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Abstract: Our goal was to investigate the influence of bias correction methods on climate simulations
over the European domain. We calculated the Köppen−Geiger climate classification using five
individual regional climate models (RCM) of the ENSEMBLES project in the European domain
during the period 1961−1990. The simulated precipitation and temperature data were corrected
using the European daily high-resolution gridded dataset (E-OBS) observed data by five methods:
(i) the empirical quantile mapping of precipitation and temperature, (ii) the quantile mapping of
precipitation and temperature based on gamma and Generalized Pareto Distribution of precipitation,
(iii) local intensity scaling, (iv) the power transformation of precipitation and (v) the variance scaling
of temperature bias corrections. The individual bias correction methods had a significant effect on
the climate classification, but the degree of this effect varied among the RCMs. Our results on the
performance of bias correction differ from previous results described in the literature where these
corrections were implemented over river catchments. We conclude that the effect of bias correction
may depend on the region of model domain. These results suggest that distribution free bias
correction approaches are the most suitable for large domain sizes such as the pan-European domain.

Keywords: Regional Climate Model; climate classification; bias correction methods;
precipitation; temperature

1. Introduction

Climate classifications are frequently applied tools for evaluating the real climate system. One of
the oldest and still widely accepted systems of climate types was introduced by Wladimir Köppen [1]
and later modified by Geiger [2] and additionally by Trewartha [3–7]. Köppen divided eleven climate
types based on annual and monthly changes in temperature and precipitation. Trewartha modified the
Köppen classification so that the classifications based on the main quality differences and the vegetation
characteristics were better taken into consideration. The so-called Köppen–Geiger (K-G) climate
classification is derived directly from eco-biological vegetation characteristics within the individual
regions of the Earth, which make it suitable for assessing climate change impacts on ecosystems. It is
based on annual and monthly mean values of temperature and precipitation and distinguishes five
main vegetation groups: the equatorial zone (A), the arid zone (B), the warm temperate zone (C), the
snow zone (D) and the polar zone (E). The main groups are further divided into subtypes, reflecting
the annual course of air temperature or precipitation and their monthly values compared to a defined
threshold. For a detailed overview of all K-G classes and their spatial distribution around the world,
we refer to [8]. K-G classification can be applied either to the real observed data of the Earth’s climate
or present or future conditions simulated by climate models [5,7,9,10]. Some studies, e.g., [11,12] have
used the Köppen–Trewartha classification [13] to map the extent of climate change in Europe using
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an ensemble mean of regional climate models (RCMs) and simulations, considering the uncertainty
related to driving global climate models (GCMs). However, the fact remains that all studies based on
climate models should deal with model errors carefully before drawing conclusions.

According to [14], model errors can be caused by the initial and boundary conditions,
parameterization, physical formulation, internal variability or model shortcomings [15–19]. Model
errors can be divided into two categories: unsystematic errors (random) and systematic errors (bias).
Random errors stem from the internal variability of climate models, which are a dominant source
of uncertainty for shorter (decadal) timescales in model simulations [20]. Bias is defined as any
systematic discrepancy of model simulation and observation. Systematic errors can originate either
from inadequately constrained parameters or from model structures that are unable to describe the
physical process of interest [21]. Model bias is the most prevalent source of uncertainty for longer
(century) timescales [20]. Moreover, bias corrected climate model outputs may lead to a significant
response in some impact models as decision support tools [22–24].

In our previous work [25] we applied the K-G classification as a diagnostic tool of climate change
for six RCM experiments originally produced as a part of the EU FP6 project, ENSEMBLES [26]. Every
experiment represented one specific RCM, driven by one of two GCMs. The simulations followed the
A1B emission scenario of Intergovernmental Panel on Climate Change (IPCC) [27,28], and the results
were evaluated for the near (2021−2050) and far (2071−2100) future periods. The model simulations
were subjected to validation and bias correction using the empirical distribution mapping technique
on E-OBS [29] observed data as a reference. We found that warmer climate type increased in each
RCM for the future but the degree of their extension was different among them. These differences
came from the different GCM applications as the driver, the different physical packages of RCMs and
the different representations of natural variability in individual models.

Owing to the fact that any choice of bias correction method can be an additional source of
uncertainty [23], in this study, we aim to quantify the impacts of different bias correction techniques on
the simulated distribution of K-G zones over Europe. The influence of different bias correction methods
has been studied over small geographical domains, usually select river basins in Scandinavia [30],
North America [31], or North-estern China [32]. In these studies, the performance of bias correction
methods was investigated by statistical indices. References [31] and [30] suggested distribution-based
methods, while [32] found that the quantile mapping and power transformation of precipitation
methods performed equally best in terms of the frequency-based indices, while the local intensity
scaling (LOCI) method performed the best in terms of the time-series-based indices. We intend to test
the performance of bias correction over a large pan-European domain, as the bias varies in regions of
the domain. Moreover, we study the bias correction performance by implementing Köppen–Geiger
climate classification.

Our two major research questions are as follows:
Which bias correction methods of precipitation and temperature are able to reproduce climate

classification based on the observed parameters in the 1961–1990 time period?
Which bias correction methods of precipitation and temperature are the most reliable for climate

prediction over the whole pan-European domain?
This paper is organized as follows: In Section 2, a short description of the K-G classification,

selected models and applied bias corrections are presented. In Section 3, the resulting climate
classification with respect to the individual bias correction method is presented. Section 4 contains a
discussion of our findings and Section 5 offers the conclusions we draw.
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2. Materials and Methods

2.1. K-G Classification

Köppen and Geiger classified climate based on annual and monthly mean values of temperature
and precipitation. Table 1 contains the methodology to calculate K-G climate zones in Europe based
on [8].

Table 1. Key to calculate K-G zones in Europe and their third index. Pann is the accumulated annual
precipitation. Pmin is the precipitation of the driest month. Psmin, Psmax, Pwmin and Pwmax are
defined as the lowest and highest monthly precipitation values for the summer and winter half-years.
Pth is the dryness threshold. Tann is the annual mean temperature, and the monthly mean temperatures
of the warmest and coldest months are marked by Tmax and Tmin, respectively. The precipitation and
temperature are given in mm and ◦C, respectively.

Type Description Criterion

B Arid climates Pann< 10 Pth

BS Steppe climates Pann> 5 Pth

BW Desert climates Pann ≤ 5 Pth

C Warm temperate climates −3 ◦C < Tmin< + 18 ◦C

Cs Warm temperate climates with dry summers Psmin< Pwmin, Pwmax> 3 Psmin and Psmin< 40
mm

Cw Warm temperate climates with dry winters Pwmin< Psmin and Psmax> 10 Pwmin

Cf Warm temperate climates, fully humid neither Cs nor Cw

D Snow climates Tmin ≤ −3 ◦C

Ds Snow climates with dry summers Psmin< Pwmin, Pwmax> 3 Psmin and Psmin< 40
mm

Dw Snow climates with dry winters Pwmin< Psmin and Psmax> 10 Pwmin

Df Snow climates, fully humid neither Ds nor Dw

E Polar climates Tmax< + 10 ◦C

ET Tundra climates 0 ◦C ≤ Tmax< + 10 ◦C

EF Frost climates Tmax< 0 ◦C

third index for C and D climate zones

Type Description Criterion

a Hot summers Tmean> 22◦C

b Warm summers not (a) and at least 4 Tmon ≥ +10 ◦C

c Cool summers and cold winters not (b) and Tmin> −38◦C

d Extremely continental like (c) and Tmin ≤ −38◦C

third index for B climate zone

Type Description Criterion

h Hot steppe/desert Tann ≥ +18 ◦C

k Cold steppe/desert Tann< +18 ◦C
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The dryness threshold is calculated by

Pth =


2{Tann} i f at least 2

3 o f the annual precipitation occurs ∈ winter
2{Tann}+ 28 i f at least 2

3 o f the annual precipitation occurs ∈ summer
2{Tann}+ 14 otherwise

.

2.2. Datasets and Bias Corrections

For the analysis of bias correction influence on K-G zone distribution in Europe, we used
simulations of five regional climate models from the ENSEMBLES project, as summarized in Table 2.
The large scale forcing for two RCMs was taken from driving ARPÉGE GCM, and three of them were
driven by ECHAM5-r3 GCM. The E-OBS version 10 gridded dataset of daily station observations with
a spatial resolution of 0.25º in longitude and latitude was used as a reference dataset for validation
and bias correction in the period from 1961 to 1990. Before the direct comparison of models and
observations, the RCMs were interpolated from their native grids to the E-OBS 0.25 º regular grid by
the nearest neighbour remapping method.

Table 2. The institute, global climate models (GCMs), regional climate models (RCMs) and resolution
of chosen models from the ENSEMBLES EU project.

INSTITUTE/
REFERENCE GCM RCM RESOLUTION

1
Centre National de Researches
Météorologiques (CNRM)/
[33]

ARPÈGE ALADIN 25 km

2 Danish Meteorological Institute (DMI)/
[34] ARPÈGE HIRHAM 25 km

3

Koninklijk Nederlands Meteorologisch
Instituut
(KNMI)/
[35]

ECHAM5-r3 RACMO2 25 km

4
Swedish Meteorological and Hydrological
Institute (SMHI)/
[36]

ECHAM5-r3 RCA 25 km

5
International Centre for Theoretical Physics
(ICTP)/
[37]

ECHAM5-r3 RegCM 25 km

The simulated climate zones were analysed in the Alps (AL), the British Isles (BI), Eastern
Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and
Scandinavian (SC) regions (Figure 1) specified in the framework of the PRUDENCE project [38].
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Figure 1. Subdomains based on the Prudence project: the Alps (AL), the British Isles (BI), Eastern
Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and
Scandinavia (SC).

Figure 2 demonstrates the simulated K-G zones without bias correction. Large differences can be
seen between the simulated zones and between the simulated and observed zones. The distribution of
K-G zones varied from the K-G zones based on the observed parameters in the case of ARPÈGE driven
RCMs. HIRHAM RCM produced dryer climate zones in each region owing to the underestimated
precipitation. It produced Csa and Csb zones instead of Cfb in France, Mid-Europe, Eastern Europe
and in the Mediterranean and Dsb instead of Dfb in the Alps. Furthermore, the extension of BSk
was extremely large in the Iberian Peninsula and in Eastern Europe. Both HIRHAM and ALADIN
overestimated the Tundra climate (ET) zone in Scandinavia. In ALADIN simulation the Cfb zone was
overestimated in the Iberian Peninsula and in the Italian Peninsula, while it was underestimated in
Eastern Europe, in the Mediterranean and on the Western coast of France. The ECHAM5-r3 forced
RCMs produced better K-G simulations but the RegCM simulated a wetter climate in the Iberian
Peninsula and the Mediterranean, whilst RACMO2 and RCA produced drier climate zones in the
Mediterranean and Eastern Europe. Each of them overestimated the ET zone in the Alps.
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Figure 2. Simulated K-G climate classification according to E-OBS (A) and in ALADIN (B), HIRHAM
(C), RegCM (D), RAMCMO2 (E) and RCA (F) without bias correction.

We applied the following bias correction methods: i) the empirical quantile mapping (eQM) of
precipitation and temperature [15], ii) quantile mapping of precipitation and temperature based
on a gamma + Generalized Pareto Distribution (gpQM) [39], iii) the power transformation of
precipitation [40,41] the variance scaling of temperature [23], and iv) the local intensity scaling
(LOCI) [42].

The daily mean precipitation and temperature values were used for the bias corrections.

2.2.1. Empirical Quantile Mapping

Empirical quantile mapping correction was used for correcting the nonparametric empirical
cumulative distribution function in simulated daily data. This method calibrates the simulated
Cumulative Distribution Function (CDF) by adding both the mean delta change and the individual
delta changes in the corresponding quantiles to the observed quantiles. The implemented eQM
obtained the correction function for 99 percentiles of observed and simulated distribution and linearly
interpolated between two percentiles [15]. Outside the range of percentiles, e.g., for the 99th percentile,
a constant correction was applied. In the case of precipitation, a 1 mm threshold value was considered
so that the precipitation was redefined to zero if the value was less than 1 mm. We applied this bias
correction with a 90-day moving window.

2.2.2. Quantile Mapping Based on Gamma + Generalized Pareto Distribution

Quantile mapping based on gamma + generalized Pareto distribution is a quantile mapping
method similar to eQM but assumes that the observed and simulated precipitation density distribution
are correctly approximated by gamma, and the temperature density distribution is correctly
approximated by Gaussian distribution. Therefore, it uses theoretical distribution in the quantile
mapping instead of empirical distribution. Due to the fact that gamma distribution is a light-tailed
distribution, it is combined with a general Pareto distribution [39]. The observed and simulated
quantiles were interpolated by inverse distance weighting. The 1 mm threshold cut off was also
applied to precipitation in this approach. The gpQM bias correction with a 90-day moving window in
the case of precipitation was used. Owing to the fact that the seasonal temperature density distribution
cannot be approximated by Gaussian distribution in some places in Europe [43], the temperature gpQM
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correction produces a large number of infinitive values with a 90-day moving window. Therefore,
gpQM was applied only in the case of precipitation.

2.2.3. Power Transformation of Precipitation

Power transformation of precipitation can be used for adjusting the variance statistics of
precipitation. Simulated monthly precipitation is powered by a “b” value that guarantees the coefficient
of variance (CV) of the simulated daily precipitation matches the CV of the observed daily precipitation.
This power “b” value is estimated on a monthly basis using a 90-day window centred on the interval
with a root-finding algorithm. Thereafter, the powered precipitation series is multiplied by the standard
linear scaling parameter, which was calculated by dividing the monthly mean observed precipitation
by the monthly mean powered simulated precipitation.

2.2.4. Variance Scaling of Temperature

Correspondingly, variance scaling of temperature corrects both the mean and variance values
of temperature. In the first step, the temperature mean was corrected with the difference between
the observed and simulated climatological monthly means. After that, the mean-corrected simulated
temperature was shifted on a monthly basis to the zero mean. Thereafter, the standard deviation of the
shifted temperature was scaled based on the ratio of the climatological monthly standard deviation of
the observed and simulated data. Finally, the standard deviation corrected time series were shifted
back using the corrected mean.

2.2.5. Local Intensity Scaling of Precipitation

The local intensity scaling correction corrects the mean as well as both the wet-day frequencies
and wet-day intensities of precipitation. The frequency of wet-days in the case of observation considers
those days when the precipitation value is higher than the 1 mm threshold.

The model’s wet-day threshold was determined from the daily RCM precipitation series such
that the threshold exceedance matched the wet-day frequency in the observed series. The scaling
factor of this correction was calculated based on the ratio of the climatological monthly mean wet-day
intensities between the observations and the RCMs with the adjusted wet-day thresholds. Subsequently,
the simulated monthly precipitation values were adjusted with the model’s wet-day threshold and
multiplied by the scaling factor. Finally, the daily simulated precipitation was downscaled from the
calibrated monthly scale such that the precipitation values were redefined to zero on those days when
the observed precipitation was less than 1 mm.

The equations of bias correction methods are detailed in [44]. Bias corrections and K-G
classification were implemented in Matlab by the MeteoLab [45] and Weaclim [46] toolboxes. The
figures were created by NCAR Command Language [47].

3. Results

3.1. Empirical Quantile Mapping with a 90-Day Moving Window

The application of eQM bias correction with a 90-day moving window improved the climate
classification. RCMs simulated appropriate climate zones in each region with the exception of
HIRHAM (Figure 3). In the case of HIRHAM RCM, the climate zone simulation was improved
in the Northern regions, e.g, in Scandinavia, the British Isles and Mid-Europe, but it still produced
dryer climate zones in the Iberian Peninsula, the Mediterranean and Eastern Europe. In the other
RCMs, the extension of climate zones differed from the observed ones mainly in the Iberia Peninsula,
in the Alps, in the Mediterranean and in Eastern Europe. The difference in the frequency of the
occurrence of the climate zones was only 1–2% between the RCMs with exception of HIRHAM in each
region. For example, the occurrence of the Cfb zone in the Alps was 53%, 51%, 50% and 50% according
to the ALADIN, RegCM, RACMO2 and RCA simulations, respectively.
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Figure 3. Simulated K-G climate classification according to E-OBS (A) and empirical quantile mapping
(eQM) corrected precipitation and temperature with 90-day moving window in ALADIN (B), HIRHAM
(C), RegCM (D), RAMCMO2 (E) and RCA (F).

The precipitation was mainly underestimated in each season except in the British Isles in winter
(DJF) (Table 3a). The eQM with a 90-day moving window decreased the residual temperature bias in
DJF but increased it in summer (JJA) in ALADIN, HIRHAM and RegCM in some regions (Table 3b).

Table 3. Residual bias of seasonal amount of simulated precipitation (a) and of seasonal mean of
simulated temperature (b) in the case of eQM bias correction in eight different regions: the Alps (AL),
the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the Mediterranean
(MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA The bias values are in % and in ◦C in the
case of precipitation and temperature, respectively.

a) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL −2 −9 2 −23 −4 −6 −5 −6 −5 −7
BI 1 −2 2 −7 1 −3 0 −3 1 −2
EA −8 −11 −4 −17 −7 −6 −8 −3 −9 −3
FR −1 −5 0 −20 −6 0 −6 −5 −7 −4
IP −6 −5 −8 −23 −8 −11 −8 −21 −9 −23

MD −6 −8 0 −34 −4 −9 −4 −9 −5 −14
ME −4 −9 −2 −12 −4 −3 −5 −3 −5 −2
SC −6 −1 −3 −8 −3 −2 −2 −2 −4 1

1 
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Table 3. Cont.

b) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 0.2 0.1 0.3 −0.4 0.3 0.1 0.1 0.1 −0.1 0.0
BI 0.3 0.0 0.2 −0.3 0.2 0.0 0.1 0.1 0.1 0.1
EA 0.5 −0.2 0.4 −0.8 0.4 0.0 0.2 0.0 0.0 0.0
FR 0.3 0.0 0.2 −0.3 0.2 0.2 0.0 0.3 0.0 0.1
IP 0.1 0.5 −0.1 0.3 0.1 0.6 0.0 0.3 0.0 0.1

MD 0.1 0.6 0.1 −0.3 0.2 0.4 0.0 0.4 −0.1 0.2
ME 0.5 −0.2 0.5 −0.7 0.3 −0.1 0.2 0.0 0.0 0.0
SC 0.1 −0.6 0.3 −0.8 0.2 0.0 0.2 0.0 −0.1 0.0 

2 

 

  

3.2. Quantile Mapping Based on a Gamma + Generalized Pareto Distribution with a 90-Day Moving Window

Owing to the fact the seasonal temperature probability distribution does not fit a Gaussian
distribution due to non-Gaussian tails occurrence, the gpQM bias correction with a 90-day moving
window was implemented only on the precipitation data. The gpQM with a 90-day moving
window bias-corrected precipitation was combined with eQM with 90-day moving window corrected
temperature values for the calculation of K-G zones. The gpQM correction with a moving window also
improved the climate classification, but it resulted in dryer climate zones in some regions compared to
the eQM correction (Figure 4). The Csb and BSk ratio was larger in the Mediterranean and Eastern
Europe, respectively, according to the gpQM in each RCM. Owing to gpQM method the extension of dry
zones (Csa, Csb, Dsb), the Csb zone was predominant in France, Mid-Europe and the Mediterranean,
and the BSk was overestimated in the Iberian Peninsula and Eastern Europe in HIRHAM model.
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Figure 4. Simulated K-G climate classification according to E-OBS (A) and quantile mapping of
precipitation and temperature based on a gamma + Generalized Pareto Distribution (gpQM) correction
of precipitation and eQM correction of temperature with 90-day moving window in ALADIN (B),
HIRHAM (C), RegCM (D), RAMCMO2 (E) and RCA (F).
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The residual precipitation bias was variable. The precipitation was overestimated in some regions,
mainly in DJF. Although eQM correction resulted in better K-G classification, the residual bias of gpQM
correction was smaller in some regions (e.g., in the Mediterranean in the case of RegCM) (Table 4).

Table 4. Residual bias in the seasonal amount of simulated precipitation (a) in the case of gpQM bias
correction in eight different regions: the Alps (AL), the British Isles (BI), Eastern Europe (EA), France
(FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in
DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL 3 −12 0 −57 5 −11 0 −22 3 −10
BI −2 −5 −3 −39 3 −2 3 −4 5 1
EA 3 −20 6 −46 3 −11 −2 −22 −3 −3
FR 5 −11 −6 −57 0 4 −1 −9 1 −3
IP −11 −10 −33 −67 −3 −11 −3 −36 −5 −30

MD −7 −15 −14 −68 0 −15 −4 −49 −3 −25
ME 8 −16 8 −42 5 −4 1 −9 1 4
SC −7 −1 3 −19 −1 1 2 −2 −3 8 

3 

 

  

3.3. Power Transformation of Precipitation and Variance Scaling of Temperature

The power transformation of precipitation has been implemented in smaller domains in Europe,
such as the basin of the river Meuse [40] and the mesoscale catchments of Sweden [30], where the
precipitation is significant. In our work, the power value of precipitation was calculated with Brent’s
root-finding algorithm [48]. It is possible that the mean value of precipitation is near zero in the dryer
regions. This zero mean value may have caused an invalid value in the coefficient of variation of
precipitation that stopped the root-finding algorithm and produced incorrect K-G zones (this is not
shown). To get around this issue, we applied two conditions before running the root-finding algorithm.
The first condition was to ignore the RCM precipitation values if they were missing values. The second
was to ignore the RCM precipitation values if their mean value was zero, as this causes an invalid
value. Thanks to the above-mentioned conditions, the power transformation of precipitation combined
with the variance scaling of temperature created the correct K-G classification in each RCM. Negligible
differences were seen between the observed and simulated K-G zones (Figure 5). The difference in
the frequency of occurrence of climate zones between observations and simulations was zero in each
region with the exception of ALADIN. ALADIN simulated larger Cfb and smaller Csb extension in the
Iberian Peninsula and in the Mediterranean regions where the difference from the observations was
only 2%. Due to these facts, power transformation of precipitation and variance scaling of temperature
appear to be the most suitable for climate classification in the whole pan-European domain.
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Figure 5. Simulated K-G climate classification according to E-OBS (A) and power transformation of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F).

The value of residual precipitation bias was similar in each RCM, with the exception of HIRHAM,
where the residual bias values were zero (Table 5.). Furthermore, the bias was almost identical, except
for HIRHAM, which means that power transformation is not dependent on the RCMs. The modelled
temperature was almost commensurate with the observed data when variance scaling correction
was implemented.

Table 5. Residual bias of seasonal amount of simulated precipitation in the case of power transformation
of the precipitation bias correction method in eight different regions: the Alps (AL), the British Isles
(BI), Eastern Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe
(ME) and Scandinavia (SC) in DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL 0 −6 0 0 0 −6 0 −6 −1 −6
BI −8 14 0 0 −8 14 −8 14 −8 14
EA −9 −14 0 0 −9 −14 −9 −14 −9 −14
FR −5 4 0 0 −5 3 −5 3 −5 4
IP −12 8 0 0 −12 7 −12 7 −12 7

MD −10 0 1 0 −10 4 −10 4 −10 4
ME −9 −11 0 0 −9 −10 −9 −10 −9 −10
SC −12 10 0 0 −12 10 −12 10 −12 9 

4 

 

  

3.4. Local Intensity Scaling of Precipitation and Variance Scaling of Temperature

Due to the fact that local intensity scaling correction can be applied only to precipitation, it was
combined with variance scaling of temperature for the calculation of the K-G classification. Both
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corrections are distribution free and correct the diagnostics, as well as the mean. Owing to these facts,
the difference between the observed and simulated zones was also negligible, only 1−2% (Figure 6).
Apart from that, the RCMs resulted in very similar values.
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Figure 6. Simulated K-G climate classification according to E-OBS (A) and local intensity scaling of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F).

In the case of LOCI correction, the residual seasonal precipitation bias was the smallest compared
to the other precipitation correction methods, except in the case of the HIRHAM RCM compared
to power transformation of the precipitation method (Table 6). This caused a negative bias in both
seasons in each RCM. Although the seasonal residual bias values were smaller than in the case of
power transformation of precipitation, the minimum and maximum monthly precipitation values of
the RCMs were closer to the observed minimum and maximum monthly precipitation values by power
transformation in both seasons (not shown). These values determined the subtypes of the K-G zones.
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Table 6. Residual bias of the seasonal amount of simulated precipitation in the case of local intensity
scaling of the precipitation bias correction method in eight different regions: the Alps (AL), the
British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the Mediterranean (MD),
Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Regio DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
BI −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
EA −6 −1 −6 −2 −6 −1 −6 −1 −6 −2
FR −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
IP −1 −2 −1 −2 −1 −2 −1 −2 −1 −2

MD −2 −1 −2 −1 −2 −1 −2 1 −2 −1
ME −5 −2 −6 −2 −5 −2 −6 −2 −6 −2
SC −5 −2 −5 −2 −5 −2 −5 −2 −5 −2 

5 

 

  

3.5. Cross-Validation of Bias Corrections

Cross-validation was applied to test bias corrections. Due to the observed annual precipitation
and temperature values being nearly stationary (not shown) in the 1961–2000 period, we applied a
split-sample test (SST) as advocated by [49]. The parameters were split into calibration and test periods.
The bias corrections were calibrated in the first twenty years of 1961–1980, and the corrections were
implemented in the second twenty years of 1981–2000. The corrections were validated by the K-G
zone simulation in the test period, and the results were compared with the K-G zones based on the
observed data in the test period.

3.5.1. Validation of Empirical Quantile Correction

Figure 7 shows the simulated K-G distribution based on the validated eQM values of precipitation
and temperature compared to K-G zones according to observed parameters in the test period.
The ECHAM5-r3 RCMs produced similar results, whilst HIRHAM resulted in a drier climate in
Eastern Europe and in the Mediterranean compared to the ALADIN model where the Csb zone was
predominant. Each RCM significantly underestimated the BSk zone in the Iberian Peninsula compared
to the K-G zones based on observations. In Scandinavia, the ET zone was overestimated with the
exception of the ALADIN model, and the Dsc zone expanded in the RACMO2 and RCA models.
Moreover, the DSb zone occurred in the RegCM model. In the ECHAM5-r3 driven RCMs, the Dfb zone
shifted southwards in Southern Scandinavia. The ratio of the Dfb zone decreased in the Carpathians
in Eastern Europe in each RCM. The Cfa zone diminished in the Eastern region of Eastern Europe in
the HIRHAM, RACMO2 and RCA models. Moreover, the BSk zone occurred in Eastern Europe in
ARPEGE-driven RCMs. The difference between the simulated and observed K-G zones was negligible
in Mid-Europe and in the British Isles. The ECHAM5-r3 RCMs simulated a Csb zone in the Western
region of France.
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Figure 7. Simulated K-G climate classification according to E-OBS (A) and eQM corrected precipitation
and temperature with 90-day moving window in ALADIN (B), HIRHAM (C), RegCM (D), RAMCMO2
(E) and RCA (F) in the test period in 1981−2000.

The residual bias of precipitation varied during the season and the eQM correction strongly
depended on the regions and the RCMs (Table 7a). Larger residual bias was found in France, in the
Iberian Peninsula and in the Mediterranean in each RCM with the exception of ALADIN. The residual
bias of temperature was smaller than 1 ◦C, except in HIRHAM in Scandinavia in the DJF season
(Table 7b).

Table 7. Residual bias of the seasonal amount of simulated precipitation (a) and of the seasonal mean
of the simulated temperature (b) in the case of eQM bias correction in the test period in eight different
regions: the Alps (AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP),
the Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are
in % and in ◦C for precipitation and temperature, respectively.

a) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL −2 3 7 −26 3 −9 1 −2 3 −5
BI −9 7 −10 0 −12 −7 −15 −9 −15 −11
EA −3 5 2 −6 4 0 0 5 3 3
FR −8 4 −6 −24 −17 −13 −17 −19 −18 −17
IP 9 3 5 −17 13 −1 14 −18 11 −21

MD 0 −5 7 −23 14 0 18 12 12 3
ME −7 10 −5 −4 −7 −2 −14 −2 −8 −1
SC −18 0 −15 −8 −14 −9 −11 −11 −13 −9
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Table 7. Cont.

b) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL 0.3 −0.4 0.3 −0.4 −0.2 −0.4 −0.5 −0.5 −0.6 −0.5
BI 0.5 −0.5 0.3 −0.7 −0.3 −0.3 −0.4 −0.2 −0.5 −0.4
EA 0.1 0.1 0.1 0.0 0.0 −0.5 −0.1 −0.6 −0.2 −0.6
FR 0.2 −0.9 0.2 −0.9 −0.6 −0.4 −0.7 −0.3 −0.9 −0.5
IP −0.3 −0.2 −0.3 −0.4 −0.5 0.1 −0.5 0.1 −0.6 0.1

MD 0.2 0.2 0.2 −0.2 0.1 −0.5 −0.1 −0.7 −0.2 −0.6
ME 0.2 −0.3 0.3 −0.5 −0.2 −0.5 −0.3 −0.6 −0.4 −0.7
SC 0.9 0.4 1.1 −0.1 −0.1 −0.3 0.0 −0.4 −0.1 −0.2

 

7 

 

  

3.5.2. Validation of Quantile Mapping Based on a Gamma + Generalized Pareto Distribution
of Precipitation

Figure 8. demonstrates the simulated K-G zones according to the gpQM of precipitation and eQM
of temperature combination during the test period. The gpQM of precipitation resulted in dryer climate
zones compare to eQM in Mediterranean region, and a BSk zone was produced in the Southeastern
area of Easter-Europe in each RCM except RegCM (Figure 8). The BSK zone dominantly decreased
in the Iberian Peninsula in each RCM except HIRHAM. Moreover, significant extension of Csb was
simulated in the HIRHAM model in France, Mid-Europe, EasternEurope, in the Mediterranean and in
the Southwestern area of the British Isles. In this model, a larger area was covered by the BSk zone
than in the other models in the Iberian Peninsula and in Eastern Europe.
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Figure 8. Simulated K-G climate classification according to E-OBS (A) and gpQM corrected
precipitation and eQM corrected temperature with a 90-day moving window in ALADIN (B), HIRHAM
(C), RegCM (D), RAMCMO2 (E) and RCA (F) in the test period in 1981−2000.
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Although gpQM correction of precipitation resulted in a larger bias in K-G simulation in several
regions compared to the eQM correction, the remained bias was smaller in France and in Scandinavia
in ECHAM5-r3 forced RCMs (Table 8). Furthermore, gpQM produced a smaller residual bias in the
RegCM model in the British Isles as well.

Table 8. Residual bias of seasonal amount of simulated precipitation in the case of gpQM bias correction
in the test period in eight different regions: the Alps (AL), the British Isles (BI), Eastern Europe (EA),
France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and Scandinavia
(SC) in DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL 6 0 6 −59 11 −12 10 −20 12 −8
BI −10 3 −13 −36 −9 −5 −11 −9 −10 −6
EA 12 −7 11 −40 14 −5 7 −15 9 4
FR 0 −7 −10 −62 −10 −10 −11 −23 −10 −17
IP 7 −2 −24 −64 21 0 20 −34 16 −33

MD 1 −14 −8 −62 17 −8 16 −42 15 −16
ME 7 2 3 −38 1 −1 −8 −7 −2 6
SC −19 0 −11 −19 −10 −5 −7 −9 −11 0
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3.5.3. Validation of Power Transformation of Precipitation and Variance Scaling of Temperature

The power transformation of precipitation and variance scaling of temperature bias corrections
resulted in similar K-G zone distributions in each RCM (Figure 9). The extension of K-G zones was
different between the RCMs and differed from the observed ones. The ECHAM5-r3 forced RCMs and
HIRHAM simulated larger, while ALADIN resulted in a smaller ET fraction in Scandinavia. Moreover,
ECHAM5-r3 forced RCMs simulated a large Dsc zone fraction in the Scandinavian mountains. The
ratio of the Dfb zone decreased in the Carpathians in Eastern Europe in each RCM. The Cfa zone
expanded in Eastern Europe according to ARPÉGE forced RCMs, whilst it decreased in ECHAM5-r3
driven models. In the Western part of France, the Csb zone was simulated with the exception of the
ALADIN model. In the Mediterranean and in the Iberian Peninsula, the BSk zone was underestimated
in each RCM.
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Figure 9. Simulated K-G climate classification according to E-OBS (A) and power transformation of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F) in the test period in 1981−2000.

Even though eQM produced a very small residual bias in ALADIN and RegCM in the
Mediterranean and in RACMO2 in Eastern-Europe, the power transformation of precipitation better
reproduced the K-G zone distribution. Furthermore, the power transformation of precipitation
resulted in a smaller residual bias in Scandinavia, France and in the British Isles in both seasons, and in
Mid-Europe in winter compared to eQM (Table 9a). The difference between the eQM and the variance
scaling corrected temperature was negligible (Table 9b).

Table 9. Residual bias of seasonal amount of simulated precipitation (a) in the case of power
transformation of precipitation and the seasonal mean of the simulated temperature, (b) in the case of
variance scaling of the temperature bias correction methods in the test period in eight different regions:
the Alps (AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the
Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are in %
and in ◦C for precipitation and temperature, respectively.

a) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL 1 16 4 −7 7 −2 8 7 6 5
BI −8 9 −12 9 −12 −5 −15 −6 −15 −9
EA 5 20 4 11 11 8 11 8 14 9
FR −7 10 −7 −9 −11 −12 −11 −14 −11 −11
IP 15 12 14 123 25 11 26 5 25 −4

MD 7 3 8 23 20 7 24 20 20 15
ME −3 23 −4 8 −3 4 −8 3 −2 3
SC −12 1 −12 1 −11 −6 −8 −9 −9 −8 
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Table 9. Cont.

b) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL 0.1 −0.8 0.2 −0.8 −0.5 −0.4 −0.7 −0.6 −0.6 −0.6
BI 0.4 −0.6 0.2 −0.7 −0.6 −0.3 −0.6 −0.2 −0.6 −0.4
EA −0.2 −0.1 −0.1 −0.1 −0.2 −0.5 −0.3 −0.5 −0.2 −0.6
FR 0.1 −1.1 0.1 −1.1 −0.7 −0.4 −0.9 −0.4 −0.9 −0.5
IP −0.3 −0.5 −0.2 −0.6 −0.6 0.1 −0.6 0.1 −0.7 0.0

MD 0.1 −0.1 0.2 −0.4 0.0 −0.5 −0.1 −0.8 −0.2 −0.7
ME −0.1 −0.6 0.1 −0.6 −0.4 −0.4 −0.5 −0.5 −0.4 −0.6
SC 0.8 0.4 0.9 0.0 −0.2 −0.2 −0.2 −0.3 0.0 −0.2 
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3.5.4. Validation of Local Intensity Scaling of Precipitation

The local intensity scaling of precipitation was also combined with the variance scaled of
temperature to calculate the K-G zone. This combination produced a similar K-G distribution as
the combination of power transformation of precipitation and variance scaling of temperature in
some regions except in the HIRHAM RCM (Figure 10). Based on the LOCI bias correction, the Csb
climate zone occurred in Eastern Europe, and the BSk zone decreased in the Eastern region of the
Mediterranean. The extension of the Dsc zone in Scandinavia and the extension of the Csb zone in
Western France decreased in the ECHAM5-r3 driven RCMs compared to the power transformation
variance scaling bias correction combination.
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Figure 10. Simulated K-G climate classification according to E-OBS (A) and local intensity scaling of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F) in the test period in 1981−2000.
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The residual bias of LOCI was extremely large in the HIRHAM model in the Iberian Peninsula
in summer (Table 10). The residual bias increased in France compared to power transformation of
the precipitation method. In contrast to this, the residual bias was smaller in Eastern Europe in the
ECHAM5-r3 forced RCMs.

Table 10. Residual bias of the seasonal amount of simulated precipitation (a) in the case of local
intensity scaling of the precipitation bias correction method in the test period in eight different regions:
the Alps (AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the
Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are in
%. The extremely large bias in the case of HIRHAM RCM in IP in the in JJA season is denoted by NA
where the bias value is about 3 × 1012.

ALADIN HIRHAM RegCM RACMO2 RCA

Regio DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA
AL 0 18 5 −3 7 −2 8 8 8 4
BI −10 8 −14 9 −14 −7 −17 −9 −17 −12
EA −1 19 −3 11 4 6 4 7 7 6
FR −11 8 −11 −6 −15 −16 −16 −18 −16 −16
IP 13 14 11 NA 24 12 24 4 22 −4

MD 4 5 6 43 19 5 23 27 18 14
ME −9 22 −9 6 −9 2 −14 0 −8 0
SC −16 0 −16 −1 −15 −8 −13 −11 −14 −10
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4. Discussion

The results confirmed our supposition that bias corrections have a significant effect on climate
classification. The effect of the bias correction varied among the models and the regions of the model
domains. Table 11 shows the differences between the observed and simulated Köppen−Geiger climate
zones in each region. The results were received by the calculation of the number of grid points where
the simulated and observed K-G zones were different in each region, and then this number was divided
with the number of grid points of the regions. The eQM and gpQM resulted in the largest differences
between the RCMs. These differences stemmed from the correction of precipitation. Simulated
precipitation is very sensitive to the properties of a model, e.g., physical parameterization, surface
properties, and resolution; hence, the distribution of precipitation varied among the RCMs. In the
HIRHAM model, eQM and gpQM produced drier negative bias, i.e., dryer zones in almost the entire
studied area. The dominance of these dry climate classes originated from the surface properties in the
HIRHAM model, the 1 mm threshold value of precipitation and the correction method. Unlike the
other RMCs, HIRHAM has only one soil moisture layer [50], which results in a smaller water-holding
capacity, which probably causes a negative feedback effect on precipitation formation. Owing to the
threshold value, most of the daily mean precipitation values were less than 1 mm, which were resized
to zero. This threshold value also caused negative precipitation bias in the JJA season. Moreover,
the eQM corrected the ranked category, but not the value of the variable. Hence, the precipitation
(or temperature) values transformed into “very high” values correspond to what observations tell us
about actual “very high “values [15]. Notwithstanding that the eQM is expected to be the best method
according to some literature [15,51,52], but according to some studies, the distribution-based methods
improve the RCMs [31,44,53]. The remaining large biases may originate from the weakness of linear
extrapolation of the cumulative distribution of parameters.
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Table 11. Disagreement between observed and simulated K-G zones in eight different regions: the Alps
(AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the Mediterranean
(MD), Mid-Europe (ME) and Scandinavia (SC) and in the whole study area in DJF and JJA in the case
of eQM-eQM, gpQM-eQM, power transformation of precipitation and variance scaling of temperature
and LOCI and variance scaling of temperature bias correction combination. The values are in %.

DISAGREEMENTAL BI EA FR IP MD ME SC Study
Area

eQM-eQM
ALADIN 8.9 1.5 15.5 8.8 12 17.8 2.3 4.5 9
HIRHAM 38.6 1.5 29.5 44.2 31.6 35.4 2.4 7.8 20
RegCM 9.4 1.3 10.3 1.5 16.2 17.2 0.7 6 8.4
RACMO2 8.9 2.2 12.9 1.5 12.9 19 0.7 6.4 9

RCA 10.3 2.5 8.6 1 14.2 11.7 0.9 10.5 9
Ensemble

mean 15.2 1.8 15.4 11.4 17.4 20.2 1.4 7.0

gpQM-eQM
ALADIN 11.8 2.7 18.5 39.3 19.3 29.9 3.4 4.7 13.1
HIRHAM 73.9 46.9 47.4 99 51.2 55.8 46.9 8.9 38.2
RegCM 9.9 1.5 10.9 2.5 17.4 21.8 0.5 6.6 9.4
RACMO2 24.7 2.4 17.5 6.4 19.5 36.8 1.5 7.2 13.7

RCA 18.1 2.5 10 4.7 19.5 20.1 0.9 11.2 11.4
Ensemble

mean 27.7 11.2 20.9 30.4 25.4 32.9 10.6 7.7

power_variance
ALADIN 1.2 0 0 0 2.9 3.8 0 0.2 0.8
HIRHAM 0 0 0 0 0 0 0 0.2 0.1
RegCM 0 0 0 0 0 0 0 0.2 0.1
RACMO2 0 0 0 0 0 0 0 0.2 0.1

RCA 0 0 0 0 1.1 0 0 0.2 0.2
Ensemble

mean 0.2 0.0 0.0 0.0 0.8 0.8 0.0 0.2

loci-variance
ALADIN 0 0 0.3 1.2 2.7 1.1 0.8 0.3 0.7
HIRHAM 0 0 0.4 2.5 3.2 1.4 0.8 0.3 0.8
RegCM 0 0 0.3 1.2 2.7 1.1 0.8 0.3 0.7
RACMO2 0 0 0.3 1.2 2.9 3.4 0.8 0.3 0.9

RCA 0 0 0.3 1.2 2.6 1.2 0.8 0.3 0.7
Ensemble

mean 0 0 0.3 1.4 2.8 1.6 0.8 0.3 
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The model results corrected by the gpQM resulted in a similar climate classification to the eQM
corrected simulations, regardless of the gpQM using gamma and generalized Pareto distributions. The
remained bias can be explained by the fact that daily precipitation cannot be adequately expressed by
gamma distribution for every region of Europe [54].

The power transformation of precipitation and the local intensity scaling of precipitation combined
with the variance scaling of temperature performed correct K-G zone distribution with a negligible
difference from the observed one. Furthermore, they resulted in very similar values in each of the
RCMs. Their independence on the model and regions of the model domain can be explained by the
fact that these are distribution-free correction approaches. Furthermore, they are also able to adjust
the variance statistics of the precipitation time series, the simulated wet-day intensity, the wet-day
frequency of precipitation and the variance and the mean values of temperature.
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The bias correction methods were validated through a split-sample test by calculating the K-G
zones in the 1981−2000 time period, except for the local intensity scaling of precipitation. According
to the climate classification, the power transformation of precipitation and the variance scaling of
temperature combination performed best in terms of K-G zones, despite the fact that the eQM bias
correction methods had a smaller residual bias value in some RCMs, e.g., in ALADIN in the JJA season.

The bias correction methods were tested by the differential split-sample test in [44]. According
to the statistical evaluation of the bias corrections in the test period, they found that the best method
was distribution mapping based on gamma distribution, which was able to correct statistical moments
other than means and standard deviations. Their findings presumably stemmed from their decision to
choose smaller sized domains, in which only one European region was taken into account. We found
the eQM and gpQM of precipitation had great limitations in the larger sized pan-European domain
and produced incorrect climate classification in each RCM.

5. Conclusions

In this paper, the influence of bias corrections on K-G climate classification was investigated.
Climate classification was calculated by eQM-corrected precipitation and temperature, by a
combination of gpQM-corrected precipitation and eQM of temperature, by a combination of power
transformation of precipitation and variance scaling of temperature, or by a combination of LOCI for
precipitation and variance scaling for temperature. These bias correction methods were applied in five
25 km resolution ENSEMBLE RCMs in the historical time period of 1961−1990 and their results were
compared with climate classification based on E-OBS-observed precipitation and temperature values
to study their performance. The corrections were tested by a split-sample test, where the 1961−1980
period was training, and the corrections were validated in the 1981−2000 period. Subsequently, the
climate classification was evaluated in eight individual subdomains: the Alps, the British Isles, Eastern
Europe, France, the Iberian Peninsula, the Mediterranean, Mid-Europe and Scandinavia, defined
according to the methodology devised for the PRUDENCE project.

When assessing the performance of the bias correction methods, we found similar results for eQM-
and gpQM-corrected K-G classifications when daily data were used during the whole 30-year time
period (not shown). Both of them were strongly dependent on the RCM, as the simulated climate zones
varied between these RCMs. Moreover, the simulated climate zones significantly differed from the
observed ones. These differences stemmed from the large bias in the seasonal precipitation amount. The
90-day moving window improved these correction methods. In comparison, a combination of LOCI
and power transformation for precipitation with variance scaling of temperature, respectively, properly
reproduced the climate zones by each of the RCMs in each region in the historical period. Furthermore,
their test run contained the smallest differences from the observed K-G zones in most regions.

Our results suggest that the eQM and gpQM methods manifest a strong dependence on the spatial
distribution of parameters, and this dependence causes a limitation in climate classification considering
the large domain. Conversely, power transformation–and local intensity scaling of precipitation and
variance scaling of temperature corrections–also generated a smaller bias between the simulated and
observed parameters, except in HIRHAM in JJA, but their combination produced better results in
climate classification for the whole European domain. This can be explained by the fact that they are
distribution-free approaches.

This study is valid for Europe as a whole, since it was based on the E-OBS dataset with a resolution
that may be coarser than that of some small regions studied in the quoted papers, where dense national
datasets could be used. In the latter case, the statistical properties of the points reflect the smaller
area and the results of the method evaluations could be different. It was beyond the scope of this
study to devote itself to the several high-resolution gridded datasets that exist in Europe, but this
will be the topic of future investigation using the next generation EURO-CORDEX regional climate
model simulations.
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