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Abstract: Near the Atacama Desert, Tacna city in Peru is among the largest arid cities with constant
urban development, thus understanding of the urban surface thermal pattern is needed. We propose
a comprehensive study of the urban heat island phenomenon, with the objective of (1) determining
the spatial and temporal variations of the urban heat islands (UHIs), in the period 1985 to 2020;
(2) analyzing the relationship between the UHI and influencing factors such as vegetation, urban area,
and population, using indices calculated with satellite images. The Google Earth Engine repository
was used to evaluate the corrected images from the years 1985 to 2020. The coincidence between the
normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI)
was good, negative between NDVI and the land surface temperature (LST), attributable to dense
vegetation, and negative and very high (−0.81) between NDBI and NDVI, as massive urbanization
leads to the reduction in the vegetal surface. The NDBI has a high impact on the LST; a coefficient of
connections is recorded as 0.46. Tacna is a very arid region, and an increase in the time of the LST
occurred with the increase in industrialization and urbanization. The land use/cover change (LUCC)
evidences change in the climate in the city of Tacna; temperatures of 24.2 ◦C to 44.2 ◦C are observed
in the built-up areas. In vegetated areas, the temperature remains below 24 ◦C, which is associated
with a high rate of potential evapotranspiration. Thus, this study shows that variations in urban form
and growth have produced the development of intraurban surface thermal patterns.

Keywords: Landsat TM; land surface temperature; urban heat island; Atacama Desert

1. Introduction

With rapid urbanization, population growth, and anthropogenic activities, an increas-
ing number of major cities around the world are facing severe urban heat islands (UHIs) [1].
Urban heat island (UHI) is one of the clearest examples of inadvertent climate modification
due to humans [2]. Changes in the urban landscape resulting from rapid urbanization
and climate change have the potential to increase the land surface temperature (LST) and
the incidence of UHIs [3,4]. In recent decades, climate change has gained relevance and
is becoming crucial to assess the performance of buildings [5]. Political and technological
responses to rising UHI temperatures are discussed in several studies [6]; however, little is
known about their interaction [7].

Extreme heat events in urban centers in combination with air pollution pose a serious
risk to human health [8]. Cities around the world are facing various challenges related
to urbanization and climate change [9]. In this sense, cities are increasingly adopting
potentially sustainable climate plans [10]. The conditioning factors of the context and
typology of trees and their characteristics directly influence the effects of cooling in the
city [11].
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The UHI effect is a phenomenon of heat accumulation in the urban area due to
buildings and human activities [12]. It is recognized as the most evident characteristic of
the urban climate. The LST is one of the crucial parameters in the physical processes of the
Earth [13], but the acquisition of LST images with high spatial and temporal resolution is
currently difficult due to the technical restriction of thermal infrared sensors of satellites [14].
It is possible to estimate the LST from Landsat 5, 7, and 8 thermal infrared sensors, using
different sources of surface emissivity [15,16].

UHIs have been investigated in many regions of the world, but little attention has been
paid in South America [17]. In South America (Brazil), it was determined that morphology
directly interferes with the local microclimate; in the case of tropical cities, the increase
in temperature and the change in the dynamics of the winds can cause heat islands [18].
Vertical growth should eventually be used, combined with passive strategies to cool the
city, implementing the use of natural ventilation when available on the South American
coast [19]. Use of private vehicles should be reduced by planning a better public transport
system and a different distribution of land use patterns, seeking mixed land use, in order
to reduce the distances between homes, commercial premises, and others [17,18].

Urban growth is related to the change in land use, as a response to migratory issues,
but mainly to the increase in population [20] and other factors such as seismogenic charac-
teristics [21]; the relationship between change in use, land cover, and population growth
will allow us to understand various urban environmental problems [4,22].

There is a positive correlation between LST and the normalized difference built-up
index (NDBI), while the normal difference vegetation index (NDVI) indicates a negative
correlation with LST [23,24].

This work proposes a comprehensive study of the urban heat island phenomenon in
the city of Tacna, Peru, located at the head of the Atacama Desert, with the objective of
determining the spatial and temporal variations of the UHI, in the period 1985 to 2020; and
analyzing the relationship between the UHI and influencing factors such as vegetation,
urban area, and population, using indexes calculated from satellite images.

The study of UHIs and their spatiotemporal variability, in correlation with vegetation
indexes, is a useful urban planning tool for policy makers, planners, and urban investors,
mitigating the accelerated degradation of the environment and improving the quality of
life of its inhabitants.

2. Materials and Methods
2.1. Study Area

The study area is located in the Tacna region (Figure 1), located at the head of the
Atacama Desert, in the extreme south of Peru and north of Chile (17◦55.90′–18◦8.60′ South
Latitude, 70◦12.86′–70◦19.56′ West Longitude of Greenwich). The city, according to the
2017 Population and Housing Census, has 329,332 inhabitants that constitute 1.1% of the
Peruvian population and an annual average growth rate of 1.3% (calculated from 2007
to 2017). The regional economy grows at an average of 4.8% per year compared to the
national growth of 2.4%, highlighting mining as the main economic activity with a 50.9%
share. In this region, the availability of water to meet the demands of the population
and for agricultural use is increasingly scarce [24–30]. This region is located in one of
the main deserts in the world [30]; it has a hyperarid climate and is attributed to its
subtropical location [31,32]. The climate is also defined by its geographical location, where
two thirds of its territory is in the coastal region, which is characterized by a dry climate
with temperature variations between 12 ◦C and 30 ◦C and with occasional and scarce
rains [33,34]. The demographic growth has modified land use and surface coverage; within
this context, a polygon has been determined, currently made up of the districts of Tacna,
Alto de la Alianza, Calana, Ciudad Nueva, Pocollay, Gregorio Albarracín, and La Yarada
(see Figure 1).
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Figure 1. Location map of the study area, Tacna city, Peru. (a) Location of Peru in South America,
(b) location of Tacna in Peru, and (c) urbanized area in Tacna.

2.2. Obtaining and Processing Satellite Images

It is possible to use multispectral images from Enhanced Thematic Mapper Plus
(ETM) and Operational Land Imager (OLI) sensors. They have a spatial resolution of 30 m
for visible and infrared shortwave spectra, and a temporal resolution of 16 days [35,36].
This work begins with the acquisition of data from the Google Earth Engine repository,
LANDSAT/LT05/C01/T1_SR and LANDSAT/LC08/C01/T1_SR, to continue with the
average annual evaluation of images obtained from the years 1985 to 2020, and they are
radiometrically, atmospherically, and geometrically corrected at the level of reflectance on
the Earth’s surface (Figure 2).

Figure 2. Work diagram with the Landsat 5 and 8 satellite images on the Google Earth Engine
platform, to obtain the temporal maps (1993–2020), and the characterization of the spatial variability
of the heat indices.
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2.3. Estimation of LST

To estimate the LST, we rely on Landsat thermal infrared observations [37–40], of
which only Landsat 8 carries two thermal bands [14]. Table 1 presents the wavelength
range and spatial resolution of each Landsat thermal band, along with the time period of
operation. LST estimation requires surface emissivity information from external sources.
Table 2 shows the LST scenes downloaded from Landsat, using the Remote Sensing Lab [14].

Table 1. Landsat 5 and 8 thermal bands: wavelengths, spatial resolution, and time period.

Thermal Band(s) Wavelength (µm) Spatial Resolution (m) Time Period

Landsat 5 Band 6 10.40–12.50 120 (30) 1 February 1993–February 2007

Landsat 8
Band 10 10.60–11.19

100 (30) 1 March 2015–March 2020Banda 11 11.50–12.51
1 Thermal band data are acquired at a lower resolution and resampled with cubic convolution at a higher spatial
resolution before distribution as products by USGS.

Table 2. Downloaded LST scenes, Landsat, Remote Sensing Lab (http://rslab.gr/downloadsLandsatLST.html)
(accessed on 14 February 1993).

Data Year Product Identifier Sensing Time
(hh:mm:ss) Patch Row

Landsat 5
1993 LT05_002072_19930214 14:03:36.040 02 72
1993 LT05_002073_19930214 14:03:59.833 02 73

Landsat 5
2007 LT05_002072_20070205 14:36:37.054 02 72
2007 LT05_002073_20070205 14:37:00.884 02 73

Landsat 8
2017 LC08_002072_20170405 14:41:11.327 02 72
2017 LC08_002073_20170405 14:41:35.257 02 73

Landsat 8
2020 LC08_002072_20200312 14:41:31.582 02 72
2020 LC08_002073_20200312 14:41:55.511 02 73

2.4. Data for LST Estimation

The data source of this work refers to the acquisitions of Landsat 5 and 8, provided by
the USGS and included in the Google Earth Engine (GEE) data catalog. GEE provides easy
access to satellite products and their processing is directly on the platform, without the
need to download them, making simultaneous image combination and processing feasible.
Herein, Ermida et al.’s script was used, which is available for Landsat 4, 5, 7, and 8 [41].

2.5. Estimation of UHI

The UHI index was estimated as [42]:

UHI =
Ts− TMean

SD

where Ts is the LST of a certain point in ◦C and TMean is the mean LST of the entire study
area in ◦C. SD is the standard deviation.

2.6. The Ecological Valuation of Tacna Urban Heat Island

The rate of variation of the urban thermal field (UTFVI) was used to quantitatively de-
scribe the urban heat island effect [43]. UTFVI can be calculated using the equation below:

UTFVI =
Ts

Ts− TMean

where UTFVI is the variance index of the urban thermal field.

http://rslab.gr/downloadsLandsatLST.html
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To reflect the changes in the urban thermal field, UTFVI can be divided into six levels
according to six different ecological evaluation indices [43]. Table 3 shows the specific
thresholds in the six levels of UTFVI.

Table 3. The threshold of ecological evaluation index.

Urban Thermal Field Variance Index Urban Heat Island Phenomenon Ecological Evaluation Index

<0 None Excellent

0.000–0.005 Weak Good

0.005–0.010 Middle Normal

0.015–0.015 Strong Bad

0.015–0.020 Stronger Worse

>0.020 Strongest Worst

2.7. Determination of Indices

The normalized difference vegetation index (NDVI) is obtained using the reflectance
of the near infrared (NIR) and the reflectance of the visible red part (RED) [39]. It is an
index used to estimate the quantity, quality, and development of vegetation, by means of
remote sensors commonly installed on a space platform. Its values fluctuate between −1
and 1, values above 0.1 indicate the presence of vegetation, and the higher the value of this
index, the better the vigor conditions [40].

NDWI is an index that is used to demarcate bodies of water and improve their existence
through remote sensing data based on visible and near-infrared radiation; there are lots of
indexes for the analysis of built-up areas. The normalized difference built-up index (NDBI)
remote sensing data help us calculate the accumulation index, using the mid-infrared band
(MIR) and the near-infrared band (NIR) [11]; also, the NDBI value lies between −1 and +1,
negative values represent water bodies whereas a higher value represents built-up areas.
The NDBI value for vegetation is low. Table 4 shows the formulas to calculate these indices
and their respective references.

Table 4. Vegetation index equations.

Index Description Equation Reference

NDVI Normalized Difference Vegetation Index NDVI = NIR−RED
NIR+RED [39,40]

NDWI Normalized Difference Water Index NDWI = NIR−SWIR
NIR+SWIR [11]

NDBI Normalized Difference Built-up Index NDBI = MIR−NIR
MIR+NIR [11]

2.8. Population Growth

Population growth in the period 1981 to 2021 shows a gradual growth and a growing
trend, starting in 2007, as a result of the earthquake that occurred in the Tacna region in
2001 [18]. The northern area of the city has the most vulnerable soils, where the greatest
damage occurred, which caused the migration of the population from the districts of the
north to the south of the city, which translates into an increase in the building floor area.
A change in use from bare land to an urban area in these expansion areas is decisive
for the UHI effect. The rapid and disproportionate growth in the southern part of the
city caused the search for structures that favor urban development, which is becoming a
great challenge.

2.9. Extraction of Predictor Variables for Classification

Land use/cover change (LUCC) is an important indicator of the impact of climate
change and human activity. Table 5 shows the temporal evolution of the water surface,
urban areas, agricultural area, and bare soil surface in the study area.
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Table 5. Land use and land cover types in the study area.

LUCC Classes Description

Water surface Tank, pond, river, etc.

Urban areas Urban and rural built-up, roads, buildings, and concrete structures

Agricultural area Urban plantation, agricultural plantation, bushes, etc.

Bare soil surface Exposed rock, waste lands, bare soil, impervious surface, etc.

Supervised classification requires predictor variables as input data. We use the spectral
bands Landsat 5, Landsat 8, NDVI, NDBI, and NDWI from satellite images to improve the
predictive capacity of the model.

The RF algorithm was carried out on the Google Earth Engine platform, and was
implemented with the smileRandomForest package [40]. The package was chosen for its
usefulness in comparing models using a common syntax.

RF is an ensemble classifier consisting of decision trees; it classifies by bootstrap aggre-
gation, which results in the production of different training subsets and a variety of trees
where each tree provides a classification result for the unchosen samples. Hyperparameter
optimization for RF using the smileRandomForest [44] package and the caret package
syntax is relatively simple since there are only two hyperparameters: (1) the number of
decision trees and (2) the number of random variables available in each node (mtry). Accu-
racy tends to increase with additional decision trees, but plateaus after a point. In general,
a value of 500 is considered to be more than sufficient to reach this plateau when using few
reference data with few classes (<10) and small sample sizes (<200) [44,45]. Optimizing the
number of random variables is also relatively simple, with values ranging from 1 to the
number of predictor variables (which in this case is the number of bands multiplied by the
number of images used in the data set) [45].

Models with optimized hyperparameters were replicated 50 times to obtain mean and
standard deviation values for model accuracy statistics. Models were trained using 70% of
the samples from each class, samples were randomly selected each time the model was run,
and predictors were scaled and centered before classification. Confusion matrices were
produced for each of the replicates using the remaining 30% of the samples from each class.
Classification maps were produced by taking the most frequent value in any pixel of the
40 predictions of the classification model.

2.10. Accuracy Evaluation

Land use maps derived from image classification often contain some errors. Therefore,
it is very important to evaluate the accuracy of the obtained classification results [46]. The
error/confusion matrix is a common method used to measure the accuracy of classified
images. This matrix compares the information obtained by reference points with that
provided by the classified image in certain sample areas. The reference points of 1993,
2007, 2017, and 2020 were obtained from high-resolution images on the Google Earth
Engine platform, and indices such as NDVI, NDBI, and NDWI, coupled to the expert
judgments and interpretations from our team. For the 2020 image, random landmarks in
different types of cover and land use were recorded from the Global Positioning System
(GPS) field survey. In total, 30% of the reference points were used to generate a reference
error/confusion matrix for land use and cover types that have large area coverage, while
land use and cover types with a small area coverage included water areas. User precision,
producer precision, overall precision, and Cohen’s kappa coefficient were then calculated
from the produced confusion matrix. This study adopted next equation from previous
studies [45,46] for the calculation of the kappa coefficient.

K =
N ∑r

i=1 Xij −∑r
i=1 Xi+X+i

N2 −∑r
i=1 Xi+X+i
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where K is the kappa coefficient (Table 6), r is the number of rows and columns in the error
matrix, N is the total number of observations (pixels), Xij is the observation in row i and
column j, Xi+ is the marginal total of row i, and X+i is the marginal total of column j.

Table 6. Observations of the agreement for the kappa coefficient.

Kappa-Hat Value Nature of the Agreement

0.8 ≤ k ≥ 1 Almost perfect agreement

0.61 ≤ k ≥ 0.8 Substantial agreement

0.41 ≤ k ≥ 0.6 Moderate agreement

0.21 ≤ k ≥ 0.4 Fair deal

0.0 ≤ k ≥ 0.2 Slight agreement

k < 0.0 Bad deal

The kappa statistic is considered the most suitable measure of accuracy of LUCC maps,
as it provides much better discrimination between classes than overall accuracy [46]. In
this study, to run the kappa statistic, 376 sample sites were selected from the entire map for
the year 1993, 444 for the year 2007, 435 for the year 2017, and 322 for the year 2020 [46,47].

3. Results and Discussion
3.1. Demographic Data Analysis Results

In the city of Tacna, the demographic and concentrated growth of around 91% of
the department has generated the accelerated disorderly urban growth and occupation of
areas susceptible to natural phenomena. The situation has become a problem for physical
security of the inhabitants due to the location of the city, and it is observed that the district
of Gregorio Albarracin from 1993 to 2020 had a significant growth (Figures 3 and 4).

Figure 3. Population growth by district, according to the study area (1981–2021).

3.2. LUCC Analysis Results

The evaluation of the accuracy of LUCC has also been analyzed with the help of the
kappa coefficient. For the 1993 LUCC, the kappa value was 0.92, for 2007 the kappa value
is 0.89, for 2017 it is 0.96, and for the year 2020 the kappa value is 0.94 (Table 7), which
means that both the land use and land cover classification can be interpreted as in almost
perfect agreement.
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Figure 4. Multitemporal growth by districts from 1981 to 2020.

Table 7. 1993–2020 land use and land cover accuracy assessment.

Year Land Cover Ground Water Surface Urban Areas Agricultural Area Bare Soil Total User Accuracy Kappa Coefficient (k)

1993

Water surface 5 0 0 0 5 100

0.92

Urban areas 0 12 0 3 15 80

Agricultural area 0 0 38 0 38 100

Bare soil 0 2 0 38 40 95

Total 5 14 38 41 98

Producer accuracy 100 85.7 100 92.6 378.3

Overall accuracy 0.95

2007

Water surface 26 0 0 0 26 100

0.89

Urban areas 0 35 0 2 37 95

Agricultural area 0 0 50 0 50 100

Bare soil 0 9 0 26 35 74

Total 26 44 50 28 148

Producer accuracy 100 80 100 93 372.4

Overall accuracy 0.92

2017

Water surface 23 0 0 0 23 100

0.96

Urban areas 0 25 0 3 28 89

Agricultural area 0 0 41 0 41 100

Bare soil 0 0 0 23 23 100

Total 23 25 41 26 115

Producer accuracy 100 100 100 88 388.5

Overall accuracy 0.97

2020

Water surface 31 0 0 0 31 100

0.94

Urban areas 0 23 0 2 25 92

Agricultural area 0 0 28 0 28 100

Bare soil 0 1 1 15 17 88

Total 31 24 29 17 101

Producer accuracy 100 96 97 88 380.6

Overall accuracy 0.96
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LUCC maps have been classified into four classes, viz., bodies of water, urban area,
vegetation, and vacant land and/or bare soil. In 1993, the urban area was observed to be
24.71 km2 (Figure 5), for the year 2020 there was a gain in urban occupation reaching an
area of 62.27 km2, and, in parallel, vacant land or bare land was reduced from 133.79 km2

to 83.59 km2. The percentage of area under each LUCC category is represented in Table 8.
There was a gain in cultivation area until 2020, growing by 6.6%, and the bodies of water
are assumed to be negligible and without impact because Tacna is a city with a high
water deficit.

Figure 5. Temporal variation (from 1993 to 2020) of the water surface, urban areas, agricultural area,
and bare soil surface.

Table 8. LUCC area percentage for each category.

LUCC Category
Percentage (%)

1993 2007 2017 2020

Water surface 0.1 0.3 0.4 0.3

Urban areas 13.3 27.0 31.3 33.4

Agricultural area 14.5 14.7 18.0 21.1

Bare soil surface 71.9 57.7 50.0 44.9

3.3. Verification of Spatial Feature Data

Spectral signature analysis of the urban and other control classes and the spectral
profiles for the various classes are presented in Figure 6. Water, bare soil, vegetation, and the
urban area show potentially different spectral characteristics along the spectral wavelength.
However, the bare ground and urban classes are visually similar by having common shapes
along the spectral wavelength, however, there is a slight difference in reflectance values.

The spectral profile in each pixel represents the unique components of reflectance
as a function of the wavelength of the objects (µm). Thus, this allows us to distin-
guish different objects with similar appearances but different spectral features. Pixel
reflectance values in four types were downloaded (urban coverage, bare soil, water, and
vegetation) with wavelength values from 0.43 µm to 2.29 µm. This was done using the
ID for the Landsat 8 satellite image corrected for surface reflectance (using ID LAND-
SAT/LC08/C01/T1_SR/LC08_002073_20200312, 12 March 2020: 14 h 41 m 55.51 s) which
was available in the Google Earth Engine repository.
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Figure 6. Spectral profile of urban area and control classes.

For the water profile, the highest reflectance is observed in the visible spectrum (blue
band 2) of wavelength equal to 0.45 µm, while decreasing towards the near-infrared region
with wavelengths equal to 0.76 µm. The vegetation profile depends on several characteris-
tics (type of species, environmental changes to vegetation cover) and it is interpreted as
low in the visible spectrum, even with an increase in green color due to the chlorophyll
of the leaves with a value of 0.59 µm, and the reflectance increases in the near infrared
due to low energy absorption by plants 0.76 µm. In the mid-infrared region, there is a
significant decrease across wavelengths as the plant water absorbs the energy. The urban
profile depends on the characteristics of air, water content, granulometric structure, and
texture, as buildings are smooth structures, implying that the reflectance increases along the
wavelength. In the bare soil, we observe that these non-cultivated soils present a different
signature to cultivated soils, and there is an increase along the wavelength since there are
no plants that can absorb water.

3.4. Correlation Analysis between LST and Spatial Features (NDVI, NDWI, NDBI)

Correlations are established between LST, built-up areas, bodies of water, and vege-
tation. The maps were obtained for the late summer season in March, due to cloud-free
conditions and little atmospheric haze. In this sense, we established a relationship between
NDVI and NDBI. Figure 7a shows a negative correlation (coefficient of −0.57) between
NDVI and LST for the year 2020, this is attributed to dense vegetation that does not al-
low the Earth’s surface to receive more radiation. Figure 7b shows a positive correlation
between LST and NDBI (coefficient of 0.29), which indicates that there is an increase in
surface temperature due to an increase in urbanization and in general infrastructure, and
this is a surrogate correlation for population. Figure 7c shows a negative correlation (coeffi-
cient of −0.50) between LST and NDWI, mainly due to high values of specific water heat.
Figure 7d shows a negative correlation (coefficient of −0.81) between NDVI and NDBI,
which means that massive urbanization development brings reduction in vegetation.
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Figure 7. (a) Relationship between LST and NDVI, (b) LST and NDBI, (c) LST and NDWI (2020),
(d) NDVI and NDBI.

3.5. Correlation Analysis between LST and Population Data

Figure 8 shows the spatial and temporal changes for LUCC (a), LST (b), and NDVI (c).
It is clear that urban areas have increased during recent years (from 13.3% in 1993 to 33.5%
in 2020). Agricultural areas have increased slightly, and bare soil surface is located along
the borders of the domain. More details are presented using the cross section A–B.

3.6. Discussion on the Causes of LST Changes

On a local scale, the climate has changed which is evidenced by the change in the
LUCC [25,48,49]. The rate of change in temperature is prominent in the impermeable soil
surface [4,50]. To obtain the correlation between LST and LUCC, a cross section (A–B) was
generated for each land surface temperature map (1993, 2007, 2017, and 2020) of the late
summer season in each year evaluated (Table 9, Figures 8a and 9). It is observed that on
the impermeable surface, mainly in the built area, the temperature varies from 24.2 ◦C to
44.2 ◦C, with high temperatures prevailing. Likewise, in areas of vegetation the temperature
remains below 24 ◦C, which is associated with a high rate of potential evapotranspiration.

The analysis of the change in temperature of the land surface in time series in relation
to land use and land cover units has extracted the change in temperature of the land surface
for the years 1993, 2007, 2017, and 2020 for the summer seasons (Figures 8b and 10). For
the summer season of 1993, the maximum temperature was 48.1 ◦C and the minimum
was 29.4 ◦C. However, in 2007 the surface temperature increased in summer, reaching a
maximum of 51.3 ◦C and a minimum of 27.1 ◦C. Thus, for 2020 there was an increase in
its average to 40.3 ◦C, and it is clear that the maximum temperature during the summer
increased up to 0.8 ◦C, compared to the temperature of the year 2017 (Table 9).
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Figure 8. Temporal variation period 1993 to 2020 for maximum summer values. (a) LUCC, (b) LST,
and (c) NDVI.

Table 9. LST statistics for the study period.

Statistical
LST ◦C 1993 2007 2017 2020

Count 8603 8603 8603 8603

Mean 38.7 41.0 37.8 40.3

Std 3.03 3.4 3.1 3.1

Minimum 29.4 27.5 25.7 24.1

25% 36.4 38.2 35.2 38.0

50% 39.3 41.5 38.2 40.7

75% 41.0 43.8 40.2 42.7

Maximum 48.1 51.3 47.9 48.7
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Figure 9. Representation of the dispersion and symmetry of LST, for the years 1993, 2007, 2017, and 2020.

Figure 10. Cross section temporal profiles A–B of LST and NDVI for the years (a) 1993, (b) 2007,
(c) 2017, and (d) 2020, between 1993 and 2020, we observed a sustained increase in NDVI and, in turn,
a growth in LST.

On a micro level, the climate has changed with the change in LUCC units. The rate of
temperature change is very prominent on the impermeable surface [4,48]. For correlation
between LST and NDVI units, a cross section (A–B) was drawn for each map of Earth’s
surface temperature (1993, 2007, 2017, and 2020) of the summer season (Figures 8c and 10).
Both figures show that on the impermeable surface, mainly in the vegetation area, the
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NDVI peaks change inversely proportional to the LST, and the temperature is low due to
the high transpiration rate. It varies from 30 ◦C to 35 ◦C and high temperatures also prevail
in bare soils, where the temperature ranges from 48 ◦C to 51 ◦C. High temperatures are
consistent with desertic places because it is located at the head of the Atacama Desert, and
the urban area is another unit of land cover responsible for the increase in temperature.

3.7. UTFVI Review Results

Given that a large part of the analysis area is settled in the morphological units of
coastal plains and part of the dissected flank that goes from rugged to hills with steep
slopes, for the LUCC temporal analysis of 2020 more than 55% of the land mass of the
territory of analysis is developed. Most of the remaining undeveloped land is hills and
plains. All of these undeveloped areas have low or no green vegetation cover and excellent
ecological assessment index. Due to Tacna’s limited land development, most of the urban
development exists in the districts of Gregorio Albarracin, along Tacna’s far northwest,
and in scattered settlements in the new territories. Concentrated urban development
leads to a degraded eco-environment in these built-up areas with the worst ecological
assessment index.

From Figure 11, 2020, it is clear that extreme levels have appeared in the ecological
evaluation within the urban area of Tacna: the excellent (<0) and the worst (>0.02) categories.
The UTFVI ecological assessment classification map of Tacna can also provide useful
information for urban environmental managers to assess eco-environmental quality. The
serious phenomenon of urban heat island calls for more reasonable city design and urban
development to protect the ecological environment in the future urban plan of Tacna, as is
achieved in other similar cities. Based on Figure 11, the middle area of the southwest was
bad in 2017, but good in 2020, and this is due to the shrinkage of urban areas.

Figure 11. Representation for 1993–2020 of (a) UHI, (b) UTFVI classification map of ecological
evaluation in Tacna.
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Figure 12 shows temporal changes (from 1993 to 2020) of the UHI intensity in relation
to the area (%). The UHI intensity was classified in five different levels: very low, low,
moderate, high, and very high. Results show that moderate level UHIs have slightly
increased for the last three decades (1993: 66.6%, 2020: 69.3%), very low level UHIs have
decreased in area (1993: 9.50%, 2020: 6.09%), high level UHIs have slightly increased (1993:
11.81%, 2020: 12.88%), and very high level UHIs have slightly decreased (1993: 2.44%,
2020: 5.11%).

Figure 12. Temporal changes of UHI intensity in relation to area.

4. Conclusions

For the conditions free of clouds and atmospheric haze, in the study period, correla-
tions were established between LST, built-up areas, bodies of water, and vegetation, giving
good connections between NDVI and NDBI. Likewise, a negative relationship between
NDVI and LST is presented for the year 2020, attributable to dense vegetation that does not
allow the Earth’s surface to receive radiation.

There is a very high negative correlation (−0.81) between NDBI and NDVI, which
means that massive urbanization leads to the reduction in vegetated area. NDBI has a high
impact on the LST; a coefficient of connections is recorded as 0.46, as the city of Tacna is one
of the most arid regions of Peru, and an increase in the LST is expected with the increase in
industrialization and urbanization in the coming years.

The change in the LUCC evidences change in the climate in the city of Tacna since it is
observed that in the built areas the temperature varies from 24.2 ◦C to 44.2 ◦C, with high
temperatures prevailing. In the vegetation areas, the temperature remains below 24 ◦C,
which is associated with a high rate of evapotranspiration.

From the correlation analysis of the recovered LST with NDVI and NDBI, it was found
that green land can weaken the urban heat island effect, but built-up land can accelerate
the effect. Therefore, we have learned that more attention should be paid to urban greening
in future city planning and development.

From the calculation of the ecological evaluation index using the UTFVI classification,
it is seen that Tacna has the strongest urban heat island phenomenon and the worst
ecological environment, strongly calling for more reasonable urban design and urban
development in the future.

This study was performed using freely available remote sensing data for estimating
the UHI in the Tacna area. In the present study, the UHI estimation does not consider
additional climatic and landscape parameters and it was focused mostly on the summer
period, thus a deeper study (including monitoring efforts) should be developed, especially
for arid cities.
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