger
sample sizes, the AR(1) aggregation algorithm was computed once due to computational restrictions.

T = 102 T = 103 T = 104 T = 5 × 104 T = 105

AR(1) Agg. 2.02× 10−3 1.70× 10−1 8.08× 101 9.23× 103 8.29× 104

LC 1.00× 10−5 1.10× 10−4 5.51× 10−3 1.86× 10−1 8.60× 10−1

DFT 4.00× 10−5 9.00× 10−5 9.30× 10−4 7.04× 10−3 8.46× 10−3

It took approximately 0.17 s to generate one long-range-dependent series of size
T = 103 by aggregating independent AR(1) processes, while more than 80 s to generate a
sample of size T = 104. These computational times make it impractical to use this algorithm
for Monte Carlo experiments or bootstrap procedures. The computational times for the
discrete Fourier transform and the linear convolution algorithms were approximately the
same for sample sizes of around 103 observations. Nonetheless, the former was 102-times
faster than the latter for 105 observations. These results suggested using the discrete Fourier
transform to generate large samples of long-range-dependent processes by cross-sectional
aggregation. Moreover, note that these results are much in line with the ones obtained by
Jensen and Nielsen (2014) for the fractional difference operator. In this regard, the proposed
algorithms to generate long-range dependence have similar computational requirements
as those of the fractional difference operator. Codes implementing the discrete Fourier
transform algorithm for long-range dependence generation by cross-sectional aggregation
in R (Listing A1) and MATLAB (Listing A2) are available in Appendix B.

4. Nonfractional Long-Range Dependence and the Antipersistent Property

It is well known in the long memory literature that the fractional difference operator
implies that the autocorrelation function is negative for negative degrees of the param-
eter d. The sign of the autocorrelation function for a fractionally differenced process,
γI(d)(k), depends on Γ(d) in the denominator, which is negative for d ∈ (−1/2, 0); see (3).
Furthermore, let xt ∼ I(d), and let fX(λ) be its spectral density, then:

fX(λ) =
σ2

2π

∣∣∣∣∣ ∞

∑
k=0

πke−ikλ

∣∣∣∣∣
2

=
σ2

2π

∣∣∣1− e−iλ
∣∣∣−2d

≈ σ2

2π
λ−2d as λ→ 0, (10)
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where πk are given as in (2); see Beran et al. (2013). Thus, fX(λ) → 0 as λ → 0 for
d ∈ (−1/2, 0), that is the fractional difference operator for negative values of the parameter
implies a spectral density collapsing to zero at the origin. Moreover, note that the behavior
of the spectral density at the origin implies that the coefficients of the moving average
representation of a fractionally differenced process with negative degree of long-range
dependence sum to zero.

These properties have been named antipersistence in the literature. It is thus neces-
sary to distinguish between long memory and antipersistence for fractionally differenced
processes depending on the sign of the long-range dependence parameter. We argue that
the antipersistent properties are a restriction imposed by the use of the fractional difference
operator. In this regard, the restriction on the sum of the coefficients in the moving average
representation may be too strict for real data. It takes but a small deviation on any of the
infinite coefficients to violate this restriction, providing further evidence of the brittleness
of fractionally differenced processes; see Veitch et al. (2013). We showed that CSA(a, b)
processes do not share these restrictions and are thus less brittle.

First, (7) demonstrates that the autocorrelation function for CSA(a, b) processes only
depends on the Beta function, which is always positive. Figure 2 shows the autocorrelation
function for an I(−0.4) process and a CSA(0.28, 2.8) process. The figure shows that both
processes show the same rate of decay in their autocorrelation functions, but opposite signs.

Figure 2. Autocorrelation functions for an I(−0.4) process and a CSA(0.075, 2.8) one. The right plot
shows lags 100 to 150.

Then, Theorem 2 proves that the spectral density for CSA(a, b) processes with b ∈
(2, 3) converges to a positive constant as the frequency goes to zero.

Theorem 2. Let xt ∼ CSA(a, b) be defined as in (8) with b ∈ (2, 3), and let fX(λ) be its spectral
density, then:

fX(0) = ca,b > 0,

where ca,b depends on the parameters of the Beta distribution.

Proof. Let xt ∼ CSA(a, b) be defined as in (8) with a ∈ (0, 3) and b ∈ (2, 3); the spectral
density of xt at the origin is given by:

fX(0) =
σ2

2π

∣∣∣∣∣ ∞

∑
k=0

φk

∣∣∣∣∣
2

,
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where φk = B(a + k, b)1/2/B(a, b)1/2. Thus, fX(0) can be written as:

fX(0) = σ2

2π

∣∣∣∣ ∞
∑

k=0
φk

∣∣∣∣2 = σ2

2πB(a,b)

∣∣∣∣ ∞
∑

k=0
B(a + k, b)1/2

∣∣∣∣2 = σ2

2πB(a,b)

∣∣∣∣ ∞
∑

k=0

[
Γ(a+k)Γ(b)
Γ(a+k+b)

]1/2
∣∣∣∣2

= σ2Γ(b)
2πB(a,b)

∣∣∣∣ ∞
∑

k=0

[
Γ(a+k)

Γ(a+k+b)

]1/2
∣∣∣∣2 = σ2Γ(b)

2πB(a,b)

∣∣∣∣ ∞
∑

k=0

[
k−b + O

(
k−(b+1)

)]1/2
∣∣∣∣2

= σ2Γ(b)
2πB(a,b)

∞
∑

k=0

[
k−b + O

(
k−(b+1/2)

)]
< ∞,

where in the previous to last equality, we used the large k asymptotic formula for the ratios
of Gamma functions:

Γ(a + k)
Γ(a + k + b)

= k−b
[
1 + O

(
k−1
)]

,

(see Phillips (2009)) and the convergence of the series is guaranteed from the Euler–Riemann
Zeta function. Moreover, note that all terms in the expression are positive.

Figure 3 shows the periodogram, an estimate of the spectral density, for the CSA(a, b)
and I(d) processes of size T = 104 averaged for 104 replications. The figure shows that
the periodograms for both processes exhibit similar behavior for positive values of the
long-range dependence parameter, d = 1− b/2 ∈ (0, 1/2), diverging to infinity at the
same rate. Nonetheless, for negative values of the long-range dependence parameter,
d = 1− b/2 ∈ (−1/2, 0), the periodogram collapses to zero as the frequency goes to zero
for I(d) processes, while it converges to a constant for CSA(a, b) processes. Following the
discussion on the definitions for long memory in Haldrup and Vera-Valdés (2017), note that
Theorem 2 implies that CSA(a, b) processes with b ∈ (2, 3) are not long memory processes
in the spectral sense. Nonetheless, CSA(a, b) processes remain long-range-dependent in
the covariance sense.

The behavior of the spectral density near zero has implications for estimation and
inference. Pointedly, tests for long-range dependence in the frequency domain are af-
fected. These types of tests are based on the behavior of the periodogram as the frequency
goes to zero. Tests for long-range dependence in the frequency domain include the log-
periodogram regression (see Geweke and Porter-Hudak (1983) and Robinson (1995b)) and
the local Whittle approach (see Künsch (1987) and Robinson (1995a)).

On the one hand, the log-periodogram regression is given by:

log(I(λk)) = c− 2d log(λk) + uk, k = 1, · · · , m;

where I(λk) is the periodogram, λk = eik2π/T are the Fourier frequencies, c is a constant,
uk is the error term, and m is a bandwidth parameter that grows with the sample size. On
the other hand, the local Whittle estimator minimizes the function:

R(H) = log(G(H))− (2H − 1)
1
m

m

∑
k=1

log(λk), G(H) =
1
m

m

∑
k=1

λ2H−1
j I(λk),

where H = d + 1/2 is the Hurst parameter, I(λk) is the periodogram, and m is the band-
width. From (10), note that the log-periodogram regression provides an estimate of the
long-range dependence parameter for I(d) processes regardless of its sign. As Theorem 2
and Figure 3 show, these tests will be misspecified for CSA(a, b) processes with b ∈ (2, 3).
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Figure 3. Mean periodograms of the I(d) and CSA(0.2, 2(1− d)) processes for long-range dependence
parameters d = 0.4 (left) and d = −0.4 (right). A sample size of T = 103 was used and 104 replications.

To illustrate the misspecification problem, Table 2 reports the long-range dependence
parameter estimated by the method of Geweke and Porter-Hudak 1983, GPH, the bias-reduced
version of Andrews and Guggenberger 2003, BR, and the local Whittle approach by Künsch
(1987), LW, for several values of the long-range dependence parameter for both fractionally
differenced and cross-sectionally aggregated processes.

Table 2. Mean and standard deviation (in parentheses) of estimated long-range dependence parameters by the GPH, BR,
and LW methods for the CSA(a, b) and I(d) processes where b = 2(1− d) so that they show the same degree of long-range
dependence. Furthermore, the parameter a was selected following (12) below with k = 10, and only a quadratic term was
added for the bias-reduced method. We used the MSE optimal bandwidth of T4/5 (see Hurvich et al. (1998)) and a sample
size of T = 103 with 104 replications.

d = 0.4 d = 0.2 d = −0.2 d = −0.4
CSA(a, b) I(d) CSA(a, b) I(d) CSA(a, b) I(d) CSA(a, b) I(d)

GPH 0.425 0.391 0.260 0.195 0.177 −0.194 0.211 −0.387
(0.042) (0.043) (0.043) (0.042) (0.042) (0.042) (0.042) (0.043)

BR 0.434 0.402 0.264 0.201 0.159 −0.198 0.172 −0.395
(0.066) (0.066) (0.066) (0.066) (0.066) (0.065) (0.065) (0.067)

LW 0.424 0.390 0.258 0.194 0.178 −0.196 0.213 −0.389
(0.033) (0.034) (0.034) (0.033) (0.033) (0.033) (0.034) (0.034)

Table 2 shows that the estimator is relatively close to the true parameter for both
processes when d = 1− b/2 ∈ (0, 1/2), if slightly overshooting it for the cross-sectionally
aggregated process, as reported by Haldrup and Vera-Valdés (2017). This contrasts the
d = 1− b/2 ∈ (−1/2, 0) case. The table shows that the estimator remains precise for the
I(d) series, while it incorrectly estimates a value b ∈ (1, 2) for the CSA(a, b) processes. This
is of course not surprising in light of Theorem 2.

In sum, the lack of the antipersistent property in CSA(a, b) processes shows that care
must be taken when estimating the long-range dependence parameters if the fractional
difference operator does not generate the long-range dependence. We proved that wrong
conclusions can be obtained when estimating the long-range dependence parameter using
tests based on the frequency domain if the true nature of the long-range dependence is not
the fractional difference operator. This result is particularly relevant in light of Granger’s
argument of the fractional difference operator being in the “empty box” of econometric
models that do not arise in the actual economy. To correctly estimate the long-range
dependence parameter, the next section presents the maximum likelihood estimator, MLE,
for the CSA(a, b) processes.
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5. Nonfractional Long-Range Dependence Estimation

Let X = [x0, · · · , xT−1]
′ be a sample of size T of a CSA(a, b) process, and let θ =

[a, b, σ2]′. Under the assumption that the error terms follow a normal distribution, X
follows a normal distribution with the probability density given by:

f (θ|X) = (2π)−T/2|Σ|−1/2 exp
(
−1

2
X′Σ−1X

)
,

where Σ is given by:

Σ = σ2γCSA(a,b)(0)
[
γCSA(a,b)(|j− k|)

]T

j,k=1
,

with γCSA(a,b)(k) the autocorrelation function in (7).
Consider the log-likelihood function given by:

L(θ|X) = log( f (θ|X)),

and estimate the parameters by:

θ̂ = max
θ
L(θ|X). (11)

The standard asymptotic theory for maximum likelihood estimation, MLE, applies. We
have the following theorem.

Theorem 3. Let X = [x0, · · · , xT−1]
′ be a sample of size T of a CSA(a, b) process with normally

distributed error terms, and let θ = [a, b, σ2]′. Furthermore, let θ̂ be given by (11). Then:

plim θ̂ = θ,

where plim stands for the limit in probability.

Proof. Notice that σ2
1 γCSA(a1,b1)

(k) 6= σ2
2 γCSA(a2,b2)

(k) for a1 6= a2, b1 6= b2, or σ2
1 6= σ2

2 ,
which shows that the log-likelihood function is identified. Moreover, the log-likelihood
function is continuous and twice differentiable. Thus, MLE satisfies the standard regularity
conditions, and it is thus a consistent estimator; see Davidson and MacKinnon (2004).

Theorem 3 shows that MLE is a consistent estimator of the true parameters. Nonethe-
less, the finite sample properties may differ from the asymptotic ones, especially for smaller
sample sizes (Table 3). For implementation purposes, concentrating for σ2 in the log-
likelihood reduces the computational burden by reducing the number of parameters to
estimate. Let Σ = σ2Γ, and differentiate the log-likelihood with respect to σ2 to obtain:

σ2 = T−1X′Γ−1X.

Thus, the concentrated log-likelihood is given by:

Lc([a, b]′|X) =
1

2T
log |Γ|+ 1

2
log(T−1X′Γ−1X),

where we discarded the constant and divided by T to reduce the effect of the sample size
on the convergence criteria. Hence, we estimate the parameters by:

[â, b̂]′ = max
a,b
Lc(X; a, b),

and the variance of the error term by:

σ̂2 = T−1X′Γ̂−1X,

where we obtain Γ̂ by substituting the values of â, b̂.
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Moreover, we used the recursive nature of the Beta function to reduce the compu-
tational burden. Table 3 presents a Monte Carlo experiment for the MLE. We used 103

replications with sample sizes T = 50, T = 102, and T = 103. As the table shows, the
MLE estimates become closer to the true values as the sample size increases, in line with
Theorem 3.

Table 3. MLE estimates of CSA(a, b) processes. Standard deviations are shown in brackets. We used
103 replications, and all random vector were sampled from an N (0, σ2) distribution.

(a, b, σ2) T = 50 T = 102 T = 103

(0.2, 1.2, 1) (0.403, 1.772, 0.870) (0.344, 1.599, 0.873) (0.247, 1.239, 0.896)
[0.369, 0.722, 0.187] [0.229, 0.577, 0.124] [0.049, 0.140, 0.042]

(0.4, 1.8, 0.5) (0.575, 2.089, 0.440) (0.517, 1.954, 0.443) (0.404, 1.673, 0.447)
[0.481, 0.755, 0.095] [0.320, 0.661, 0.063] [0.089, 0.230, 0.021]

(1.2, 2.2, 1.5) (0.993, 1.864, 1.365) (1.233, 2.155, 1.336) (1.202, 2.219, 1.351)
[0.842, 0.730, 0.291] [0.691, 0.676, 0.193] [0.265, 0.341, 0.066]

(0.8, 2.4, 0.2) (0.690, 1.977, 0.181) (0.855, 2.233, 0.178) (0.812, 2.278, 0.179)
[0.649, 0.728, 0.039] [0.492, 0.667, 0.025] [0.171, 0.336, 0.009]

6. Application

As an application, we show that we can use the extra flexibility of the cross-sectionally
aggregated process to approximate a process generated using the fractional difference op-
erator. Figure 4 shows the autocorrelation function of cross-sectional aggregated processes
for different values of the first parameter of the Beta distribution. The figure shows that as
the first parameter increases, so does the autocorrelation function for the initial lags, while
maintaining the same long-term behavior. Hence, the first argument models the short-term
dynamics. In this regard, cross-sectionally aggregated processes are capable of capturing
both short- and long-term dynamics in a single theoretically based framework.

Figure 4. Autocorrelation function for a CSA(a, b) processes for different values of the parameter a
while having the same asymptotic behavior.

Consider the function given by:

L(k, a, d) :=
k

∑
j=0

(
γI(d)(j)− γCSA(a,2(1−d))(j)

)2
, (12)

which measures the squared difference between autocorrelations at the first k lags for
CSA(a, b) and I(d) processes with the same long-range dynamics. Minimizing (12) with
respect to the parameter a, we find the CSA(a, b) process that best approximates a long
memory I(d) process up to lag k, while having the same long-range dependence. Given
the different forms of the autocorrelation functions, there is in general no value of the
parameter a that minimizes (12) for all values of k. For instance, mina L(2, a, 0.2) = 0.118,
while mina L(30, a, 0.2) = 0.121.
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Nonetheless, selecting a medium-sized k, say k = 10, the approximation turns out to
be quite satisfactory in general. In Figure 5, we present a white noise process, {εt}103

t=1 ∼
N(0, 1), and long-range-dependent processes. These processes are obtained by using
the fractional difference operator with parameter d = 0.4 and using the cross-sectional
aggregated algorithm with parameters a = 0.28 and b = 1.2.

Figure 5. White noise series, εt, and filtered processes using cross-sectional aggregation, CSA(0.28, 1.2),
and the fractional difference operator, I(0.4) (left). Autocorrelation functions for the white noise series
and filtered processes (right).

The figure shows that the filtered series are almost identical. Moreover, the auto-
correlation functions exhibit similar dynamics. In this context, the fractional difference
operator can be viewed as another example of models that generate processes with similar
properties to their theoretical explanations, but are not equivalent; see Portnoy (2019) for an
example with the AR(1) model. Thus, the figure shows that it is possible to generate cross-
sectionally aggregated processes that closely mimic the ones due to fractional differencing
while providing theoretical support for the presence of long-range dependence.

In real data, series such as inflation, output, and volatility have been shown to possess
long-range dependence. One of the explanations behind the presence of the long-range depen-
dence is cross-sectional aggregation; see Diebold and Rudebusch (1989), Balcilar (2004), and
Altissimo et al. (2009). Climate data have also been shown to possess long-range dependence.
Several authors have argued that aggregation may be the reason behind the presence of
long-range dependence in temperature data; see Baillie and Chung (2002); Gil-Alana (2005);
Mills (2007); Vera-Valdés (2021a).

Figure 6 shows an example using temperature data. The data came from GISTEMP, an
estimate of global surface temperature change constructed by the NASA Goddard Institute
for Space Studies. GISTEMP specifies the temperature anomaly at a given location as the
weighted average of the anomalies for all stations located in close proximity. The data
are updated monthly and combine data from land and ocean surface temperatures; see
GISTEMP (2020); Lenssen et al. (2019).

The figure shows temperature anomalies for the grid near London, the United King-
dom. The data possess long-range dependence, as seen in their autocorrelation function.
To model the long-range dependence, we fit the CSA(a, b) and I(d) models to the data. On
the one hand, the estimated long-range dependence parameter for the fractional difference
model is d̂ = 0.226. On the other hand, the estimated parameters for the CSA(a, b) model
using the MLE developed in Section 5 are â = 0.074 and b̂ = 1.229, which correspond to
a long-range dependence parameter of 0.385. The residuals from the estimated models
are also shown. Note that the residuals from the CSA(a, b) model are, on average, smaller
than the residuals from the I(d) model. The residual sum squares for the CSA(a, b) and
I(d) models are 2405 and 3076, respectively. The example shows that the CSA(a, b) model
extracts more of the dynamics in the data than the fractional difference operator. Hence,
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given how the data were generated, as the aggregation of temperature series at different
stations, the CSA(a, b) model provides a better, theoretically supported fit to the data.
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Figure 6. London temperature anomalies obtained from GISTEMP (top left) and its autocorrelation
function (top right). Residuals from fitted CSA and I(d) models to the series (bottom).

7. Conclusions

Granger argued that fractionally integrated processes fall into the “empty box” category
of theoretical developments that do not arise in the real economy. Moreover, Veitch et al. (2013)
argued that “time series whose long-range dependence scaling derives directly from fractional differ-
encing [...] are far from typical when it comes to their long-range dependence character”. Thus, this
paper developed a long-range dependence framework based on cross-sectional aggregation,
the most predominant theoretical explanation for the presence of long-range dependence in
data. In this regard, this paper developed a framework to model long-range dependence that
arises in the real economy, and it is thus not in the “empty box”.

This paper built on the long-range dependence literature by presenting two novel
algorithms to generate long-range dependence by cross-sectional aggregation. The algo-
rithms have a similar computational burden as the one for the fractional difference operator.
They are exact in the sense that no approximation regarding the number of aggregating
units is needed.

Moreover, we studied the antipersistent properties and proved that the autocorrelation
function for CSA(a, b) processes is positive, and the spectral density does not collapse to
zero as the frequency goes to zero. We argued that the antipersistent properties are a restric-
tion imposed by the use of the fractional difference operator. We showed that CSA(a, b)
processes do not share these restrictions, and are thus less brittle. The paper showed that
the lack of antipersistence has implications for long-range dependence estimators in the
frequency domain, which will be misspecified.

To solve the misspecification issue, we developed the maximum likelihood estimator
for long-range dependence by cross-sectional aggregation to obtain a consistent estimator.
Furthermore, we proposed to reduce the computational burden of the MLE by taking
advantage of the recursive nature of the autocorrelation function of cross-sectionally
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aggregated processes. As an application, we showed that cross-sectionally aggregated
processes can approximate a fractionally differenced process.

Our results have implications for applied work with long-range-dependent processes
where the source of the long-range dependence is cross-sectional aggregation. We showed
on an example using temperature data that the model provides a better fit to the data
than the fractional difference operator. We argued that cross-sectionally aggregation is a
clear theoretical justification for the presence of long range-dependence. In this regard,
this paper backs the case of Portnoy (2019) to employ models only when the underlying model
assumptions have clear and convincing scientific justification.
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Appendix A. Proofs for Lemmas 1 and 2

Remark: The proofs for Propositions 1 and 2 closely follow the proofs for the b ∈ (1, 2) case
in Haldrup and Vera-Valdés (2017), and we show them here for the sake of rigor.

Proof for Lemma 1. Let xt be given by (6), with xi,t = αixi,t−1 + εi,t, where α2
i ∼ B(α; a, b),

εi,t is an independent identically distributed process, independent of αi, with E[εi,t] = 0,
and E[ε2

i,t] = σ2, ∀t ∈ Z. Note that xt has zero mean, and thus, its autocovariance can be
obtained by:

E[xtxt−k] = E

[(
1√
N

N

∑
i=1

xi,t

)(
1√
N

N

∑
i=1

xi,t−k

)]
=

σ2

N
E

[
N

∑
i=1

αk
i

1− α2
i

]
,

where the second equality follows from the independence assumption.
Taking the limit as N → ∞, we obtain:

lim
N→∞

E[xtxt−k] = σ2
∫ 1

0

(α2
i )

k/2

1− α2 B(α; a, b)dα = σ2
∫ 1

0

xa+k/2−1(1− x)b−2

B(a, b)
dx

= σ2 B(a + k/2, b− 1)
B(a, b)

,

where in the first equality, we use the fact that:

lim
N→∞

1
N

N

∑
i=1

αk
i

1− α2
i
=
∫ 1

0

αk

1− α2B(α; a, b)dα,

and substituting the Beta density defined in (5).
Thus, the autocorrelation function is given by:

γCSA(a,b)(k) = lim
N→∞

E[xtxt−k]

E[x2
t ]

=
B(a + k/2, b− 1)

B(a, b− 1)
,

where B(a, b) is the Beta function.

https://data.giss.nasa.gov/gistemp/
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Proof for Lemma 2. Let xt be given by (6), with xi,t = αixi,t−1 + εi,t, where α2
i ∼ B(α; a, b),

εi,t is an independent identically distributed process, independent of αi, with E[εi,t] = 0,
and E[ε2

i,t] = σ2, ∀t ∈ Z. Note that we can write:

xi,t =
t

∑
k=0

αk
i εi,t−k.

Thus, xt can be written as:

xt =
1√
N

N

∑
i=1

t

∑
k=0

αk
i εi,t−k =

t

∑
k=0

1√
N

N

∑
i=1

αk
i εi,t−k.

Furthermore, E[αk
i εi,t−k] = 0, and given independence between the autoregressive parame-

ter and the white noise process, we obtain:

E[(αk
i εi,t−k)

2] = E[ε2
i,t−k]E[α

2k
i ]

= σ2 1
B(a, b)

∫ 1

0
xa+k−1(1− x)b−1dx = σ2 B(a + k, b)

B(a, b)
.

Hence, taking the limit as N → ∞, the central limit theorem applies, and we obtain:

1√
N

N

∑
i=1

αk
i εi,t−k ∼ N

(
0, σ2 B(a + k, b)

B(a, b)

)
,

for k ∈ N. Thus, we can write:

xt =
t

∑
k=0

φkεt−k,

where φk = [B(a + k, b)/B(a, b)]1/2 and εt−k ∼ i.i.d.N (0, σ2), for k ∈ N.

Appendix B. Codes for Long-Range Dependence Generation by
Cross-Sectional Aggregation

Listing A1. R Code.

c s a d i f f <− funct ion ( x , a , b ) {
iT <− length ( x )
n <− nextn ( 2 * iT − 1 , 2 )
k <− 0 : ( iT −1)
c o e f s <− ( beta ( a+k , b)/ beta ( a , b ) ) ^ ( 1 / 2 )
csax <− f f t ( f f t ( c ( x , rep ( 0 , n − iT ) ) ) *
f f t ( c ( coefs , rep ( 0 , n − iT ) ) ) , inverse = T ) / n ;
re turn ( Re ( csax [ 1 : iT ] ) )
}

Listing A2. MATLAB code.

funct ion [ csax ] = c s a _ d i f f ( x , a , b )
iT = s i z e ( x , 1 ) ;
n = 2.^ nextpow2 ( 2 * iT − 1 ) ;
c o e f s = ( beta ( a + ( 0 : iT −1) , b ) ./ beta ( a , b ) ) . ^ ( 1 / 2 ) ;
csax = i f f t ( f f t ( x , n ) . * f f t ( coefs ’ , n ) ) ;
csax = cx ( 1 : iT , : ) ;
end
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