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Abstract: The algorithm of the Convective Rainfall Rate with Microphysical Properties (CRRPh)
product of the 2021 version of the Nowcasting and Very Short Range Forecasting Satellite Application
Facility (NWC SAF) presents innovative characteristics. It was developed employing principal com-
ponents analysis to reduce the number of utilized parameters and uses the same mathematical scheme
for day and night, simulating the missing visual channels and satellite-derived cloud water path infor-
mation that is unavailable during nighttime. Applying adequate statistical methodologies and scores
and using rain gauge data as ground truth, it is shown that the new algorithm appears to be signifi-
cantly improved compared to its predecessors in regard to the delineation of the precipitation areas.
In addition, it minimizes the day–night difference in the estimation efficiency, which is a remarkable
achievement. The new product suffers from slightly higher errors in the precipitation accumulations.
Finally, it is shown that topography does not seem to affect the estimation efficiency of the product.
In light of these results, it is argued that, overall, the new algorithm outperforms its predecessors and,
possibly after adequate adaptations, can be used as a real-time total precipitation product.

Keywords: satellites; NWC SAF; nowcasting; precipitation; estimation efficiency; categorical statistics;
error statistics; topography

1. Introduction

Environmental satellite data availability and quality increase exponentially with time,
allowing their extensive use in a wide spectrum of applications. Geostationary meteoro-
logical satellites such as the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) Meteosat series are ideal for monitoring fast-evolving weather phe-
nomena due to their high refresh rate, despite their relatively lower resolution compared to
polar-orbiting satellites.

To maximize the exploitation of the Meteosat series data on nowcasting, (EUMETSAT)
established in 1997 the Satellite Application Facility on support of the Nowcasting and Very
Short Range Forecasting Satellite Application Facility (NWC SAF). A software package that
allows the generation of a series of products from geostationary satellites was developed,
aiming to support nowcasting and very short-range forecasting for the areas covered by
the field of view of the Meteosat satellites. In its later versions, it also includes support for
other meteorological satellites, such as the GOES [1] and the new Himawari [2] satellite
series. More about NWC SAF can be found on the facility’s website [3].

Two kinds of products are devoted to providing precipitation rate: convective rainfall
rate (CRR) and convective rainfall rate from microphysical properties. Among the last three
versions of the NWC SAF software (GEO v2016, GEO v2018, and GEO v2021), the CRR
product remains unchanged. The convective rainfall rate from microphysical properties
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of the 2016 version (GEO v2016) was a daytime product and was upgraded in the 2018
version (GEO v2018) to operate under nighttime conditions, while in the 2021 version (GEO
v2021), a new, improved algorithm was released. To avoid confusion. we will refer to the
Convective Rainfall Rate from Cloud Physical Properties algorithm of version GEO v2018
as CRR-Ph v2018, to the new algorithm (GEO v2021) as CRRPh v2021 and to convective
rainfall rate as CRR v2021. More about CRR v2021 and CRRPh v2021 can be found in the
user’s manual [4], the Algorithm Theoretical Basis [5], and the Scientific and Validation
Report [6] that are available on the NWC SAF website [3]. Information about CRR-Ph v2018
can be found in the user’s manual [7], the Algorithm Theoretical Basis [8], the Scientific and
Validation Report [9], and the Scientific Report on response to the ESSL testbed feedback
on NWC SAF precipitation products [10], also available on the NWC SAF website [3].

A variety of satellite precipitation products are available nowadays. The Climate
NOAA CPC Morphing Technique (CMORPH) [11,12], the Global Precipitation Measure-
ment (GPM) Integrated Multi-satellite Retrievals (IMERG) [13,14], the Tropical Rainfall
Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) [15–17], the
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN) [18–22], the EUMETSAT Satellite Application Facility on Support to
Operational Hydrology and Water Management (H-SAF) precipitation products [23,24],
and the Soil Moisture To Rain (SM2RAIN) datasets [25,26] are among the most commonly
used. They are based on different methodologies and present various spatial and temporal
characteristics. It should be noted, however, that many of them are not available in near
real-time mode. In order to improve their accuracy, they ingest input data from various
sources, such as for example from rain gauge data, radar data, and soil moisture data. This
introduces a significant delay that extends from hours to months. The NWC SAF precipita-
tion products focus on computing estimations in real-time mode, with only satellite and
numerical weather prediction (NWP) forecast model data information as input in the basic
configuration.

Regarding the efficiency of the various versions of CRR, CRR-Ph, and CRRPh products,
the literature is rather limited. Marcos et al. [27] showed that the CRR v2013 daytime
algorithm overestimates the extent of the precipitation areas and underestimates the higher
rain intensities. They also showed that CRR-Ph v2013 performs better than CRR v2013, but
for high solar zenith angles, it overestimates the precipitation rates. An underestimation of
the precipitation areas of the strongest rainfall was found for both products. Pelajić [28]
showed an improvement in CRR-Ph v2013 efficiency under better illumination conditions
(lower sun zenith angles (SZAs)). Comparing convective cases estimations against rain
gauge observations, he demonstrated an overestimation of lower precipitation rates and
suggested that the product is not suitable for the estimation of high precipitation rates.
According to Marcos et al. [29], who evaluated the efficiency of CRR v2016 and CRR-Ph
GEO v2016 using data from the Spanish radar network as ground truth, the mean error
(ME) and the mean absolute error (MAE) of CRR v2016 were 0.82 mm/h and 1.55 mm/h,
respectively, while the probability of detection (POD) and false alarm rate (FAR) were
53.74% and 45.53%. In regard to CRR-Ph v2016, ME was 0.68 mm/h, MAE was 1.42 mm/h,
POD was 54.89%, and FAR was 43.09%. It is worth mentioning an improvement of the
statistics for better illumination conditions. Tapiador et al. [30], using the Spanish radar
network data as ground truth, showed that CRR-Ph v2016 is superior to CRR v2016 for
the delineation of convective precipitation areas and also for the estimation of rainfall
rates. The CRR v2016 product efficiency was assessed by Hill et al. [31]. In their analysis,
they compared Tropical Africa V6 GPM IMERG-Final estimations against CRR v2016 from
1 March 2019 to 31 July 2019. They noticed that the day algorithm is superior to the night one.
Rainfall rates below 3 mm/h were often missed, which is expected as CRR v2016 attempts
to filter out stratiform precipitation. In addition, they demonstrated that the hit rate is
increased with increasing precipitation threshold up to 5 mm/h, but it decreases afterwards.
False alarms are increased continuously as they move to higher thresholds, but after the
5 mm/h limit, the rate of increase is reduced. Karagiannidis et al. [32] compared CRR and
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CRR-Ph v2016 against rain gauge data for a full year over the Greek area. They showed
that CRR v2016 overestimates the extent of the precipitation areas and underestimates the
rainfall totals. They also suggested that the CRR v2016 nighttime algorithm is inferior
to the CRR-Ph v2016 algorithm in regard to the delineation of precipitation areas, and it
overestimates the precipitation totals. Their analysis also highlighted important differences
in the performance for different seasons. Finally, Diamandi et al. [33] also used rain gauge
data from five warm-period months over Romania as ground truth to assess the degree
of efficiency of the CRR and CRR-Ph v2018.1 products. They found a slightly better POD
for CRR-Ph v2018.1 and relatively high FARs for both products. They argued that the
products overestimate the extent of precipitation areas and rainfall rates and also that a lot
of precipitation cases were not identified.

In the present paper, we attempt to compare the estimation efficiency of the CRRPh
v2021 product to the efficiency of the CRR-Ph v2018 and CRR v2021 using rain gauge
data as ground truth. The influence of selected topographic features on the efficiency
of CRRPh v2021 is also examined. Section 2 briefly presents the algorithm of the new
product, Section 3 describes the data, Section 4 presents the methods used in the analysis,
and Section 5 illustrates the most important results. Finally, Section 6 summarizes the
conclusions of the study.

2. The CRRPh v2021 Algorithm

Details about the algorithm can be found in the Algorithm Theoretical Basis docu-
ment [5]. To briefly present the key features of the innovative GEO v2021 algorithm of
CRRPh, the algorithm was developed using principal component Analysis (PCA) in order
to reduce the number of independent variables (dimensions) of the model while keeping
the maximum amount of information. By reducing the dimensions, it is expected to also
reduce the noise introduced in the estimation of precipitation. At the same time, the com-
putational time is also reduced. The principal components are used to develop a lookup
table (LUT). During the day, the visible channels offer very important information for the
computation of most products of NWC SAF, including cloud water path (CWP) [34–36] and
precipitation products, resulting in superior estimations compared to nighttime. In order
to minimize that difference, the CRRPh v2021 uses the same algorithm during daytime and
nighttime, which implies to generate a pseudo visual channel centered at 0.6 µm (VIS06)
and a pseudo cloud water path for nighttime, since those channels are mandatory inputs.
The method to simulate both VIS06 and CWP inputs is also based on PCA.

3. Data

A full year (2019) of precipitation products and rain gauge (RG) data are used in the
analysis. To generate the NWC SAF precipitation products an NWP model is needed,
together with the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite data
and other optional input data. The Global Forecast System (GFS) model was used. The
horizontal resolution of the model used is 0.25 degrees, and parameters are available in
31 pressure levels (1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 350, 400, 450, 500,
550, 600, 650, 700, 750, 800, 850, 900, 925, 950, 975, 1000 hPa) and surface. Sea surface tem-
perature data at 1 degree’s horizontal resolution derived from the Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA) were ingested into the software. Meteosat-11
data in high-rate transmission (HRIT) format were processed. Stability correction was ap-
plied, while lightning correction was not applied. The day–night sun zenith angle threshold
was kept to the default value of 70 degrees.

In order to assess the influence of topographical features, such as elevation, slope, and
aspect, the shuttle radar topography mission (SRTM) digital elevation model of version 4
at 90 m resolution is used. Slope is the degree of inclination of the ground surface, while
aspect is the compass direction or azimuth that a ground surface faces. Slope and aspect
were computed using the 8 nearest grid points around each RG. More about the digital
elevation model can be found in [37,38].
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The rain gauge (RG) observations that are used in the analysis are extracted from
the historical database data of the network of meteorological stations of the National
Observatory of Athens (NOA). More about the network can be found in Lagouvardos
et al. [39]. 315 RGs were finally selected after a quality and completeness screening. All
rain accumulations were checked for erroneous values based on comparisons against
neighboring stations and reports from local authorities and individuals. All time series
of the analysis have a minimum completeness of 90%. Each of the RGs accumulates
precipitation every 10 min, namely at HH:00, HH:10, HH:20, HH:30, HH:40, and HH:50,
where HH is the hour. The precision of the gauges is 0.2 mm. Figure 1 depicts the locations
of the 315 GRs, distributed over mainland and islanding regions of Greece.
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The RG observations and the precipitation product estimations were temporarily
upscaled to 1 h in order to be comparable, following the procedures described below.

Regarding the RGs, the upscaling was straightforward. A simple addition of the six
10-min observations within the hour amounts to the hourly accumulation (e.g., the addition
of 12:10, 12:20, 12:30, 12:40, 12:50, and 13:00 accumulations results in the 12:00–13:00
accumulation).

Regarding the computation of the 1-h precipitation products accumulations, the up-
scaling was based on a two-step approach. First, the instantaneous rain rates of each time
slot are converted to 15-min rain accumulations after a division by a factor of 4, since each
hour comprises four 15-min periods. Then, the four instantaneous precipitation rates are
added to obtain the hourly accumulation. The Greek area is scanned by SEVIRI around
10 min after the nominal scan time. Therefore, the addition of 12:00, 12:15, 12:30, and
12:45 accumulations (scanning Greece around 12:10, 12:25, 12:40, and 12:55) results in the
12:00–13:00 precipitation accumulation of each of the NWC SAF products.

4. Methodology

Since the RG sites and the SEVIRI pixel centers do not coincide, a direct comparison
between them is not feasible. Moreover, an analysis using only the closest SEVIRI pixel
may suffer from the so-called “double penalty problem”. To address these two issues, the 4
nearest SEVIRI pixel centers are used in the analysis. Each RG observation is compared
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against the CRR v2021, CRR-Ph v2018, and CRRPh v2021 estimations of (i) the nearest
SEVIRI pixel (ii) the maximum value of the 4 nearest SEVIRI grid pixels, and (iii) the mean
value of the 4 nearest SEVIRI grid pixels. Categorical and error statistics are computed
and analyzed. The analysis showed that the results of the nearest value and the maximum
value of the 4 nearest pixels analyses do not deviate significantly from those of the mean
value analysis and certainly do not present qualitative differences. Since the mean value
is considered the more balanced indication of the product estimations compared to the
nearest neighbor or the maximum value of the 4 nearest pixels, the results of the mean value
analysis are considered as indicative of the overall estimation efficiency of the products. In
the following paragraphs, only results from the mean value analysis will be presented.

Two issues had to be considered before proceeding with the computation of the
statistics. The first one is that the analysis is made for day and night separately. To
discriminate between day and night, the sun zenith angle (SZA) of each pixel is extracted
from the auxiliary outputs of NWC SAF software. A single value has to be computed for
each of the three approaches (nearest pixel value, maximum value of 4 nearest pixels, mean
value of 4 nearest pixels). Regarding the nearest pixel analysis, the SZA of the specific time
and pixel is used. For the mean and maximum value of the 4 nearest pixels, the mean value
of SZA of those 4 nearest pixels is used.

The second issue is the exclusion of noncloudy pixels. The non-cloudy pixels that are
expected to result in correct negatives are the majority and therefore will inflate positively
some statistics. To avoid that artificial improvement, it was decided to exclude non-cloudy
pixels from the analysis of all products. In order to do so, the parallax-corrected cloud
mask, as computed by the CMA product, is used. Only those pixels categorized as “cloudy”
are kept in the analysis.

4.1. Categorical Statistics

In order to assess the efficiency of each product in the identification of precipitation ar-
eas, regardless of rain intensity, their estimations are considered as a dichotomous (yes/no)
parameter. To compute the necessary statistics, one has to first define the elements of a
contingency table (see Table 1).

Table 1. Contingency table.

RG Observation
Yes No Total

yes Hits False alarms Satellite estimation yes
Satellite

observation no Misses Correct negatives Satellite estimation no

Total RG observation yes RG observation no Total

When the satellite estimation is equal or over a threshold of precipitation, the estima-
tion is considered positive (“yes”); otherwise, the estimation is considered negative (“no”).
When the RG measurement is equal or higher, the threshold the observation is considered
positive (“yes”); otherwise, the observation is considered negative (“no”). The precipitation
threshold in the present analysis is set equal to the precision of the RGs which is 0.2 mm.

The “hits”, “misses”, “false alarms”, and “correct negatives” are defined as follows:

1. “Hits” are the events that were positively estimated and were actually observed
(satellite estimation “yes”/RG observation “yes”);

2. “Misses” are the events that were negatively estimated but did actually occur (satellite
estimation “no”/RG observation “yes”);

3. “False alarms” are the events that were positively estimated but did not actually occur
(satellite estimation “yes”/RG observation “no”), and;

4. “Correct negatives” are the events that were negatively estimated and were not
observed by the RG (satellite estimation “no”/RG observation “no”).
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Finally, four categorical statistics are computed and then analyzed, according to the
following formulas.

Probability of Detection:

POD =
hits

hits + misses
(1)

POD indicates the fraction of the observed “yes” events that were positively estimated by
the product.

False Alarm Ratio:
FAR =

false alarms
hits + false alarms

(2)

FAR indicates the fraction of the positive estimations that did not actually occur.
BIAs Score:

BIAS =
hits + false alarms

hits + misses
(3)

BIAS is an indication of the overall overestimation or underestimation of the product.
Values over 1 suggest overestimation, while values below 1 suggest underestimation.

Accuracy:

Accuracy =
hits + correct negatives

total
(4)

Accuracy is the fraction of the estimations that are correct. It is strongly influenced by the
number of correct negatives.

4.2. Error Statistics

To obtain an indication of the accuracy of the estimation of precipitation accumulations,
four statistics are computed, according to the following formulas:

Mean Error:

ME =
∑N

i=1(Ei −Oi)

N
(5)

Mean Absolute Error:

MAE =
∑N

i=1|Ei −Oi|
N

(6)

Root Mean Square Error:

RMSE =

√
∑N

i=1(Ei −Oi)
2

N
(7)

Normalized Mean Absolute Error:

NMAE =
MAE
Mean

(8)

where Ei is the estimation of the algorithms, Oi is the observation of the RGs, N is the total

number of estimation–observation pairs, and Mean = ∑N
i=1 Oi

N is the average value of the
observations. More information about the statistics used can be found in [40].

5. Results
5.1. Categorical Statistics
5.1.1. 24-H Categorical Statistics

The categorical statistics, without distinction between day and night, are initially
examined. Table 2 summarizes the results. POD is clearly higher for CRRPh v2021,
reaching an overall 61% against 38.3% for CRR-Ph v2018 and 30.0% for CRR v2021. This is
quite a remarkable improvement for the new algorithm.

POD for CRRPh v2021 presents a rather weak seasonality. Winter in Greece is domi-
nated by precipitation of very limited convection, while summer precipitation is mostly of
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convective nature, and spring and autumn are showing a mixed behavior. The fact that CR-
RPh v2021 shows increased sensitivity regardless of season is a much-desired characteristic
and suggests that the new algorithm is efficient in the identification of precipitation areas,
regardless of the precipitation type.

CRRPh v2021 FAR is slightly higher than CRR-Ph v2018 and CRR v2021. It reaches
an overall 50.3%, with the higher value found for the summer dataset (60.0%) and the
lower for winter (43.4%). CRRPh v2021 is less selective than the two previous products;
however, the difference is rather small. In combination with the clearly higher sensitivity
of the new algorithm, it is argued that the higher overestimation of the precipitation areas
is an acceptable tradeoff, and overall, CRRPh v2021 outperforms the two other products.

The analysis of BIAS suggests that CRRPh v2021 overestimates the precipitation areas,
while CRR v2021 underestimates them and CRR-Ph v2018 presents a mixed behavior with
overestimation for summer, underestimation for winter and autumn, and no indication of
overestimation or underestimation for spring. The seasonal difference of CRR-Ph v2018 is
a non-desirable characteristic, since it lowers the end user’s trust in the product.

Finally, Accuracy is high for all the products, ranging from 80.1% for winter CRR-Ph
v2018 to 92.4% for summer CRR v2021. However, as noted in the methodology section,
Accuracy is strongly affected by the number of correct negatives. In our analysis, the correct
negatives are the overwhelming majority. For example, during summer, for the CRRPh
v2021 product, the total number of correct negatives is 55,653, while the total number of
hits, misses, and false alarms is just 16,072, which amounts to only around 29% of the
correct negatives.

Table 2. Twenty-four-hour categorical statistics for CRRPh v2021, CRR-Ph v2018, and CRR v2021.

Year Winter Spring Summer Autumn

POD (%) 61.0 56.3 65.8 66.4 65.6
CRRPh v2021 FAR (%) 50.3 43.4 57.4 60.0 50.8

BIAS 1.2 1.0 1.5 1.7 1.3
Accuracy (%) 83.2 80.6 85.7 86.3 82.9

POD (%) 38.3 32.8 46.1 53.5 39.2
CRR-Ph v2018 FAR (%) 44.9 40.3 53.1 53.5 36.9

BIAS 0.7 0.6 1.0 1.1 0.6
Accuracy (%) 84.5 80.1 87.6 88.9 86.0

POD (%) 30.0 23.9 34.3 37.5 37.7
CRR v2021 FAR (%) 49.8 43.1 60.2 56.7 43.1

BIAS 0.6 0.4 0.9 0.9 0.7
Accuracy (%) 85.6 80.7 87.8 92.4 86.8

5.1.2. Daytime Categorical Statistics

Daytime categorical statistics are summarized in Table 3. During daytime, the POD
difference between CRRPh v2021 and CRR v2021 remains very high; however, the difference
between CRRPh v2021 and CRR-Ph v2018 is quite diminished compared to the 24-h analysis.
A remarkable 75.5% POD is found for the CRRPh v2021 summer dataset. FAR is slightly
lower for daytime compared to the 24-h analysis in almost every case, but the difference
is very small. Small differences are noted for BIAS too; however, the general tendency
of CRRPh v2021 to overestimate, of CRR v2021 to underestimate, and of CRR-Ph v2018
to present a mixed behavior remains valid for daytime datasets too. Finally, Accuracy
retains very high values, which is expected since correct negatives dominate the daytime
datasets too.
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Table 3. Daytime categorical statistics for CRRPh v2021, CRR-Ph v2018, and CRR v2021.

Year Winter Spring Summer Autumn

POD (%) 67.1 59.9 70.6 75.5 73.1
CRRPh v2021 FAR (%) 48.2 35.5 55.8 59.9 46.1

BIAS 1.3 0.9 1.6 1.9 1.4
Accuracy (%) 87.2 85.6 87.7 87.8 88.2

POD (%) 61.8 56.8 62.8 70.1 67.2
CRR-Ph v2018 FAR (%) 37.9 28.6 45.2 50.8 33.1

BIAS 1.0 0.8 1.1 1.4 1.0
Accuracy (%) 89.8 87.0 90.8 90.9 91.2

POD (%) 31.1 22.4 34.7 38.1 45.0
CRR v2021 FAR (%) 47.5 35.8 55.7 59.2 42.7

BIAS 0.6 0.3 0.8 0.9 0.8
Accuracy (%) 90.5 86.2 91.4 94.6 92.3

5.1.3. Nighttime Categorical Statistics

The nighttime categorical statistics are presented in Table 4. What is more interesting
in the analysis of the nighttime statistics is the fact that CRRPh v2021 POD holds high
values that are comparable to the daytime and the 24-h ones. For example, the POD of
the 24-h dataset is 61.0%, for the daytime dataset is 67.1%, and for the nighttime dataset
is 58.8%. On the contrary, CRR-Ph POD presents much lower values. CRR v2021 POD
presents similar and rather low values for daytime and nighttime. CRRPh v2021 FAR
values are similar for daytime and nighttime, while the relatively lower FAR values that
CRR-Ph v2018 is exhibiting during daytime are increased for nighttime to levels similar
to CRRPh v2021. The overestimation of CRRPh v2021 is slightly decreased for nighttime,
as indicated by the BIAS values, while both CRR-Ph v2018 and CRR v2021 underestimate
during nighttime. Accuracy holds high values since correct negatives are the majority
during nighttime too.

Table 4. Nighttime categorical statistics for CRRPh v2021, CRR-Ph v2018, and CRR v2021.

Year Winter Spring Summer Autumn

POD (%) 58.8 55.3 63.0 59.0 63.2
CRRPh v2021 FAR (%) 51.1 45.5 58.3 60.1 52.3

BIAS 1.2 1.0 1.5 1.5 1.3
Accuracy (%) 81.2 78.9 84.2 84.8 80.5

POD (%) 29.3 25.7 36.4 40.0 29.9
CRR-Ph v2018 FAR (%) 49.4 46.1 59.0 56.8 39.5

BIAS 0.6 0.5 0.9 0.9 0.5
Accuracy (%) 81.8 77.7 85.4 86.8 83.5

POD (%) 29.4 24.6 34.2 36.9 34.6
CRR v2021 FAR (%) 51.0 45.9 63.2 53.7 43.4

BIAS 0.6 0.5 0.9 0.8 0.6
Accuracy (%) 80.1 76.5 83.1 85.3 81.5

5.2. Error Statistics
5.2.1. 24-H Error Statistics

The error statistics, without distinction between day and night, are summarized in
Table 5. We consider the normalized MAE (NMAE) as a more representative metric than
MAE when examining the errors of the estimated precipitation accumulations because
MAE does not take into consideration the mean observed precipitation. However, having
an indication of the relative deviation from the mean is very important when trying to
assess the efficiency of the estimations. For example, seasonality can lead to significantly
different average precipitation, and therefore MAE alone cannot give an indication of the
efficiency of the algorithm. In simple words, it is quite different to have an MAE of 1 mm
with a mean observed value of 10 mm than an MAE of 1 mm with a mean observed value
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of 1 mm. The average absolute errors of the first case are clearly smaller than those of the
second case when compared to the average measurement of the parameter, suggesting a
more efficient estimation for the first case.

The normalized absolute errors (NMAEs) of CRRPh v2021 are higher during autumn,
smaller during spring and the whole year, and present the lower values during winter
and summer seasons. CRR-Ph v2018 and CRR v2021 seem to perform slightly better than
CRRPh v2021, especially during autumn. Overall, it seems that the normalized absolute
errors are comparable to the average observed values of precipitation, with the exception
of CRRPh v2021 autumn when they are higher.

ME reveals the dominant sign of the errors and therefore the overall tendency of the
product to overestimate or underestimate precipitation accumulations. At the same time,
since the signs of the errors are included in the computation of the metric, errors of opposite
signs will cancel each other, thus ME is not a good indication of the magnitude of deviations
from the mean. CRR v2021 strongly underestimates precipitation accumulations, while
CRR-Ph v2018 also underestimates them but to a smaller degree. CRRPh v2021 is in general
more balanced with the exception of autumn where a clear overestimation is evident.

CRRPh v2021 presents the highest absolute errors (MAEs), ranging from 1.7 mm for
winter and spring to 3.1 mm for autumn. CRR-Ph v2018 follows with MAE ranging from
1.5 mm for spring to 2.5 mm for summer while the lowest MAEs are found for CRR v2021,
ranging from 1.3 mm for spring to 2.2 mm for autumn. Overall, CRRPh v2021 carries higher
accumulation errors than CRR-Ph v2018 and CRR v2021.

Comparing RMSE to MAE for each product, it is found that RMSE is higher than MAE
by a factor that ranges from 1.6 to 2.0. Only small fluctuations between seasons are noted;
therefore, it is argued that the influence of outliers does not present significant seasonal
variations. The increase factor is slightly smaller for CRRPh v2021, but since MAE is also
smaller, it is argued that the influence of outliers does not present a profound difference
between the three products.

Table 5. Twenty-four-hour error statistics for CRRPh v2021, CRR-Ph v2018, and CRR v2021.

Year Winter Spring Summer Autumn

NMAE (unitless) 1.2 1.0 1.2 1.0 1.4
CRRPh v2021 ME (mm) 0.3 0.0 0.4 −0.2 1.1

MAE (mm) 2.0 1.7 1.7 2.4 3.1
RMSE (mm) 3.7 2.7 2.9 4.3 5.7

NMAE (unitless) 1.0 1.0 1.1 1.0 1.1
CRR-Ph v2018 ME (mm) −0.6 −0.8 −0.3 −0.6 −0.6

MAE (mm) 1.8 1.6 1.5 2.4 2.5
RMSE (mm) 3.5 2.9 2.9 4.6 4.7

NMAE (unitless) 0.9 0.9 0.9 1.0 1.0
CRR v2021 ME (mm) −1.1 −1.2 −0.8 −1.2 −0.9

MAE (mm) 1.6 1.4 1.3 2.1 2.2
RMSE (mm) 3.0 2.5 2.4 4.1 4.2

5.2.2. Daytime Error Statistics

Daytime error statistics are presented in Table 6. NMAE presents rather similar values
that range from 0.8 (winter for CRRPh v2021) to 1.2 (winter for CRR-Ph v2018), suggesting
minor differences between the products. As indicated by the inspection of ME, CRR v2021
strongly underestimates precipitation accumulations, while CRR-Ph v2018 and CRRPh
v2021 in general overestimate the accumulations. From the analysis of RMSE and MAE, it
is deduced that the outliers present limited seasonal fluctuations and also small differences
between the three products.
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Table 6. Daytime error statistics for CRRPh v2021, CRR-Ph v2018, and CRR v2021.

Year Winter Spring Summer Autumn

NMAE (unitless) 1.0 0.8 1.1 1.1 1.1
CRRPh v2021 ME (mm) 0.1 −0.2 0.3 0.1 0.7

MAE (mm) 1.7 1.4 1.5 2.6 2.5
RMSE (mm) 3.1 2.3 2.5 4.5 4.2

NMAE (unitless) 1.1 1.2 1.1 1.0 1.0
CRR-Ph v2018 ME (mm) 0.3 0.4 0.2 −0.1 0.2

MAE (mm) 1.9 1.9 1.6 2.5 2.2
RMSE (mm) 3.5 3.4 2.9 4.6 4.0

NMAE (unitless) 0.9 0.9 0.9 1.0 1.0
CRR v2021 ME (mm) −0.9 −1.1 −0.7 −1.2 −0.5

MAE (mm) 1.5 1.2 1.2 2.2 2.2
RMSE (mm) 2.9 2.2 2.3 4.3 4.2

5.2.3. Nighttime Error Statistics

The nighttime error statistics are presented in Table 7. CRR-Ph v2018 and CRR v2021
NMAE values are around 1, but CRRPh v2021 has higher values for the autumn, spring,
and year datasets. Comparing the values of 24-h, daytime, and nighttime analyses, it
becomes evident that the higher values of NMAE of CRRPh v2021 are associated with
nighttime since daytime values revolve around 1. CRR-Ph v2018 and CRR v2021 present
similar values for day and night. By analyzing the ME values for the night, day, and
24-h datasets, it can be seen that the CRR v2021 underestimation is more pronounced
during nighttime. CRR-Ph v2018 overall underestimation is mainly attributed to nighttime,
since during daytime, a smaller overestimation is evident. Regarding CRRPh v2021, a
more consistent behavior between day and night is identified, but it should be noted that
the product suffers from seasonal differences and strong overestimation during autumn.
CRRPh v2021 presents the highest MAEs, CRR-Ph v2018 follows, and CRR v2021 presents
the lowest values. Finally, RMSE is higher than MAE by a factor ranging from 1.6 to 2.0 for
all products and seasons. As in the cases of 24-h and daytime analyses, it is argued that the
seasonal change of outlier influence is small and that there is no clear evidence of increased
outlier influence for one product against the others.

Table 7. Nighttime error statistics for CRRPh v2021, CRR-Ph v2018, and CRR v2021.

Year Winter Spring Summer Autumn

NMAE (unitless) 1.2 1.1 1.3 1.0 1.4
CRRPh v2021 ME (mm) 0.4 0.0 0.5 −0.5 1.3

MAE (mm) 2.2 1.8 1.9 2.2 3.4
RMSE (mm) 3.9 2.8 3.1 4.2 6.1

NMAE (unitless) 1.0 0.9 1.0 1.0 1.1
CRR-Ph v2018 ME (mm) −1.0 −1.2 −0.6 −0.9 −0.8

MAE (mm) 1.8 1.5 1.5 2.3 2.5
RMSE (mm) 3.4 2.7 2.8 4.6 4.9

NMAE (unitless) 0.9 0.9 1.0 0.9 1.0
CRR v2021 ME (mm) −1.1 −1.3 −0.8 −1.2 −1.1

MAE (mm) 1.7 1.5 1.4 2.1 2.3
RMSE (mm) 3.1 2.6 2.4 3.9 4.2

5.3. The Influence of Topography on the CRRPh v2021 Product

Aiming to identify the possible influence of topography on the efficiency of the new
algorithm for the Convective Rainfall Rate from Cloud Physical Properties (CRRPh v2021),
the categorical and error statistics were computed for different bins of elevation, slope, and
aspect. Twenty-four-hour, yearly datasets are used. The results are summarized in Table 8.
Only POD, FAR, BIAS, NMAE, MAE, and ME statistics are presented since the remaining
statistics do not change the conclusions drawn.

First, the dataset was divided into 5 elevation bins (in meters): [0–100), [100–200),
[200–400), [400–800), and [800+). The bins were selected in a way that serves a sense of
distinction between plains, semi-mountainous, and mountainous regions and also results
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in a similar number of stations for each bin. POD and FAR present a small decrease over
200 m of elevation. The mild decrease in BIAS over 200 m suggests a slight reduction of
overestimation for higher elevations. The NMAE and MAE are slightly reduced after 200 m
of elevation, while ME is clearly decreased over 200 m. Since the decrease in MAE does
not follow the decrease in ME, it is deduced that the reduction of ME is associated with a
more balanced distribution of positive and negative sign errors around the average for the
higher elevations.

Next, the dataset is divided into 5 slope bins (in degrees): [0–1), [1–2), [2–4), [4–8), and
[8+). The bins were selected in a fashion that results in comparable numbers of stations. A
small decrease in POD, FAR, and BIAS is evident over 4 degrees. NMAE is very slightly
reduced for higher slopes and MAE presents negligible fluctuations, but ME is significantly
smaller, suggesting a more balanced distribution of the errors around the average.

Finally, the dataset is divided into four aspect bins that represent the four quadrants.
The POD, FAR, and BIAS statistics fluctuate mildly between the quadrants, with marginally
higher values for the fourth quadrant [270–360 degrees). NMAE and ME are slightly higher
for the third and fourth quadrants, while MAE values are higher for the first quadrant.
Since there are no significant changes for normalized MAE and MAE, the smaller values
of ME for the second and mainly for the first quadrant should be associated with a more
balanced distribution of errors around the average for these quadrants.

Table 8. Categorical and error statistics for CRRPh v2021 for different bins of elevation, slope, and
aspect. Twenty-four-hour, yearly datasets are used.

Elevation (m) [0–100) [100–200) [200–400) [400–800) [800+)

POD (%) 64.5 61.5 57.3 58.6 57.0
FAR (%) 51.8 51.7 49.8 48.9 45.9

BIAS (unitless) 1.3 1.3 1.1 1.1 1.1
NMAE (unitless) 1.2 1.2 1.1 1.1 1.1

ME (mm) 2.1 2.0 2.0 2.0 2.0
MAE (mm) 0.6 0.5 0.2 0.0 0.1

Slope (degrees) [0–1) [1–2) [2–4) [4–8) [8+)

POD (%) 63.1 63.3 64.2 60.2 56.9
FAR (%) 52.9 51.4 52.0 50.2 46.0

BIAS (unitless) 1.3 1.3 1.3 1.2 1.1
NMAE (unitless) 1.3 1.2 1.2 1.1 1.1

ME (mm) 2.0 2.0 2.1 2.0 2.1
MAE (mm) 0.6 0.5 0.6 0.3 −0.1

Aspect (degrees) [0–90) [90–180) [180–270) [270–360)

POD (%) 60.6 59.9 61.3 62.4
FAR (%) 49.1 50.9 50.3 50.8

BIAS (unitless) 1.2 1.2 1.2 1.3
NMAE (unitless) 1.1 1.1 1.2 1.2

ME (mm) 2.1 2.0 2.0 2.1
MAE (mm) 0.2 0.3 0.4 0.4

5.4. Examples of Visual Comparison between the Three Products

To graphically illustrate the difference in the behavior of the three products regarding
the delineation of precipitation areas, maps over the Greek area for one arbitrary daytime
and one arbitrary nighttime precipitation event are plotted and discussed.

The winter daytime example is depicted in Figure 2. Only CRRPh v2021 identifies a
significant part of the precipitation area inside the red ellipses, supporting our finding that
CRRPh v2021 is more sensitive, especially compared to CRR v2021. On the other hand,
CRRPh v2021 overestimates to a higher degree the precipitation areas inside the black
ellipses, in contrast to CRR-Ph v2018 and especially to CRR v2021 and in agreement with
the slightly lower selectivity found for CRRPh v2021.

Figure 3 depicts an autumn nighttime example. A significant part of precipitation
is identified only by CRRPh v2021 and not CRR-Ph v2018 or CRR v2021 (red ellipses)
illustrating thus the clearly higher nighttime sensitivity of the new algorithm. At the same
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time, the new algorithm overestimates the precipitation areas (black ellipses), presenting
lower selectivity than the other two products, in agreement with the FAR and BIAS findings
for the autumn nighttime dataset.
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6. Conclusions

In the present analysis, the estimation efficiency of the new NWC SAF convective rain-
fall rate from microphysical properties product (CRRPh v2021) is assessed and compared to
earlier versions of NWC SAF precipitation products. The dependency of the new algorithm
on topography is also examined. The product estimations are compared against rain gauge
data covering a full year (2019) over the Greek area. Categorical and error statistics are
computed and analyzed, aiming to identify the differences in the estimation efficiency
of the new product (CRRPh v2021) against the earlier versions and reveal any possible
influence of the topography on the efficiency of CRRPh v2021.

CRRPh GEO v2021 is more sensitive than CRR-Ph v2018 and CRR v2021, as suggested
by the higher POD values, especially during nighttime, but it is slightly less selective, having
relatively higher FAR values. BIAS values are also higher for CRRPh v2021, suggesting
increased overestimation. Since POD, FAR, and BIAS are related, the BIAS increase can be
partially attributed to the increase of the precipitation areas identified by CRRPh v2021, a
notion that is also supported by the increase in POD and FAR. Overall, it could be stated
that although the new algorithm tends to overestimate the areas of rainfall, it manages to
identify most of the precipitation cases in contrast to CRR-Ph v2018 and CRR v2021. It
is argued that CRRPh v2021 outperforms CRR-Ph v2018 and CRR v2021 in regard to the
delineation of the precipitation areas. This argument is based on the assumption that the
adverse effects of a case of precipitation that was not nowcasted can be more than those of
a case that was nowcasted but did not actually occur; therefore, the slightly increased false
alarms of CRRPh v2021 can be considered as an acceptable tradeoff.

The day/night difference in the efficiency of the delineation of the precipitation areas is
reduced substantially for the new algorithm compared to the previous ones. The categorical
statistics of CRRPh v2021 clearly present smaller variations when shifting from day to night
compared to CRR-Ph v2018 and CRR v2021. This is a highly desirable characteristic, as
it agrees with the notion that the physics of precipitation do not change abruptly when
moving from day to night conditions, it strengthens the sense of confidence of the end
users of the CRRPh v2021 product and permits the operational application of the algorithm
in a 24-h basis.

CRRPh v2021 suffers from higher absolute accumulation errors compared to the other
two products. From the combined examination of the absolute and the signed errors,
it becomes evident that although CRRPh v2021 presents higher errors, they are of both
positive and negative signs and also that the dominant sign of the errors is dependent on
the season.

The analysis of error statistics of CRRPh v2021 shows a limited differentiation re-
garding the signed errors between day and night, in contrast to CRR-Ph v2018 and CRR
v2021. CRRPh v2021 presents a small differentiation between day and night regarding the
precipitation accumulations. CRR-Ph v2018 presents a limited overestimation during day-
time and strong underestimation during nighttime, overall underestimating precipitation
accumulations. CRR v2021 heavily underestimates the precipitation accumulations both
during day and night conditions.

Regarding the influence of elevation and slope on the estimation efficiency of the
new algorithm, it was shown that sensitivity, selectivity, and accumulation errors decrease
slightly for high elevation and slope bins. The decrease is rather small and cannot support
the suggestion that these topographic parameters affect substantially the estimation effi-
ciency of the product. Aspect presents a practically negligible effect on the CRRPh v2021
estimation efficiency.

The conclusions of the present analysis are in general agreement with those of Lahuerta
et al. [6], who performed a subjective and objective validation of the CRRPh v2021 product
using radar data from selected days of 2016 as ground truth. The subjective validation,
which consisted of visual comparisons between CRRPh v2021 and radar images indicated
an acceptable degree of performance under day and night conditions. According to the ob-
jective validation results during daytime conditions without distinction between convective
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and non-convective cases in the Iberian Peninsula, POD was 70.99% and FAR was 47.48%
for instantaneous rain rates, while for hourly accumulations, POD was 77.08% and FAR
was 52.48%. During nighttime, POD was 55.85% and FAR was 65.88% for instantaneous
rain rates, while for hourly accumulations, POD was 60.70% and FAR was 68.94%. The
POD and FAR values of the present study are close enough to those of Lahuerta et al. [3],
as they do not deviate more than ~10% and ~18%, respectively. Such differences could be
attributed to a variety of reasons, such as the different sizes of datasets, the nature of ground
truth data, the area of analysis, the methodology of hourly accumulation computations, etc.

In general, CRRPh v2021 identifies most of the precipitation areas, although it over-
estimates to a certain degree the precipitation areas. Therefore, it is argued here that the
product could be used as a total rainfall rate algorithm and not just as a convective rainfall
rate algorithm after adequate adaptations. For example, the recalibration of the algorithm
using a wider dataset that includes precipitation of limited convection, such as winter
stratiform precipitation cases, could improve the identification of total precipitation.

All NWC SAF precipitation products, including CRRPh v2021, are developed aiming
to help forecasters in their everyday nowcasting duties. One of their main objectives is
the delineation of precipitation areas in near real time. CRRPh v2021 satisfies that need
successfully enough and certainly better than its predecessors. Keeping that in mind, we
argue that CRRPh v2021 outperforms CRR-Ph v2018 and CRR v2021 despite its relatively
higher precipitation accumulation errors. Such errors may be considered as a disadvantage
for other applications like hydrology, but they are of lesser importance in regard to the
objectives of NWC SAF precipitation products. The new CRRPh v2021 algorithm was
released in the NWC SAF GEO software package GEO v2021 in April 2022, and it has been
declared operational by EUMETSAT.
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