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Abstract: Wildfire is an important but understudied natural hazard in some areas. This research
examined historical and future wildfire property risk at the census-block level in Louisiana, a U.S.A.
state with relatively dense population and substantial vulnerability to loss from wildfire, despite its
wet climate. Here wildfire risk is defined as the product of exposure and vulnerability to the hazard,
where exposure is a function of the historical and anticipated future wildfire frequency/extent, and
vulnerability is a function of population, structure and content property value, damage probability,
and percent of properties damaged. The results revealed a historical (1992–2015) average annual
statewide property loss due to wildfire of almost USD 5.6 million (in 2010 USD), with the greatest risk
in southwestern inland, east-central, extreme northwestern, and coastal southwestern Louisiana. The
geographic distribution of wildfire risk by 2050 will remain similar to that today, but the magnitude
of losses was projected to increase statewide to over USD 11 million by 2050 (in 2010 USD), an
increase of more than 100% over 2010 values. These estimates are conservative, as they did not
include crop, forestry, or indirect losses (e.g., cost of evacuation and missed time at work). Overall,
results suggested that increased efforts are needed to contain wildfires, to reduce the future risk of
this increasing and underestimated hazard.

Keywords: wildfire; natural hazards; population projections; forest resources; vulnerability;
resilience; environmental change; climate change; burn probability

1. Introduction

Although weather-related disasters cause extensive and rapidly increasing damage
worldwide, efforts to understand the holistic risk from these hazards are still in progress.
While a growing amount of research is focusing on assessing risk due to floods [1–5], hurri-
canes [6], tornadoes [7], and extreme weather events [8], the risk of wildfire—combustion
in a natural setting, marked by flames or intense heat, ranging in coverage from less than
20 hectares to over 3 million hectares—is lesser-studied. Natural and human-prescribed fire
is often healthy [9,10] as a mechanism for restoring nutrients to the soil and providing new
niches while often leaving native species unharmed or resilient to the disturbance [11], for
combatting pests, diseases, and fungal growth, and for allowing for the post-fire regrowth
to establish hardier individuals. However, the hazardous aspects of wildfires deserve more
attention in risk assessments.

The risk of wildfire is particularly important to understand near the wildland-urban
interface (WUI; [12])—the area where development meets wildland vegetation, with both
providing fuel for fires, leaving more natural ecosystems, people, and property exposed
to wildfire danger [13], and in locations that have previously been understudied. Be-
cause wildfire is a critical ecosystem process influenced by a combination of natural and
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human factors [14] and because its presence and intensity can be modified by climate
change [15–22], it must be considered in environmental risk assessment.

The impacts of wildfire are three-fold: environmental, health, and property. In recent
decades, research on environmental impacts has emphasized wildfire dynamism and
variability at the regional level [16,23–36], in part because climate change implications
on ecosystems [37] present unique challenges for hazard management in each wildfire
regime [38]. Regarding the human health impacts of wildfire, the Southeastern U.S.A.
has been found to be most affected by hospital admissions and premature deaths due to
wildfire events in the U.S.A. [39], in addition to generally unhealthy conditions due to
wildfire-related smoke [40,41].

This paper presents a census-block-level property risk assessment for wildfire in
Louisiana, U.S.A., in contrast to most of the existing wildfire research in the U.S.A., which
focuses on the Western U.S.A. [18,42–45]. The three primary objectives were to (1) charac-
terize the historical wildfire burn probability, (2) project the future wildfire burn probability,
and (3) assess the future property loss in Louisiana due to wildfire. The integration of
natural and social science approaches as shown in the three objectives here was needed to
understand more fully the property risk of wildfire, especially in light of climate change
concerns [46]. The contribution of this paper is to provide a more complete understanding
of the wildfire risk, at the census block level, by extending previous innovative geospatial
approaches to overlaying fire extent with infrastructure [47] quantitatively and by incorpo-
rating changes in population, property value, and climate, along with the historical wildfire
burn probability, damage probability, and percent of damaged property as components of
the property risk. The results will benefit foresters, property owners, and mitigation spe-
cialists within and beyond Louisiana as they seek new and improved ways to characterize
and prepare for the wildfire hazard.

2. Background: Wildfire-Related Property Impacts

Many recent studies point to the substantial property loss associated with wildfire,
especially at the WUI. Property damage in northeastern Florida due to wildfires in the
El Niño year of 1998 was estimated at USD 10–12 million [48]. In a holistic cost–benefit
or “hedonic” approach, Ref. [49] found a negative effect of wildfire on property values
in California, Colorado, and Montana, with less conclusive evidence from research based
elsewhere in Colorado and Alaska. Further work showed that home prices and sales rates
in the Front Range of Colorado are influenced by wildfire risk and risk perceptions [50].
Other research has examined the impacts of wildfire risk on residential property values in
the Netherlands [51]. More recently, programs like FireSmart [52] provide homeowners in
the WUI with information to make more informed decisions for protecting their property
from the wildfire hazard.

Other studies on modeling property risk due to wildfire have emphasized changing
populations and mobility, especially as they interface with weather variables. For example,
Ref. [53] used an artificial neural network approach to model the impact of population
density and weather parameters, such as average relative humidity, wind velocity, and daily
sunshine hours, on forest fire risk in Japan. Ref. [54] assessed the exposure of resources
to wildfire in light of population patterns. Incorporating both natural and anthropogenic
ignitions, Ref. [42] proposed a wildfire simulation model that characterized potential
wildfire behavior in terms of annual burn probability and flame length in the Oregon and
Washington national forests. Ref. [55] examined the spatiotemporal patterns of the wildfire
occurrence in Sardinia, Italy, and characterized the outcomes of both the probability of
ignition and large fire in terms of weather, land use, anthropogenic features, and time of
year. Based on wildfire likelihood and intensity over the 1992 to 2010 period, Ref. [56]
developed a broad-scale wildfire potential map for the contiguous U.S.A. that can be
used to analyze wildfire threat or risk to structures or power lines. Ref. [57] developed a
wildfire prediction model incorporating ten geophysical and climatological parameters
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to investigate the spatial distributions of wildfire probabilities from 32 fire events at the
Zagros ecoregion of Iran.

The most recent research has emphasized more sophisticated incorporation of uncer-
tainty in wildfire property risk analyses. Based on the minimum travel time algorithm,
Ref. [58] developed a fire simulation model to analyze the wildfire exposure of highly val-
ued resources and assets in a 28,000 ha area in central Navarra, Spain. Ref. [59] generated
a GIS-based novel hybrid artificial intelligence approach to model spatial susceptibility
of the wildfire hazard in the central highland forest region of Vietnam. Ref. [60] built
a probabilistic model for predicting wildfire housing loss at the mesoscale (1 km2) level
using Bayesian network analysis, enabling the construction of an integrated model based
on causal relationships between the influencing parameters jointly with the associated
uncertainties. Ref. [61] predicted the spatial pattern of wildfire susceptibility in Huichang
County, China, by using the integrated probabilistic “weights-of-evidence” and knowledge-
based “analytical hierarchy process” models. In recent years, the use of rigorous data
interpretation techniques such as geographical information systems (GIS), and statistical
and machine learning approaches have resulted in various prediction models of wildfire
probability [57,59,61–70].

The U.S. Forest Service Missoula Fire Sciences Laboratory’s geospatial Fire Simulation
system (FSim) has become increasingly useful for property risk assessments in the most
recent years. Ref. [71] used FSim to create national burn probability and conditional fire
intensity level estimated at a 270 m grid resolution over the contiguous United States.
FSim includes scenarios for generating wildfire-conducive weather (including lack of
humidity in areas of combustible vegetation cover), wildfire occurrence, fire growth, and
fire suppression.

3. Temporal Trends in Wildfire Occurrence in the U.S.A.

The historical record shows that the Western U.S.A. has generally experienced in-
creasing wildfire frequency and intensity over time [43,44,72–76]. Despite earlier research
that suggested that the Mississippi wildfire occurrence had decreased since the 1920s [77],
wildfire risk-related research on the Southeastern U.S.A. deserves more attention. This
is because of the droughts in recent years [78], dense population, and high probability of
risk from other wildfire-related hazards. Louisiana is particularly understudied regarding
wildfire, especially in light of the suggestion of [39] that PM2.5 concentrations in Louisiana
attributed to wildfire exceeded that of any other state except California in 2008.

4. Study Area

Louisiana was selected as the focus of this research for several reasons. Despite abun-
dant rainfall, the state can be subjected to periods of drought [79] and therefore wildfire,
which can have disproportionate impacts because of the heavy reliance of wet-environment
land uses, such as rice farming, industrial applications, and recreation. Moreover, as is
shown later, the future frequency of such periods of wildfire is expected to increase in
Louisiana as in much of the rest of the United States. Furthermore, the state is relatively
densely populated compared to most of the wildfire-vulnerable Western U.S.A., causing
anthropogenic activity to contribute substantially to the intensifying hazard and its hu-
man impacts. Finally, Louisiana-based studies on wildfires to date are largely limited to
environmental impacts [80–87], with substantially less work on risk assessment regarding
property.

Over the 2007 to 2016 period, an annual average of 1431 wildfires burned 14,950 acres
of forestland in Louisiana, with most of these fires caused by arson or human negligence,
exacerbated by human confrontation with nature [88]. Likewise, lightning was found to be a
minor cause of wildfire in nearby Mississippi compared to anthropogenic causes [77]. Using
the customary categorization of U.S. wildfires as large (>300 acres) or small (<300 acres),
Louisiana wildfires tend to be small, averaging about 10 acres in size [88]. Wildfire as
tabulated here does not include prescribed burns [89] or fires started in a building.
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5. Materials and Methods
5.1. Data

Because wildfire outside but near Louisiana can endanger the state, a 50-km buffer to
include the adjacent Texas, Arkansas, and Mississippi was analyzed along with Louisiana.
To characterize the historical wildfire probability, historical wildfire occurrence data from
1992 to 2015 from [90] and large wildfire burn probability from [91] were used. These
consider vegetation and other types of land cover. Projecting the future wildfire probability
relies on information from the fourth National Climate Assessment [92]. Ref. [92] follows
the method of the Intergovernmental Panel on Climate Change (IPCC) by running fossil
fuel emission scenarios termed “representative concentration pathways” (RCPs), with the
scenarios numbered based on the amount of radiative forcing (in W m−2) anticipated in
the year 2100, such that RCP8.5 is the most severe scenario. As in the vast majority of
contemporary climate change-based research, the model results using the RCPs are based
on the Coupled Model Intercomparison Project (CMIP; [93]). Results from IPCC’s fifth
assessment report are available in [92]. Other scenarios account for changes in economic
growth, environmental values, globalization, and regionalization. Louisiana census-block
shapefiles were downloaded from [94], and population projections are based on data
from [95]. Louisiana Department of Agriculture and Forestry (LDAF) detailed fire sum-
mary data for Louisiana (2007–2017; [96]) serve as a baseline for future property loss due
to wildfire.

5.2. Assessing Historical Wildfire Burn Probability

A method of computing both large and small fire probabilities is necessary here
because FSim focuses on large (>300 acres) fires [56] and fires in and near Louisiana are
primarily classified as “small.” The wildfire probability calculation follows the method
of [56], which uses the large fire (i.e., >300 acres) probability from FSim [97] supplemented
by a collection of small fire (i.e., <300 acres) probabilities from the Fire Protection Agency
(FPA) fire occurrence data [98]. The total probability was calculated as the sum of large and
small fire probabilities.

Large wildfire burn probability raster files were downloaded from the U.S. Department
of Agriculture [91]. Then, the large fire probabilities in Louisiana and its surroundings
(50 km buffer) were extracted. To extract the small fire probabilities, the nationwide fire
occurrence point-based shapefiles (1992–2015) from the U.S. Department of Agriculture [90]
were downloaded and fires larger than 300 acres were removed using GIS applications. The
small wildfire occurrence were then extracted for Louisiana and its surroundings. A total
of 73,501 small fire records existed in the study area. Planar kernel density analysis [99]
was then performed for the small fire data to produce a spatial distribution of fire density,
with a cell size set to 270 m to correspond to that used in the FSim layer, and a kernel
size of 50 km [56]. The cell area (270 m × 270 m = 72,900 m2) was then multiplied by the
resulting kernel density of fire. To identify the small fire probability over the smoothed
surface, the total number of fires (73,501) was divided by the kernel density, and this value
for each pixel was divided by 24 to compute the historical (1992–2015) annual probability.
To calculate the total fire annual probability, this small fire probability was added to the
large fire probability from FSim. The 50 km buffer was then removed via masking with the
Louisiana boundary. Finally, the wildfire burn probability of each census block p( f )i. was
extracted from the raster files at the centroid of each census block.

5.3. Assessing Future Wildfire Burn Probability

The first step in determining future wildfire burn probability was to quantify the
wildfire hazard for Louisiana. Ref. [100] modeled seasonal changes using the Keetch–
Byram Drought Index (KBDI; [101]), which has been commonly used to assess wildfire
probability [102], at the global scale. The A2a economic or environmental or globalization
or regionalization scenario, which assumes that the global population surpasses 10 billion
by 2050, with relatively slow economic and technological development, was found to create
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global CO2 mixing ratios of 575 parts per million (ppm) by 2050 and 870 ppm by 2100 [100],
compared to the current 418 ppm. Thus, it is not surprising that models consistently project
a warming global atmosphere [103], which would seemingly increase wildfire probability.

Nevertheless, such a projection of the future wildfire hazard intensity is not straight-
forward. Anticipated water scarcity and intensifying insect infestations, such as by the
southern pine beetle in Louisiana [104] in a warming world may mitigate the wildfire
hazard by reducing fuel from trees that are stunted or killed [103,105]. Other factors that
might at first glance seem to mitigate future wildfire occurrence may actually exacerbate
the wildfire hazard. For example, although daily precipitation totals are projected to
increase by 9–13% for Louisiana by 2050 amid a generally more extreme precipitation
climate nationwide by 2100 [103], the enhanced “per event” precipitation and the sharp
increase in the frequency of days having a greater than 90th percentile of precipitation are
accompanied by substantially more frequent “zero precipitation days” and small precipi-
tation totals that would fall within today’s zero-to-tenth-percentile [103]. This is because
the temporally warming atmosphere would require more atmospheric moisture before
saturation is reached, and therefore before precipitation could occur. Thus, the anticipated
increased precipitation totals could result in an enhanced wildfire hazard for Louisiana.
Furthermore, the anticipated weakening of steering circulation [106] that moves frontal and
tropical weather systems will leave longer interarrival times between intense precipitation
events. Such changes in both precipitation intensity and interarrival times would reduce
soil moisture, which in turn would increase the wildfire burn probability.

Ref. [103] acknowledged that projections of seasonal precipitation deficits lack confi-
dence, particularly regarding extratropical precipitation extremes [107] and that resulting
wildfire occurrence is likely to display great local and regional spatial heterogeneity. The
interplay between modeled trends in individual variables that may have compensating
effects in their influence on future wildfire intensity and probability also complicates re-
gional generalizations. Nevertheless, Ref. [103] recognized that the preponderance of
evidence suggests that enhanced evapotranspiration caused by increased temperatures
will outpace the projected increasing precipitation totals. The net result is likely to be soil
desiccation through this century over much of the continental U.S.A., at least under the
RCP8.5 scenario.

At the regional scale, Ref. [105] used three general circulation models and three IPCC-
based emission scenarios to conclude that median annual area of the Southeastern U.S.A.
affected by lightning-ignited wildfire will increase by 34%, human-ignited wildfires will
decrease by 6%, and total wildfire will increase by 4% by 2056–2060 compared with the
years 2016–2020. Such results are corroborated by [92], which suggestd an increase in
lightning-ignited wildfire by 2050 in the Southeastern U.S.A., including Louisiana [103].

The [103] projection for Louisiana is for small soil moisture decreases in autumn
relative to natural variability but large decreases relative to natural variability in the other
three seasons by mid-century, with a “medium” degree of confidence [103]. The earlier
KBDI work [100] (their Figure 5) estimated a similar result for Louisiana, but with more
precise soil moisture forecasted decreases of 50–150 mm per three-month period in autumn
and winter (September through February) and decreases of 200–250 mm per three-month
period in March through May and June through August. The midpoint of the time series
of the [100] projection was 2085; therefore our current research assumed that half of the
projected changes will occur by 2050. Thus, decreases of 25–75 mm per three-month period
(or 8–25 mm per month, with 17 mm per month as the midpoint) were projected for each
month from September through February in Louisiana by 2050. Decreases of 100–125 mm
per three-month period (or 33–42 mm per month, with 38 mm per month as the midpoint)
were projected for each month from March through August in Louisiana by 2050.

To provide more detail for Louisiana based on these results from [100], the mean
monthly precipitation data for 31◦ N, 91.5◦ W (the nearest available data point to the
center of the state) were input into the Web-based, Water-Budget, Interactive, Modeling
Program [108,109]. WebWIMP calculates decreases in soil moisture in the upper layers
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of 12.2% (February) to 46.1% (August). Thus, a 25% decrease in available moisture in the
organic matter and uppermost soil layers, and a 25% increase in wildfire susceptibility
across Louisiana by 2050 (F2050 = 1.25) was projected here. These calculations are not
without their caveats. For example, these changes did not take into account projected
changes in global air temperature. According to [110], historically unprecedented warming
by 2100 is to be expected in Louisiana under a higher emissions pathway.

5.4. Projecting Population

The method of projecting population (P) at the census-block (i) scale by the year
2050 followed that of [111–114]. Because annual census-block level population estimates
are unavailable, the process begain with parish- (i.e., county-) wide annual growth rate
calculations. For each of Louisiana’s 64 parishes (j), the average annual population growth
rate (rj) for the n-year (i.e., 40) period for which annual estimates [95] exist (i.e., 1980–2020)
was calculated, beginning in year y, as described by Equation (1):

rj =
∑

y+n
y

[
(Pj,y+1−Pj,y)

Pj,y

]
n

(1)

After rj was determined for each of Louisiana’s 64 parishes, the future population
change was downscaled to the census block (i), assuming that rj was the same for each
census block in its parish. The future population is then projected for each census block,
assuming that the currently unpopulated census blocks remained uninhabited through to
2050. For each i, the 2010 population was used as the base (i.e., P0, i = P2010,i) and the future
population was projected out to 2050 (i.e., Pf ,i = P2050,i), given an n-year period within
which the population changes (t), as shown in Equation (2):

Pf ,i = P0,ie
rjt (2)

This approach outperformed other methods that were tested. Specifically, the exten-
sion of a trend line of the parish-level population into the future proved impractical because
several parishes showed an insignificant trend line and low explained variance. A second
methodology tested was the extension of the growth rate trend line to approximate the
2050 population, but this proved problematic for the same cause. The abrupt, sizeable, and
temporary population redistributions both within and beyond Louisiana in the wake of
significant hurricanes (most notably Katrina in 2005), were likely contributors to the low
explained variance. The procedure selected was least sensitive to these concerns and was
also implemented effectively in [111,113,114].

5.5. Assessing Structure and Content Value

To evaluate the current and future structure values (SVs) in each census block, the
total number of buildings in each census block in 2010 (N2010,i) was acquired from [94] by
summing the buildings constructed during each time interval as reported in the shape-
files [112]. Then, this value was multiplied by the mean building value in 2010 in a given
census block (MV2010, i) to give the total SV in that census block (SV2010,i), as shown in
Equation (3):

SV2010,i = N2010,i ×MV2010,i (3)

The number of buildings in 2050 in a census block (N2050,i) was assumed to change
proportionately to population; therefore, the population projection described above was
used to scale the building inventory. The total SV in 2050 in a census block (SV2050,i) was
then calculated as the product of SV2010,i and the ratio of 2050 population to 2010 population
(Equation (4)).

SV2050,i = SV2010,i ×
P2050,i

P2010,i
(4)
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The economic but not sentimental worth of items on the damaged property is known
as the content value (CV; [114]). Ref. [115] calculated CV by multiplying SV by a structure-
to-content value ratio according to the type of occupancy in its National Structure Inventory
version 2.0 (i.e., NSI 2.0). CV was presumed to be equal to SV for residential, commercial,
and industrial structures in NSI 2.0 [115]. Ref. [115] recommended that CV be assumed to
be 50% of SV when its official depth-damage functions are unavailable, and [116] (pp. 6–9)
suggested assuming that CV is half of SV for all residential structures. As this research
included only residential structures, here the midpoint of these two estimates was taken
(Equation (5)).

CV = 0.75 SV (5)

The property value (PV) is the sum of SV and CV (Equation (6)).

PV = SV + CV (6)

5.6. Projecting Future Property Loss

Because the LDAF records show that from 2007 to 2017, 389 of the 12,979 Louisiana
residences that were threatened by fire were damaged [96], a conditional probability of
damage p(d| fi) of 0.03 was assumed (see Supplementary Materials). Then, the probability
of damage p(d)i was calculated as shown in Equation (7):

p(d)i = p( f )i × p(d| fi) (7)

Based on LDAF advice, each damaged building was assumed to have a loss of 5% of
the PV [96]; thus, d was 0.05. Future property loss due to wildfire (L) in census block i was
calculated as shown in Equation (8):

L2050,i = PV2050, i × p(d)i × d× F2050,i (8)

All losses are expressed in 2010 USD. Because of uncertainties in these assumptions,
a sensitivity analysis was conducted to demonstrate the impact of model assumptions
regarding F2050, SV to CV ratio, p(d| fi), and d. More specifically, each of these assumed
values was changed by +50%, to give a range of values for L2050,i.

Note that the calculation for historical annual property loss (L1992−2015,i) is simply

L1992−2015,i = PV2010, i × p(d)i × d (9)

with the 2010 property value being used at each census block PV2010,i. Annual per capita
and per building property loss in 2010 and 2050 by census block were calculated by dividing
by the population and building count, respectively.

To evaluate the current and future structure value (SV) in each census block, the total
number of buildings in each census block in 2010 (N2010,i) was acquired from [94] by sum-
ming the buildings constructed during each time interval as reported in the shapefiles [113].
Then this value was multiplied by the mean building value in 2010 in a given census block
(MV2010, i) to give the total SV in that census block (SV2010,i), as shown in Equation (3).

6. Results
6.1. Historical Wildfire Probability

The frequency of historical (1992–2015) wildfire incidents in the top twelve parishes is
shown in Figure 1A. The historical (1992–2015) wildfire burn probability ranged from 0
in coastal southeastern census blocks to 7.7% at a point in Cameron Parish (Appendix A),
in the extreme coastal southwest (Figure 1A). The west-central, east-central, and extreme
northwestern and southwestern parts of the state had the highest burn probability for
wildfire (Figure 1A). For parish-level planning purposes, it is also worthwhile to note that
Washington (the northeasternmost parish north of New Orleans and Lake Pontchartrain)



Climate 2022, 10, 49 8 of 26

was the most vulnerable parish, where the mean historical wildfire burn probability was
4.1% (Appendix A).
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6.2. Projected Future Wildfire Probability

The projected wildfire burn probability for 2050 is anticipated to range from 0 on the
southeastern coast to 9.6% at a point in Cameron Parish (Figure 1B; Appendix B). The high-
est wildfire burn probability among census block centroids is expected to be 8.6% in census
block 221179501012000 in Washington Parish. Washington will be the most vulnerable
parish, where the mean projected wildfire burn probability is 5.2% (Appendix B). Washing-
ton, St. Helena, Beauregard, Allen, Tangipahoa, St. Tammany, Vernon, Rapides, Livingston,
and Calcasieu are the top ten most vulnerable parishes in Louisiana (Appendices A and B),
whereas St. Mary, Iberia, Terrebonne, Assumption, and Lafourche are the least vulnerable
parishes (Appendices A and B). In general, the wildfire hazard is likely to remain con-
centrated in the same geographical areas of the state as in the historical record, but burn
probabilities are likely to increase (Figure 1A,B).

6.3. Projected Future Population

Using the values calculated in Equations (1) and (2), and assuming that the 102,781
census blocks in Louisiana that were inhabited in 2010 (from among the 203,447 total)
will remain the only blocks inhabited in 2050, the 2050 population density projection
was generated. The population is the greatest around New Orleans, Baton Rouge, and
Shreveport, the state’s three largest cities (Figure 2A). By 2050, the population will remain
concentrated in largely the same areas, but with increased population especially around
Lafayette, Baton Rouge, and north of New Orleans and Lake Pontchartrain (Figure 2B).
Population decreases are expected throughout northeastern Louisiana, along the Red River
Valley from Shreveport to the area southeast of Alexandria, in the New Orleans area, and
elsewhere (Figure 2B). Appendix C shows these values by parish.
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6.4. Historical and Projected Future Property Loss

The historical (1992–2015) average annual statewide property loss due to wildfire
was USD 5,556,389 (in 2010 USD). The wildfire risk is projected to increase statewide by
2050 due to intensifying negative impacts of climate change statewide, and increasing
population and development in many parts of the state, with projected annual loss of USD
11,167,496 by 2050 (in 2010 USD; Appendix D), an increase of 101%. Note that these values
do not include crop, forestry, or indirect losses (cost of evacuation, missed time at work,
etc.), which are likely to be high for wildfire as well. Thus, the loss estimates here are
conservative.

The maximum estimated property losses will remain concentrated near their present
locations, namely east-central, southwestern, and northwestern Louisiana (Figure 3A,B).
On a per capita basis, the historical (1992–2015) average annual per capita property loss
due to wildfire was only USD 1.23 (in 2010 USD) in Louisiana (Appendix D). Projected
per capita property loss is USD 1.97 by 2050 (in 2010 USD), giving an increase in annual
per capita property loss of 61% (Appendix D). The same general spatial distribution of per
capita property losses (Figure 4A,B) occured (and is projected to occur by 2050), as was
shown for absolute losses. The historical average annual per building property loss was
USD 2.83 (in 2010 USD) whereas the projected loss will be USD 4.63 (in 2010 USD) by 2050
(Appendix D). Thus, the annual per building property loss is projected to increase by 64%
in Louisiana. Again, the spatial distribution remains similar (Figure 5A,B).

At the parish level, St. Tammany (immediately north of Lake Pontchartrain and New
Orleans in east-central Louisiana) had the highest historical (1992–2015) overall wildfire
annual property loss (USD 1,560,580), per capita property loss (USD 6.68), and per building
property loss (USD 16.36) among the parishes (Appendix D). Changes in the wildfire
burn probability and expansion of population are projected to change the wildfire risk by
2050. Nevertheless, the greatest annual wildfire property loss (USD 4,633,439), per capita
property loss (USD 8.34), and per building property loss (USD 20.45) are expected to remain
in St. Tammany Parish (Appendix D).

At the census-block level, the highest historical average annual property loss due to
wildfire was in block 221030408035041 of St. Tammany Parish (USD 18,837). The highest
historical (1992–2015) average annual per building property loss (USD 37.35) was in census
block 221030407061032, also in St. Tammany Parish. The highest historical annual per capita
property loss in the state was USD 354.83 in census block 220919511002011, in St. Helena
Parish (east-central Louisiana, northwest of St. Tammany).



Climate 2022, 10, 49 10 of 26

By 2050, the greatest annual property loss due to wildfire is projected to be in census
block 221030408035041, in St. Tammany Parish (USD 55,950). The highest annual per capita
property loss (USD 443.54) is projected to be in census block 220919511002011 of St. Helena
Parish. The highest annual per building property loss (USD 46.68) is projected to be in
census block 221030407061032, in St. Tammany Parish.
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6.5. Sensitivity Analysis

If the wildfire burn probability in 2050 increases by 12.5% (i.e., F2050 = 1.125) or 37.5%
from the present (i.e., F2050 = 1.375), rather than the 25% increase (i.e., F2050 = 1.25) currently
assumed, the result would change by +10.0% (Table 1). If CV would be taken to be only
37.5% of SV. or 112.5% of SV, instead of the model-estimated 75% of SV, the sensitivity
was approximately +21.4% (Table 1). However, the model was much more sensitive to
variations in the other two variables included. Specifically, the greatest sensitivity in model
assumptions was that for p(d| fi) , which was derived as the conditional probability of
damage (0.03). If p(d| fi) was actually 0.015 or 0.045, the modeled annual loss in 2050
would change by 50% (Table 1). Same as sensitive was the percent of property damage (d).
If 2.5 or 7.5% of the property is damaged, rather than the 0.05 assumed in the model, the
annual loss in 2050 would change by 50% (Table 1).

Table 1. Sensitivity analysis of 2050 projections of Louisiana statewide annual property loss (i.e., risk)
due to wildfire, by parameter (in 2010 USD).

Parameter Low Scenario Modeled
(Equation (6)) High Scenario Difference from

Equation (8) (%)

Future
Condition
(F2050 )

USD 10,050,746
(+12.5%)

USD 11,167,496
(+25%)

USD 12,284,245
(+37.5%) ±10.0

Content to
Structure Value
Ratio (CV/SV )

USD 8,774,461
CV = 0.375 SV

USD 11,167,496
CV = 0.75 SV

USD 13,560,530
CV = 1.125 SV ±21.4

Conditional
Probability of

Damage p(d| fi)

USD 5,583,748
(p(d| fi)= 0.015)

USD 11,167,496
(p(d| fi)= 0.03)

USD 16,751,244
(p(d| fi)= 0.045) ±50.0

Percent of
Property

Damage (d)

USD 5,583,748
(d = 0.025)

USD 11,167,496
(d = 0.05)

USD 16,751,244
(d = 0.075) ±50.0

7. Discussion

While it is tempting to overlook the wildfire hazard in a state that receives abundant
rainfall, is susceptible to so many other, more calamitous hazards, and often suffers from
other more pressing economic hardships, the wildfire hazard in Louisiana is formidable
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and is expected to become more challenging in coming decades. The mean annual loss
(1992–2015) of USD 5.6 million (in 2010 USD) is projected to increase to USD 11.2 million (in
2010 USD) statewide by 2050. Wildfire is projected to be more costly than several other haz-
ards in the state, including lightning (USD 4.3 million; [111]), hail (USD 2.5 million; [111]),
and sinkholes (USD 0.3 million; [114]). Nevertheless, costlier hazards in Louisiana, such
as expansive soils (USD 91.8 million; [113]), tornadoes (USD 24.3 million; [111]), extreme
cold (USD 23.2 million; [111]), and wind (USD 20.5 million; [117]) continue to receive
disproportionately more attention. Thus, it is important to ensure that adequate resources
are devoted to preventing and mitigating the wildfire hazard, including but not limited
to, educating the public on the dangers of carelessness with managed fires. Additional
resources will be needed to combat the anticipated increased risk, especially in places
where the population is expected to increase.

The results from the sensitivity analysis offer insights regarding not only the uncer-
tainty in projections but also strategies for mitigating the future hazard. For example,
these results implied that investment in improved warning and response systems, which
would reduce p(d| fi) , and the development of fire-retardant structure and content materi-
als, which would reduce d, would seem to be wise mitigation measures. Such strategies
would likely overcome or at least strongly buffer any higher-than-anticipated climate
change-driven increases to the wildfire hazard, at least in Louisiana. The hope is that any
reductions in the ability to acquire resources to prevent or mitigate the hazard are offset
by improvements and innovations in technology to detect and combat the fires. If the risk
does indeed remain roughly proportionate to the population increase, resources to combat
the risk should be available, assuming that other economic and demographic factors also
change proportionately. For example, the vulnerability to wildfire under the uncertain
and complex conditions of response during the COVID-19 pandemic [118] would almost
certainly exacerbate losses [119].

8. Limitations

As in any research, this work had some caveats that should be acknowledged. The
lack of consideration of some natural features could limit the reliability of the findings.
For example, future projections of the property damage from the hazard did not consider
changes to vegetation type, fuel load, land use, or disturbance patterns, which might
change the future potential destructiveness of the fires. Recent research [120] suggested
that the fraction of available water (FAW) is a better predictor of large growing-season
wildfires than the KBDI. FAW is calculated as the ratio of plant available water to soil water
capacity. However, FAW has not yet been projected as confidently to 2050 as precipitation,
and until it can be predicted better, soil moisture projections are limited to those using
the KBDI.

Another set of limitations involves the population projection methodology, which
ignores abrupt changes in the future, such as migrations prompted by hurricanes or other
natural disasters [121], economic depression, or other extreme events. Another limitation
is the assumption, necessitated by data availability, of equal population growth rates for
every census block within a parish. Census-block-level population data are only available
at the decennial census; interim estimates are not provided at the census block level.
Therefore, we projected the population of a census block assuming that its population will
grow at the same rate as the parish in which it resides. This assumption is reasonable
because in most cases, the inhabited sections of a parish are small and the census blocks
therein are clustered. These small, clustered areas are likely to be affected similarly by
economic conditions, natural hazards, and other factors that would cause population
changes. Therefore, it is likely that the growth rate is similar. In addition, population
growth may not follow an exponential growth curve. This research also did not consider
changes in economic and demographic characteristics by 2050, which might alter the ability
of taxes to cover additional mitigation and prevention strategies. The absence of reliable
demographic projections for Louisiana based on more elaborate modeling necessitates these
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assumptions. As the spatial patterns of population change, one would expect the spatial
patterns of human-caused ignitions and fire likelihood to shift as well. These dynamics
were not represented in the current study; however, improvements and refinements in
these assumptions can be directly used in the developed methodology.

Furthermore, the loss calculations were limited by many assumptions. For example,
building replacement cost rather than building value could have given additional informa-
tion that would have assisted in some aspects of planning, such as for setting fire insurance
premiums. Likewise, the inclusion of industrial and commercial structures, crop value, and
especially timber resource value would have given a much more accurate estimate of the
total direct economic impact of wildfire. Finally, non-quantifiable features and assets are
important in community-level wildfire mitigation planning [122] but did not appear in this
property risk assessment.

9. Summary/Conclusions

This research developed a method for analyzing historical and future property losses
to wildfire in Louisiana, a U.S. state with a relatively dense population, abundant infras-
tructure, and a likely increasing susceptibility to long periods without rainfall. In contrast
to most work on spatial distribution of hazards, the analysis was done at the census-block
level, which provided a more suitable areal unit of analysis than the parish (i.e., county)
because of the fine-scale spatial variability and disparities in population, property, and in
some cases, natural vulnerability to the hazard.

Wildfire is a USD 5.6 million (in 2010 USD) hazard in the state, and is projected to dou-
ble by 2050 as the population grows, development along the WUI intensifies, and amplified
climatic changes combine to exacerbate the risk. However, the present areas of maxi-
mum risk—west-central, east-central, and extreme northwestern and southwestern coastal
Louisiana—were projected to remain the most vulnerable areas to this often-overlooked
hazard by 2050.

Wildfire risk assessment can be enhanced in future research by using ignition location
modeling or similar techniques to align future wildfire with shifts in population, especially
as population changes align with changing vegetation and/or land use/land cover types. In
addition, crop and forestry loss assessment due to wildfire could be conducted, particularly
because these are of such high value in many places, including Louisiana.

Future research should also be conducted to extend a similar methodology to other
hazards in other places, such as earthquakes, sinkholes, lightning, and hail. In a more
general sense, improved population, economic, and demographic forecasts are needed, so
that current and future risks to natural hazards, including wildfire, can be assessed more
accurately. As the accuracy of climate models improves, the reliability of future projections
for natural hazard risk will advance in their mission of protecting lives and property.
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Appendix A. Historical (1992–2015) Wildfire Burn Probability (%) by Louisiana Parish

Parish
Point-Based Parishwide

Min Max Mean Standard Deviation

Acadia 0.01 1.18 0.16 0.18

Allen 1.20 6.22 3.77 1.28

Ascension 0.01 1.04 0.36 0.24

Assumption 0.00 0.05 0.01 0.01

Avoyelles 0.06 1.23 0.29 0.21

Beauregard 2.01 5.39 3.87 0.47

Bienville 0.82 1.52 1.17 0.14

Bossier 0.71 2.06 1.14 0.24

Caddo 0.65 3.20 1.59 0.56

Calcasieu 0.13 6.48 1.82 1.07

Caldwell 0.45 1.64 0.99 0.27

Cameron 0.00 7.70 1.52 1.61

Catahoula 0.07 1.24 0.53 0.31

Claiborne 1.11 1.56 1.37 0.11

Concordia 0.06 0.46 0.18 0.08

De Soto 0.61 1.72 0.83 0.20

East Baton Rouge 0.05 2.92 0.64 0.54

East Carroll 0.06 0.36 0.21 0.07

East Feliciana 0.15 3.67 1.72 0.86

Evangeline 0.25 5.23 1.73 1.06

Franklin 0.07 0.78 0.24 0.14

Grant 1.18 2.07 1.74 0.20

Iberia 0.00 0.02 0.00 0.00

Iberville 0.00 0.36 0.03 0.04

Jackson 0.84 1.22 1.03 0.08

Jefferson 0.00 0.93 0.13 0.18

Jefferson Davis 0.04 2.52 0.72 0.56

Lafayette 0.01 0.09 0.02 0.01

Lafourche 0.00 0.08 0.01 0.01
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Parish
Point-Based Parishwide

Min Max Mean Standard Deviation

LaSalle 0.32 2.01 1.45 0.37

Lincoln 0.85 1.33 1.07 0.12

Livingston 0.51 4.41 2.15 0.95

Madison 0.06 0.33 0.13 0.06

Morehouse 0.30 0.96 0.64 0.14

Natchitoches 0.82 1.74 1.13 0.15

Orleans 0.08 2.31 0.93 0.54

Ouachita 0.37 0.89 0.64 0.13

Plaquemines 0.00 0.24 0.03 0.05

Pointe Coupee 0.03 0.17 0.08 0.03

Rapides 0.47 6.13 2.43 1.46

Red River 0.65 1.03 0.83 0.08

Richland 0.22 0.67 0.34 0.07

Sabine 0.81 2.16 1.35 0.30

St. Bernard 0.00 2.00 0.24 0.21

St. Charles 0.00 0.49 0.05 0.06

St. Helena 2.17 4.75 3.97 0.48

St. James 0.01 0.50 0.10 0.10

St. John the Baptist 0.01 1.47 0.46 0.37

St. Landry 0.03 0.76 0.17 0.13

St. Martin 0.00 0.06 0.01 0.01

St. Mary 0.00 0.01 0.00 0.00

St. Tammany 0.92 5.60 3.15 0.89

Tangipahoa 1.22 4.76 3.55 0.96

Tensas 0.06 0.68 0.18 0.12

Terrebonne 0.00 0.02 0.00 0.00

Union 0.65 1.22 0.89 0.12

Vermilion 0.00 0.53 0.04 0.06

Vernon 1.34 6.11 3.08 1.12

Washington 3.19 6.93 4.14 0.69

Webster 0.97 1.54 1.34 0.10

West Baton Rouge 0.02 0.19 0.07 0.04

West Carroll 0.19 0.56 0.39 0.07

West Feliciana 0.06 1.39 0.34 0.26

Winn 1.10 1.98 1.48 0.21
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Appendix B. Projected Wildfire Burn Probability (%) in 2050 by Louisiana Parish

Parish
Point-Based Parishwide

Min Max Mean Standard Deviation

Acadia 0.01 1.47 0.20 0.22

Allen 1.50 7.77 4.71 1.60

Ascension 0.02 1.30 0.45 0.30

Assumption 0.00 0.06 0.01 0.01

Avoyelles 0.08 1.54 0.36 0.26

Beauregard 2.51 6.73 4.83 0.59

Bienville 1.03 1.89 1.47 0.17

Bossier 0.89 2.57 1.43 0.31

Caddo 0.81 4.00 1.99 0.70

Calcasieu 0.16 8.10 2.28 1.33

Caldwell 0.56 2.05 1.23 0.33

Cameron 0.00 9.62 1.90 2.01

Catahoula 0.09 1.55 0.67 0.38

Claiborne 1.39 1.95 1.71 0.14

Concordia 0.08 0.58 0.22 0.10

De Soto 0.77 2.15 1.03 0.24

East Baton Rouge 0.06 3.65 0.80 0.67

East Carroll 0.07 0.45 0.26 0.09

East Feliciana 0.18 4.58 2.15 1.08

Evangeline 0.31 6.54 2.16 1.32

Franklin 0.08 0.98 0.29 0.17

Grant 1.47 2.59 2.17 0.25

Iberia 0.00 0.02 0.00 0.00

Iberville 0.01 0.45 0.04 0.05

Jackson 1.05 1.53 1.29 0.10

Jefferson 0.00 1.16 0.16 0.23

Jefferson Davis 0.05 3.15 0.89 0.69

Lafayette 0.01 0.11 0.03 0.02

Lafourche 0.00 0.10 0.01 0.01

LaSalle 0.40 2.51 1.81 0.47

Lincoln 1.06 1.67 1.34 0.16

Livingston 0.64 5.52 2.69 1.18

Madison 0.08 0.41 0.16 0.07

Morehouse 0.38 1.20 0.80 0.18

Natchitoches 1.02 2.18 1.42 0.18

Orleans 0.10 2.89 1.16 0.67

Ouachita 0.46 1.12 0.80 0.16
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Parish
Point-Based Parishwide

Min Max Mean Standard Deviation

Plaquemines 0.00 0.31 0.04 0.06

Pointe Coupee 0.04 0.22 0.09 0.03

Rapides 0.59 7.66 3.04 1.83

Red River 0.81 1.29 1.04 0.10

Richland 0.27 0.83 0.43 0.09

Sabine 1.02 2.70 1.69 0.37

St. Bernard 0.00 2.50 0.30 0.26

St. Charles 0.00 0.61 0.07 0.08

St. Helena 2.71 5.94 4.96 0.60

St. James 0.01 0.62 0.13 0.12

St. John the Baptist 0.01 1.84 0.57 0.47

St. Landry 0.04 0.95 0.21 0.16

St. Martin 0.00 0.07 0.02 0.01

St. Mary 0.00 0.02 0.00 0.00

St. Tammany 1.15 7.01 3.94 1.11

Tangipahoa 1.52 5.95 4.44 1.20

Tensas 0.08 0.85 0.23 0.15

Terrebonne 0.00 0.03 0.01 0.00

Union 0.81 1.52 1.11 0.15

Vermilion 0.00 0.66 0.05 0.08

Vernon 1.68 7.64 3.85 1.40

Washington 3.99 8.67 5.18 0.87

Webster 1.21 1.93 1.67 0.13

West Baton Rouge 0.03 0.24 0.08 0.04

West Carroll 0.24 0.70 0.49 0.09

West Feliciana 0.08 1.74 0.43 0.32

Winn 1.38 2.47 1.85 0.27

Appendix C. Louisiana Parish Population and Population Density, Both in 2010 and
Projected to 2050, and the Changes of Each

Parish
Population

(2010)
Population

(2050)

Population
Change

(2010–2050)

Density
(per km2)

(2010)

Density
(per km2)

(2050)

Density
Change

(2010–2050)
(per km2)

Acadia 61,773 67,309 5536 36.3 39.5 3.3

Allen 25,764 30,554 4790 13.0 15.4 2.4

Ascension 107,215 278,635 171,420 136.7 355.3 218.6

Assumption 23,421 22,875 (546) 24.8 24.2 (0.6)

Avoyelles 42,073 40,710 (1363) 18.8 18.2 (0.6)

Beauregard 35,654 45,242 9588 11.8 15.0 3.2
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Parish
Population

(2010)
Population

(2050)

Population
Change

(2010–2050)

Density
(per km2)

(2010)

Density
(per km2)

(2050)

Density
Change

(2010–2050)
(per km2)

Bienville 14,353 11,471 (2882) 6.7 5.4 (1.4)

Bossier 116,979 183,706 66,727 52.1 81.8 29.7

Caddo 254,969 238,795 (16,174) 105.1 98.4 (6.7)

Calcasieu 192,768 233,579 40,811 68.0 82.4 14.4

Caldwell 10,132 9248 (884) 7.2 6.6 (0.6)

Cameron 6839 5253 (1586) 1.4 1.0 (0.3)

Catahoula 10,407 7741 (2666) 5.4 4.0 (1.4)

Claiborne 17,195 15,467 (1728) 8.7 7.8 (0.9)

Concordia 20,822 17,145 (3677) 10.8 8.9 (1.9)

De Soto 26,656 28,631 1975 11.5 12.4 0.9

East Baton
Rouge

440,171 526,522 86,351 361.4 432.3 70.9

East Carroll 7759 4397 (3362) 6.8 3.8 (2.9)

East Feliciana 20,267 20,074 (193) 17.2 17.0 (0.2)

Evangeline 33,984 33,924 (60) 19.3 19.3 (0.0)

Franklin 20,767 17,005 (3762) 12.6 10.3 (2.3)

Grant 22,309 29,701 7392 13.0 17.3 4.3

Iberia 73,240 78,687 5447 27.4 29.5 2.0

Iberville 33,387 33,263 (124) 19.7 19.7 (0.1)

Jackson 16,274 14,727 (1547) 10.8 9.8 (1.0)

Jefferson 432,552 409,450 (23,102) 260.1 246.2 (13.9)

Jefferson
Davis

31,594 30,585 (1009) 18.5 17.9 (0.6)

La Salle 14,890 13,171 (1719) 8.7 7.7 (1.0)

Lafayette 221,578 361,856 140,278 317.8 519.0 201.2

Lafourche 96,318 112,609 16,291 25.3 29.6 4.3

Lincoln 46,735 54,630 7895 38.2 44.6 6.5

Livingston 128,026 314,726 186,700 71.5 175.7 104.3

Madison 12,093 8268 (3825) 7.2 4.9 (2.3)

Morehouse 27,979 19,510 (8469) 13.4 9.3 (4.1)

Natchitoches 39,566 37,548 (2018) 11.8 11.2 (0.6)

Orleans 343,829 310,135 (33,694) 379.5 342.3 (37.2)

Ouachita 153,720 167,523 13,803 93.9 102.4 8.4

Plaquemines 23,042 21,107 (1935) 3.5 3.2 (0.3)

Pointe
Coupee

22,802 20,338 (2464) 14.9 13.3 (1.6)

Rapides 131,613 125,227 (6386) 37.3 35.5 (1.8)

Red River 9091 7174 (1917) 8.7 6.9 (1.8)

Richland 20,725 18,611 (2114) 14.2 12.7 (1.4)



Climate 2022, 10, 49 19 of 26

Parish
Population

(2010)
Population

(2050)

Population
Change

(2010–2050)

Density
(per km2)

(2010)

Density
(per km2)

(2050)

Density
Change

(2010–2050)
(per km2)

Sabine 24,233 22,705 (1528) 9.2 8.7 (0.6)

St. Bernard 35,897 59,835 23,938 6.4 10.7 4.3

St. Charles 52,780 74,669 21,889 51.3 72.6 21.3

St. Helena 11,203 11,570 367 10.6 10.9 0.3

St. James 22,102 21,233 (869) 33.1 31.8 (1.3)

St. John the
Baptist

45,924 60,827 14,903 43.3 57.3 14.0

St. Landry 83,384 80,465 (2919) 34.3 33.1 (1.2)

St. Martin 52,160 68,297 16,137 24.7 32.3 7.6

St. Mary 54,650 41,198 (13,452) 18.8 14.2 (4.6)

St. Tammany 233,740 555,517 321,777 82.4 195.8 113.4

Tangipahoa 121,097 204,995 83,898 55.4 93.8 38.4

Tensas 5252 2529 (2723) 3.2 1.5 (1.6)

Terrebonne 111,860 129,437 17,577 20.7 24.0 3.3

Union 22,721 23,720 999 9.7 10.1 0.4

Vermilion 57,999 70,768 12,769 14.5 17.7 3.2

Vernon 52,334 47,403 (4931) 15.1 13.6 (1.4)

Washington 47,168 48,685 1517 26.9 27.8 0.9

Webster 41,207 35,843 (5364) 25.9 22.5 (3.4)

West Baton
Rouge

23,788 33,301 9513 45.1 63.1 18.0

West Carroll 11,604 9567 (2037) 12.4 10.2 (2.2)

West
Feliciana

15,625 19,823 4198 14.2 18.0 3.8

Winn 15,313 12,352 (2961) 6.2 5.0 (1.2)

Louisiana 4,533,372 5,661,868 1,128,496 33.4 41.7 8.3

Appendix D. Historical (1992–2015) Annual Average and 2050-Projected Property Loss,
per Capita Property Loss, and per Building Property Loss by Louisiana Parish
(2010 USD)

Parish
Annual Property Loss

Annual Per Capita
Property Loss

Annual Per Building
Property Loss

Historical
(1992–2015)

Projected
(2050)

Historical
(1992–2015)

Projected
(2050)

Historical
(1992–2015)

Projected
(2050)

Acadia 5834 7939 0.09 0.12 0.23 0.29

Allen 70,484 104,389 2.74 3.42 7.24 9.05

Ascension 79,001 256,591 0.74 0.92 1.94 2.42

Assumption 166 203 0.01 0.01 0.02 0.02

Avoyelles 13,541 16,395 0.32 0.40 0.75 0.94

Beauregard 132,231 209,560 3.71 4.63 8.79 10.99
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Parish
Annual Property Loss

Annual Per Capita
Property Loss

Annual Per Building
Property Loss

Historical
(1992–2015)

Projected
(2050)

Historical
(1992–2015)

Projected
(2050)

Historical
(1992–2015)

Projected
(2050)

Bienville 14,537 14,661 1.01 1.28 1.88 2.36

Bossier 151,806 297,915 1.30 1.62 3.08 3.84

Caddo 355,593 416,460 1.39 1.74 3.17 3.97

Calcasieu 262,914 398,089 1.36 1.70 3.20 4.00

Caldwell 9166 10,486 0.90 1.13 1.84 2.29

Cameron 11,858 11,474 1.73 2.18 3.30 4.10

Catahoula 4405 4104 0.42 0.53 0.90 1.13

Claiborne 18,779 21,171 1.09 1.37 2.42 3.02

Concordia 4071 4208 0.20 0.25 0.43 0.54

De Soto 22,093 29,624 0.83 1.03 1.80 2.25

East Baton
Rouge

318,443 476,118 0.72 0.90 1.70 2.12

East Carroll 774 555 0.10 0.13 0.27 0.33

East Feliciana 33,236 41,186 1.64 2.05 4.15 5.19

Evangeline 36,540 45,596 1.08 1.34 2.49 3.11

Franklin 3602 3702 0.17 0.22 0.40 0.50

Grant 33,168 55,078 1.49 1.85 3.73 4.67

Iberia 273 367 0.00 0.00 0.01 0.01

Iberville 1412 1759 0.04 0.05 0.11 0.14

Jackson 18,581 21,103 1.14 1.43 2.42 3.02

Jefferson 103,818 122,841 0.24 0.30 0.55 0.69

Jefferson
Davis

12,467 15,121 0.39 0.49 0.94 1.17

La Salle 19,561 21,701 1.31 1.65 2.98 3.72

Lafayette 7293 14,887 0.03 0.04 0.08 0.10

Lafourche 397 580 0.00 0.01 0.01 0.01

Lincoln 54,301 79,338 1.16 1.45 2.79 3.49

Livingston 321,625 987,898 2.51 3.14 6.41 8.01

Madison 831 717 0.07 0.09 0.17 0.22

Morehouse 15,877 13,870 0.57 0.71 1.28 1.60

Natchitoches 47,276 56,097 1.19 1.49 2.54 3.18

Orleans 226,704 255,825 0.66 0.82 1.19 1.49

Ouachita 114,107 155,416 0.74 0.93 1.77 2.21

Plaquemines 3075 3524 0.13 0.17 0.32 0.40

Pointe
Coupee

2493 2779 0.11 0.14 0.22 0.28

Rapides 267,425 318,269 2.03 2.54 4.80 6.00

Red River 6534 6460 0.72 0.90 1.58 1.98

Richland 4960 5580 0.24 0.30 0.58 0.72
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Parish
Annual Property Loss

Annual Per Capita
Property Loss

Annual Per Building
Property Loss

Historical
(1992–2015)

Projected
(2050)

Historical
(1992–2015)

Projected
(2050)

Historical
(1992–2015)

Projected
(2050)

Sabine 42,303 49,748 1.75 2.19 2.99 3.75

St. Bernard 12,487 25,996 0.35 0.43 0.74 0.93

St. Charles 1623 2869 0.03 0.04 0.08 0.10

St. Helena 49,864 64,279 4.45 5.56 9.68 12.10

St. James 2187 2627 0.10 0.12 0.26 0.32

St. John the
Baptist

9400 15,556 0.20 0.26 0.54 0.67

St. Landry 13,271 16,020 0.16 0.20 0.37 0.46

St. Martin 994 1625 0.02 0.02 0.05 0.06

St. Mary 44 41 0.00 0.00 0.00 0.00

St. Tammany 1,560,580 4,633,439 6.68 8.34 16.36 20.45

Tangipahoa 630,169 1,332,887 5.20 6.50 12.58 15.73

Tensas 1809 1109 0.34 0.44 0.54 0.67

Terrebonne 117 169 0.00 0.00 0.00 0.00

Union 21,337 27,811 0.94 1.17 1.88 2.35

Vermilion 650 988 0.01 0.01 0.03 0.03

Vernon 117,933 133,743 2.25 2.82 5.50 6.88

Washington 198,893 256,359 4.22 5.27 9.45 11.82

Webster 51,412 55,964 1.25 1.56 2.66 3.32

West Baton
Rouge

2469 4319 0.10 0.13 0.26 0.33

West Carroll 3879 4006 0.33 0.42 0.77 0.96

West
Feliciana

7375 11,668 0.47 0.59 1.45 1.82

Winn 16,342 16,634 1.07 1.35 2.26 2.82

Louisiana 5,556,389 11,167,496 1.23 1.97 2.83 4.63
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