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Abstract: Species distribution models have many applications in conservation and ecology, and climate
data are frequently a key driver of these models. Often, correlative modeling approaches are developed
with readily available climate data; however, the impacts of the choice of climate normals is rarely
considered. Here, we produced species distribution models for five disparate species using four different
modeling algorithms and compared results between two different, but overlapping, climate normals
time periods. Although the correlation structure among climate predictors did not change between
the time periods, model results were sensitive to both baseline climate period and model method,
even with model parameters specifically tuned to a species. Each species and each model type had
at least one difference in variable retention or relative ranking with the change in climate time period.
Pairwise comparisons of spatial predictions were also different, ranging from a low of 1.6% for climate
period differences to a high of 25% for algorithm differences. While uncertainty from model algorithm
selection is recognized as an important source of uncertainty, the impact of climate period is not commonly
assessed. These uncertainties may affect conservation decisions, especially when projecting to future
climates, and should be evaluated during model development.

Keywords: climate; correlative models; habitat suitability; software for assisted habitat
modeling; uncertainty

1. Introduction

Climate is seen as an important factor that controls species distributions, at least across broad,
spatial scales [1–3]. Determining the relationship between species distributions and climate is an
important goal in many ecological studies, particularly in forecasting potential impacts of climate
change [4,5]. One tool that has been heavily relied on in making these forecasts is species distribution
modeling, commonly used to evaluate extinction risk of species to assess conservation impacts [6] and
develop risk assessments for invasive species based on habitat suitability [7].

The field of species distribution modeling has rapidly expanded over the last decade.
Correlative species distribution models are developed by relating locations of organisms to
environmental characteristics at observed sites to make predictions about suitable habitat across
a geographic extent [8]. These correlative methods, also known as ecological niche models, habitat
suitability models, or environmental matching models, make several assumptions. One assumption
is that the environmental predictors included in the model constrain the species’ distribution [9].
In addition, when projecting the model in space or time, these models also assume that the correlation
structure among the predictors is constant and that the niche is conserved [10].
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Climate averages over time are often described as climate “normals”, a standard mandated by the
World Meteorological Organization, consisting of an arithmetic average of climate over a 30-year period
and used as a reference point to compare to other time periods. The Parameter-elevation Regressions
on Independent Slopes Model (PRISM) climate normals data set for the continental United States
of America (USA) has been updated from monthly averages across 1971 to 2000 to include monthly
averages across 1981 to 2010 [11]. Despite the overlap of two-thirds of the years, there are substantial
changes in the 30-year average precipitation, maximum temperature, and minimum temperature.
For example, parts of the USA exhibited over 200 mm more precipitation during the driest month in
the earlier period while other regions had less precipitation at a comparable magnitude (Figure 1).
Similar differences existed for minimum temperature of the coldest month, with spatial heterogeneity
between areas that were colder or warmer between the two time periods.

In correlative models, model parameterization is dependent on the correlation structure between
predictor variables and location data. Changes in correlation structure can be particularly important
when extrapolating to novel climates [12], so understanding how correlations vary in space and time
is important. If there is a temporal disconnect between location data collection and predictor variable
coverage, and the predictor variable’s correlation structure is not constant through time, this could
potentially have a large effect on model results.

The environmental data used to produce correlative species distribution models, including climate,
are often based on what data are readily available rather than decisions made based on the research
question or species of interest [8]. For example, the global WorldClim data set, which only provides
climate normals (1950 and 2000 [13] or 1970 to 2000), was cited in 1950 of 6380 articles published
between 2013 to 2017 (google scholar search including climate AND [“species distribution model” OR
“niche model” OR “habitat suitability model” OR “environmental matching model”]). These results
indicate that a high percentage of species distribution models used the readily available WorldClim
data set rather than a data set with customizable time periods. The PRISM data set is commonly
mentioned in papers focused in the USA (293 of 2720 articles included PRISM). Unlike WorldClim, this
dataset is downloadable for two periods of climate normals and is available as monthly data that could
be used to develop project-specific climate normals, albeit at a coarser spatial resolution. As readily
available climate normals datasets continue to be used in species distribution models, it is important
to assess the potential impact of the temporal period of climate data on model results.

Our objectives were to evaluate the sensitivity of correlative species distribution models to
the choice of partially overlapping climate normals period, including variable importance, variable
response curves, and prediction agreement, while also examining the consistency of the correlation
structure between the two baseline data sets. We did this using readily available data and standard
best practices for creating correlative models to mimic common applications of these models.
We evaluated whether model results were more sensitive to a time period or model algorithm choice.
We hypothesized that the effect of climate normals data would be less for a long-lived species (e.g.,
tree) than for a short-lived species (e.g., insect). In addition, we hypothesized that simpler model
algorithms would be less sensitive to the choice of climate normals data time period. We investigated
the sensitivity of species distribution models to climate time period used by creating models with
species data for a variety of taxa with commonly used climate data that matched the 30-year time
span recommended by the Intergovernmental Panel on Climate Change. We compared the uncertainty
from baseline climate data to uncertainty from the model technique, one of the greatest sources of
uncertainty from those quantified [14], and assessed the consistency of predictions.
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Figure 1. Change in climate normals between 1971 to 2000 and 1981 to 2010 for two bioclimatic 
variables including: (a) precipitation of the driest quarter (Bio17) (mm) and (b) minimum 
temperature of coldest month (Bio6) (°C) exhibiting regional heterogeneity. 
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Figure 1. Change in climate normals between 1971 to 2000 and 1981 to 2010 for two bioclimatic
variables including: (a) precipitation of the driest quarter (Bio17) (mm) and (b) minimum temperature
of coldest month (Bio6) (◦C) exhibiting regional heterogeneity.

2. Materials and Methods

2.1. Climate Normals

We used climate normals from two time periods, 1971 to 2000 and 1981 to 2010, from the
PRISM climate group (http://www.prism.oregonstate.edu). These climate normals consisted of
a 30-year average of monthly precipitation, maximum temperature, and minimum temperature for the
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coterminous USA at 800 m grain resolution. We derived 19 commonly used bioclimatic variables from
these monthly climate normals using the methods of O’Donnell and Ignizio [15] that were derived
from a previous version [13,16].

2.2. Species

We chose species covering a wide range of taxa that are believed to be climatically limited in their
distribution. The species included Africanized honey bees (a genetic hybrid cross of Tanzanian Apis
mellifera scutellata Lepeletier and a variety of European honey bee strains such as A. m. ligustica Spinola),
ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson), American pika (Ochotona princeps
(Richardson, 1828)), Bachman’s sparrow (Peucaea aestivalis (Lichtenstein, 1823)), and kudzu (Pueraria
lobata (Willd.) Ohwi.). Africanized honey bees spread into the USA starting in the 1990s, expanding
northward from Brazil, and have a cold temperature constraint to their northern range boundary
in the USA [17]. Ponderosa pine is a native tree species distributed mainly within the western USA
and can be limited by soil moisture [18]. American pika are found discontinuously in mountainous
areas in the western USA and cannot tolerate the high diurnal temperature often found at low
elevations [19,20]. Bachman’s sparrow is an endemic species to the southeastern USA with northern
populations migrating south in winter [21]. Kudzu is an invasive vine that has been present in the
eastern USA since 1872 and has known sensitivity to cold temperatures, which is believed to control
its northern range boundary [22].

2.3. Location Data

Occurrence data for each species were sourced from the best available and regionally
appropriate data. When absence data had been collected, we used these for model development.
Otherwise, we obtained background points attempting to match the sampling bias that existed in the
presence points using the target-background approach [23]. Our study area was the continental USA,
and we obtained available occurrence data for the entire area. We limited our area of inference (e.g.,
the area we produced mapped predictions for) to eastern or western states so we were not extrapolating
to climate conditions outside the range of those included in model fitting. Species specific study areas
are shown in Figure 2.

For Africanized honey bees, we used previously aggregated presence (n = 641) and absence
(n = 107) data from Jarnevich et al. [24] (Figure 2a). The first record of Africanized honey bees in the
USA occurred in 1990, so we did not limit the locations based on date.

Presence and absence data for ponderosa pine were obtained from the on-line Forestry Inventory
and Analysis (FIA) data set, which consists of survey locations across the USA. The FIA program
surveys 10 to 20 percent of all existing plots within a state on an annual basis, beginning in 1999 with
historic periodic surveys by state from 1928 to 1999. The sample design consisted of a systematic grid
of the USA of approximately 6000 acre hexagons, each containing a plot. All tree species are recorded
on these plots. We selected surveys that occurred between 1979 and 2011 and, due to the large sample
size, chose to subsample the data set spatially. Using the dismo library in R [25], we overlaid a 5 arc
second grid onto the USA and randomly selected one location per grid cell, resulting in 5998 presence
and 65,452 absence locations (Figure 2b).

We obtained 383 American pika presence locations from the Global Biodiversity Information
Facility (GBIF; http://www.gbif.org; downloaded Oct 22, 2012), an organization that aggregates
occurrence data primarily from museum records. We selected records with observation dates after 1970.
We generated 10,000 background locations randomly within Landscape Conservation Cooperatives
boundaries (LCC; http://www.fws.gov/landscape-conservation/lcc.html) containing American pika
occurrences to characterize the available environment, as these boundaries are based on ecological
characteristics (Figure 2c).

Bachman’s sparrow occurrences were obtained from North American Breeding Bird Survey (BBS)
data (version 2011.0; https://www.pwrc.usgs.gov/bbs/). Any location that ever recorded a presence

http://www.gbif.org
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Climate 2019, 7, 37 5 of 15

of Bachman’s sparrow between 1970 and 2006 was used as a presence location, and all other surveyed
locations were classified as absence. To convert the BBS routes to point locations, we converted the
shapefile of BBS routes to points using ArcGIS 10.0 (ESRI, Redlands, CA, USA) FeaturesToPoints tool.
This method resulted in 196 presence locations and 2088 absence locations for Bachman’s sparrow
within the study region (Figure 2e).

We obtained kudzu locations from the Early Detection and Distribution Mapping System
(EDDMapS; http://www.eddmaps.org/) that contains presence locations of invasive species. We used
the target background approach [23] to define background locations, selecting a similarly distributed
non-native plant species with locations available in EDDMapS, Japanese knotweed (Fallopia japonica).
Given their similarity, we assumed surveys for Japanese knotweed would have similar sampling bias.
Many records did not include collection dates, but we removed any locations with a pre-1970 date.
After removing these records and limiting to a single location within each 800 m cell within the eastern
USA, we had 3427 presence locations and 2269 background locations (Figure 2d).
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2.4. Analysis

We used the Software for Assisted Habitat Modeling (SAHM 1.2; [26]), a package in VisTrails [27]
to perform the modeling analyses. To control for collinearity issues, we removed one of any pair of
predictors with a maximum of the Pearson, Spearman, or Kendall correlation coefficients |r| >0.7 [28].
For correlated variable pairs, we retained the variable that was known through the literature to be
a more important driver of the species distribution. We used four modeling algorithms common in
species distribution modeling literature, including generalized linear models (GLM; [29]), multivariate
adaptive regression splines (MARS; [30]), boosted regression trees (BRT; [31]), and random forest
(RF; [32]). We used 10-fold cross-validation to evaluate individual model performance, and withheld
10% of the data for final evaluation across all models. SAHM provides standard assessment metrics
including area under the receiver operating characteristic curve (AUC) and calibration plots [33,34].

We assessed consistency of variables retained in models and their importance to the model. GLM used
stepwise selection based on Akaike’s information criterion; MARS used forward steps identifying many
knots with backward pruning to simplify the model; and BRT only selected predictors for inclusion that
minimized prediction errors. RF did not include an internal variable selection procedure. SAHM calculated
variable importance consistently across model techniques using the change in AUC values when
predictor values associated with training location data were permutated between presence and absence or
background data. We transformed these importance values to relative percentages.

Consistency of predictions was assessed using discretized versions (i.e., binary maps) of the continuous
output maps for each model with locations assigned to a suitable or unsuitable category. Results were
discretized using the maximize sum of sensitivity and specificity threshold rule, which has performed well
across data types [35]. We then summed the discretized maps by species, both across model algorithms to
assess prediction differences due to climate data and across climate data to assess prediction differences due
to model algorithms. For the former we calculated differences for all pairwise combinations to control for
the effect of different sample sizes (four model algorithms compared to two time periods). We calculated
the percent of each defined study area that had disagreement on suitable and unsuitable predictions to
compare the differences caused by climate period and the differences caused by the model algorithm.

We also used SAHM to run pairwise correlations between the bioclimatic variables within the
eastern, western, and continental USA for both climate normals periods. We randomly selected
10,000 points across each of the three regions to characterize climate. We used the maximum correlation
coefficient of the Pearson, Spearman, and Kendall correlation coefficients to evaluate correlations
among the bioclimatic variables. We then compared the correlation matrices between the two time
periods to explore the temporal consistency of the correlation structure.

3. Results

All models performed well, with high cross-validation discrimination capacity (e.g., most
independent split AUC values >0.9, all >0.8). Calibration plots also indicated good agreement between
predicted probabilities of occurrence and observed occupancy, with a few exceptions (e.g., American
pika and kudzu, which had background rather than absence data). However, for these analyses we
were primarily concerned with discrimination ability.

3.1. Variable Correlation

Despite regional heterogeneity visible in the maps of differences in climate between the two climate
normals periods (Figure 1), correlations between predictor variable values from 1971 to 2000 compared to
the same predictor variable in 1981 to 2010 were similar (Table 1 and Table S1 diagonals). For all variables
except mean temperature of the wettest quarter [bio8] in the eastern USA (Table S1b), correlations were
|r| > 0.9. Mean temperature of the wettest quarter consistently had the lowest correlation, perhaps due to
changes in the consecutive three-month period that comprised the quarter, as maps of this predictor are
spatially disjointed.
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Table 1. Bioclimatic variable correlations across the USA for each variable between each climate normals period (1971 to 2000 as rows and 1981 to 2010 as columns) as
the diagonal from top left to bottom right in bold. Correlations among climate variables within the 1971 to 2000 time period are below the diagonal and correlations
among climate variables within the 1981 to 2010 time period are above the diagonal as a mirror image. Correlations are colored in a gradient from 1 as white to
0 as red to help visually determine if the top and bottom have similar correlations. Abbreviations are: annual mean temperature (bio1); mean diurnal range (bio2);
isothermality (bio3); temperature seasonality (bio4); maximum temperature warmest month (bio5); minimum temperature coldest month (bio6); temperature annual
range (bio7); mean temperature of wettest quarter (bio8); mean temperature of driest quarter (bio9); mean temperature of warmest quarter (bio10); mean temperature
of coldest quarter (bio11); annual precipitation (bio12); precipitation of wettest month (bio13); precipitation of driest month (bio14); precipitation seasonality (bio15);
precipitation of wettest quarter (bio16); precipitation of driest quarter (bio17); precipitation of warmest quarter (bio18); precipitation of coldest quarter (bio19).

1971
1981

bio1 bio2 bio3 bio4 bio5 bio6 bio7 bio8 bio9 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19

bio1 0.998 0.105 0.499 0.536 0.865 0.905 0.522 0.456 0.637 0.937 0.948 0.249 0.261 0.326 0.187 0.237 0.327 0.249 0.3
bio2 0.094 0.967 0.641 0.125 0.43 0.023 0.36 0.034 0.158 0.094 0.155 0.674 0.644 0.578 0.335 0.66 0.586 0.553 0.521
bio3 0.539 0.574 0.98 0.81 0.484 0.642 0.509 0.06 0.637 0.276 0.684 0.201 0.178 0.239 0.222 0.201 0.219 0.399 0.158
bio4 0.542 0.085 0.835 0.996 0.297 0.815 0.898 0.185 0.761 0.253 0.773 0.295 0.329 0.207 0.096 0.32 0.225 0.168 0.55
bio5 0.864 0.412 0.458 0.262 0.99 0.687 0.156 0.444 0.524 0.912 0.774 0.199 0.245 0.079 0.038 0.257 0.079 0.035 0.208
bio6 0.905 0.04 0.68 0.825 0.661 0.994 0.795 0.191 0.802 0.732 0.982 0.319 0.309 0.324 0.181 0.284 0.335 0.101 0.509
bio7 0.534 0.343 0.579 0.917 0.148 0.821 0.985 0.14 0.679 0.286 0.705 0.567 0.551 0.437 0.313 0.551 0.468 0.154 0.775
bio8 0.448 0.043 0.076 0.221 0.487 0.174 0.168 0.927 0.299 0.587 0.276 0.106 0.15 0.151 0.022 0.135 0.13 0.522 0.324
bio9 0.638 0.11 0.666 0.782 0.479 0.812 0.721 0.299 0.968 0.443 0.773 0.178 0.123 0.204 0.217 0.118 0.222 0.228 0.525
bio10 0.931 0.102 0.302 0.246 0.923 0.718 0.277 0.608 0.426 0.997 0.792 0.207 0.226 0.265 0.168 0.203 0.258 0.313 0.132
bio11 0.946 0.137 0.724 0.783 0.755 0.983 0.733 0.256 0.78 0.78 0.998 0.252 0.244 0.299 0.157 0.216 0.306 0.118 0.408
bio12 0.267 0.66 0.12 0.316 0.179 0.356 0.57 0.104 0.22 0.216 0.277 0.996 0.941 0.852 0.537 0.953 0.876 0.756 0.844
bio13 0.302 0.611 0.08 0.346 0.22 0.353 0.548 0.156 0.172 0.257 0.284 0.946 0.98 0.703 0.305 0.994 0.727 0.714 0.862
bio14 0.318 0.599 0.178 0.239 0.09 0.357 0.473 0.102 0.239 0.237 0.303 0.859 0.718 0.989 0.829 0.714 0.993 0.78 0.704
bio15 0.154 0.382 0.207 0.092 0.072 0.187 0.324 0.06 0.204 0.12 0.132 0.535 0.316 0.823 0.981 0.326 0.826 0.49 0.575
bio16 0.267 0.632 0.11 0.33 0.24 0.319 0.539 0.132 0.163 0.222 0.246 0.956 0.994 0.724 0.33 0.989 0.737 0.733 0.868
bio17 0.322 0.603 0.147 0.258 0.09 0.369 0.493 0.074 0.253 0.233 0.313 0.874 0.732 0.992 0.83 0.736 0.994 0.769 0.744
bio18 0.253 0.549 0.34 0.151 0.013 0.125 0.164 0.499 0.202 0.31 0.121 0.768 0.721 0.773 0.488 0.742 0.751 0.993 0.369
bio19 0.299 0.543 0.201 0.561 0.236 0.524 0.781 0.328 0.535 0.115 0.408 0.858 0.878 0.73 0.584 0.885 0.774 0.394 0.995
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Correlations between predictor variables within a single climate normals period also remained
consistent when compared across climate normals periods (Table 1 mirror image above and below
the diagonal). Differences in correlation coefficients for predictor variable pairs between the two time
periods were commonly <0.05.

3.2. Variable Importance

Variable retention and importance ranking generally changed with a change in climate normals
periods regardless of species or model algorithm (Table 2). While this was not the case for every
pair of species and model type, each species and model type had at least one difference in variable
retention or ranking. For kudzu, however, the only difference among models was that the 1971 to
2000 climate normals GLM model retained mean diurnal range, though with a very low relative
importance value (0.1%; Table 2d). This predictor was dropped by the 1981 to 2010 climate normals
GLM model. The other four variables were consistent between the GLM models in their order of
importance. Africanized honey bee models also showed consistency in variable importance ranking
among models with only one difference, where the third and fourth most important variables switched
places in the RF model (Table 2a). Across model types maintaining a consistent climate period, each
pairing had a difference in variable importance ranking or variable retention for three of five species.

Table 2. Variable importance for each model (modeling algorithm [Generalized linear model (GLM);
Multivariate adaptive regression spline (MARS); Boosted regression trees (BRT); Random forest (RF)],
and time period [1971 to 2000 (1971); 1981 to 2010 (1981)]) including those for (a) Africanized honey
bee, (b) ponderosa pine, (c) American pika (pseudo-absence locations), (d) kudzu (target background
locations), and (e) Bachman’s sparrow. The three most important predictors in each column are colored,
with the darkest indicating most important and lightest third most important. Blanks indicate that the
predictor was dropped from that model.

(a) GLM MARS BRT RF
1971 1981 1971 1981 1971 1981 1971 1981

Isothermality 6.8 10.0 5.8 5.0
Maximum temperature of warmest month 2.8 3.0 26.2 1.0

Mean temperature of wettest quarter 0.2 3.4 9.0 10.9 0.0 0.0
Minimum temperature of coldest quarter 39.6 32.0 36.9 37.6 41.8 37.9 31.9 36.6

Precipitation of driest quarter 60.2 64.7 44.6 38.5 58.2 62.1 36.1 57.4

(b) GLM MARS BRT RF
1971 1981 1971 1981 1971 1981 1971 1981

Mean diurnal range 12.7 14.9 0.2 0.2
Isothermality 12.5 13.2 3.0 4.3 13.9 3.0 5.9

Maximum temperature of warmest month 29.7 30.5 20.9 14.5 34.9 16.7 31.6 22.1
Minimum temperature of coldest month 15.7 17.0 8.9 12.4 20.5 12.0 8.5 5.8

Mean temperature of wettest quarter 13.5 9.8 33.9 32.4 18.2 14.6 15.7 15.7
Average annual precipitation 1.1 0.9 30.3 31.0 26.4 34.8 29.8 41.4

Precipitation seasonality 0.8 0.5 2.2 1.6 1.3 1.9
Precipitation of driest quarter 8.0 8.2 8.0 2.7 2.2

Precipitation of warmest quarter 6.0 5.0 0.8 3.8 7.1 4.8

(c) GLM MARS BRT RF
1971 1981 1971 1981 1971 1981 1971 1981

Mean diurnal range 9.0 4.2 7.0 7.6
Isothermality 22.8 3.3 3.6

Maximum temperature of warmest month 100.0 100.0 51.8 9.0 82.9 81.3 48.9 47.6
Minimum temperature of coldest month 5.0 37.9 8.0 9.7

Mean temperature of wettest quarter 0.5 2.8 5.3 3.8 8.8 6.9
Precipitation seasonality 3.8 4.6 4.8

Precipitation of warmest quarter 0.3 3.2 4.9 7.0 6.5
Precipitation of coldest quarter 11.0 50.0 4.8 5.9 12.5 13.4
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Table 2. Cont.

(d) GLM MARS BRT RF
1971 1981 1971 1981 1971 1981 1971 1981

Average annual temperature 72.1 66.7 92.2 94.3 93.1 94.0 76.0 83.7
Mean diurnal range 0.1 1.0 1.1 6.9 6.0 4.4 3.1

Average annual precipitation 18.3 24.0 4.3 3.3 14.7 7.4
Precipitation seasonality 2.6 2.9 2.5 3.0

Precipitation of warmest quarter 6.9 6.4 2.4 1.3 2.3 2.9

(e) GLM MARS BRT RF
1971 1981 1971 1981 1971 1981 1971 1981

Mean diurnal range 15.9 23.6 15.2 5.7 16.4 8.8
Mean temperature of wettest quarter 1.5 0.8 10.1 7.2 6.1 8.1 0.7

Minimum temperature of coldest quarter 56.0 51.0 54.4 79.9 72.9 72.3 50.9 65.7
Precipitation seasonality 15.2 7.4 1.0 0.6

Precipitation of wettest quarter 11.5 17.2 20.3 7.3 27.1 21.6 23.7 24.2

Most differences among model pairings with a change in climate normals period involved a switch
in the order of variable importance. In some cases variables were dropped during the model fitting
process for one climate normals period while they were retained in the model fitting process using
the other climate normals period. For example, the top two predictors in BRT models of Bachman’s
sparrow were the same, but mean temperature of the wettest quarter was retained as a third predictor
in the model using 1981 to 2010 climate normals data, but dropped from the model using 1971 to
2000 climate data (Table 2e). However, this predictor contributed relatively little to the model (6.1%).

Ponderosa pine and American pika, both modeled in the western USA, exhibited the greatest
differences in variable importance between paired models from the two different time periods.
These two species also had the greatest number of predictors retained after the variable selection
correlation step (nine and eight, respectively, compared to five in the other species’ models).

3.3. Prediction Agreement

The choice of model algorithm generally caused greater differences in predictions between
models than the choice of climate normals period (Table 3). The magnitude of differences in predictions
between species, however, differed. Ponderosa pine had the largest difference in model algorithm
choice (average of 16%), and American pika had the smallest (average of 3%). Africanized honey
bees had the greatest difference related to selection of climate normals data (12.1% for the MARS
models), and American pika, again, had the smallest difference (1.6% for both the GLM and RF models).
However, American pika are relatively rare on the landscape. If we only consider areas predicted as
suitable by at least one model, we have a much higher level of disagreement (1.6% to 4.9% compared
to 14.0% to 40.7%).

Table 3. Percent of study area for each of the five species (Figure 2) considered where model predictions
disagreed, calculated by comparing binary suitable/ unsuitable maps (a) across the two climate time
periods (1971 to 2000 and 1981 to 2010) for each model algorithm, and (b) mean (minimum to maximum)
percent for all six pairwise comparisons of the four different models (e.g., GLM compared to MARS,
GLM compared to BRT) for the two climate time periods.

(a) Africanized
honey bee

Ponderosa
pine

American
pika Kudzu Bachman’s

sparrow

Generalized Linear Model (GLM) 3.0 7.6 1.6 5.0 5.0

Multivariate Adaptive Regression Splines (MARS) 12.1 5.6 4.9 3.6 4.0

Boosted Regression Trees (BRT) 8.1 6.1 2.3 5.2 3.9

Random Forest (RF) 5.4 4.7 1.6 4.3 8.6
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Table 3. Cont.

(b) Africanized
honey bee Ponderosa pine American pika Kudzu Bachman’s

sparrow

1971–2000 climate 12.6 (8.3–16.5) 16.7 (5.3–25.0) 3.7 (2.3–5.5) 6.6 (4.1–9.7) 6.4 (4.5–7.2)

1981–2010 climate 10.0 (8.7–11.0) 16.2 (4.4–23.4) 3.6 (2.5–5.3) 7.1 (4.9–9.0) 8.2 (3.3–12.2)

Most differences between model predictions, either from algorithm choice or climate normals
period choice, occurred at the geographic edges of ranges, rather than within the interior of the
predicted suitable habitat (Figure 3; Supplementary material Figure S1). For example, most of the
disagreement between the choice of climate normals for kudzu was along the northern edge of the
predicted suitable habitat (Figure 3c).
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Figure 3. Agreement between models created using climate normals from 1971 to 2000 and
1981 to2010 for (a) the Africanized honey bee boosted regression tree models, (b) the American
pika multivariate adaptive regression spline models, and (c) kudzu generalized linear models.

BRT models for Africanized honey bees for both time periods selected the same subset of
predictors with similar levels of variable importance. However, the geographic predictions of suitability
were still quite different (8.1% difference; Figure 3a) because the response curve shapes differed
(Figure 4). All species had some differences in response curves (Supplemental information Figure S2).
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Figure 4. Response curves for the five predictors retained in the Africanized honey bee models
including mean temperature of the coldest quarter, precipitation of the driest quarter, mean temperature
of the wettest quarter, isothermality, and maximum temperature of the warmest month. Each graph
includes response curves from the subset of the eight models retaining that predictor, including the
four different model algorithms (boosted regression tree (BRT), generalized linear model (GLM),
multivariate adaptive regression splines (MARS), random forest (RF) and the two different runs of
each for the climate normal periods (1971 to 2000 and 1981 to 2010). The top left numbers in each graph
are the average variable importance across all model with the range in parenthesis.

4. Discussion

We found the choice of model algorithm had a larger effect on prediction results among models
than did the choice of climate normals period, although the climate normals time period did affect
model results. Our findings that choice of model algorithm contributed considerable uncertainty to
model results are consistent with others [14,36]. This underscores the importance of evaluating multiple
model algorithms when developing habitat suitability models [37]. There are several potential sources of
uncertainty in species distribution modeling that have received attention in the literature [9,38–43], often
focusing on quantifiable uncertainty. Some researchers have compared the relative contribution of different
components of uncertainty to models [14,36]. These components range from quality of location data
(e.g., misidentification or inaccurate coordinates) to variance arising from different modeling algorithms,
finding that model algorithm choice contributed the greatest amount of uncertainty among the factors they
examined. We also found that these differences were consistent across taxa, despite the differences in life
history and occurrence information (e.g., availability of absence data) among species we tested.
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Our results also complement those of others looking more specifically at climate data. Braunisch et
al. [39] examined uncertainty introduced through the correlation filtering process to deal with
collinearity between variables. Differences in predictions arose depending on the identity of the
climate variables retained, similar to our findings of differences due to time period. In a similar study
to this one, Roubicek et al. [44] tested the importance of a temporal mismatch between occurrence data
and climate data, using different baseline climate data with simulated location data for 18 different
10-year time spans, one 30-year time span, and one 50-year time span. They highlighted the importance
of a temporal match between species location data and climate time period. However, our study differs
from previous work in that we use a larger spatial extent (US compared to East coast of Australia)
and real applications, rather than simulated species, including a diverse group of taxa with differing
lifespans and data qualities. In addition, Roubicek et al. [44] performed all modeling with Maxent,
which is a presence–background technique, while we evaluate four commonly used techniques for
presence–absence/pseudo–absence (but exclude Maxent as most modeled species had absence data).
In this study we had temporal overlap between the two periods, with our location data generally
spanning the climate normals periods covered. Our finding of model sensitivity to time period of
climate normals is one aspect of uncertainty that was previously relatively unexplored.

Differences in variable importance and response curves due to the choice of climate normals
time period resulted in measurable differences in predicted habitat suitability for the five species,
even when only one-third of the data were different between the two periods. These differences arose
despite the fact that values extracted from the two time periods were highly correlated (e.g., Table 1).
If a subset of predictors was more highly correlated between the time periods, we could have tested if
using the more correlated subset decreased differences between fitted models.

One use of correlative species distribution models istrying to predict shifting distributions due
to climate change or range expansion of species [45–48]. As discussed elsewhere [49], correlative
models have their limitations for these types of assessments. While model type produced greater
variation than climate normals time period, the choice of time period did affect all species and all
model algorithms tested. These impacts occurred regardless of species taxa, spatial extent (entire
US or a subset), niche breadth (generalist such as ponderosa to specialist such as pika), and nativity,
all of which can affect model performance. Our hypothesis that long-lived species would be less
impacted did not hold up; in fact, Africanized honey bees had less change in predictor importance
than ponderosa. These differences may only be exacerbated when applied to novel locations or time
periods [50], as seen in other evaluations examining uncertainty [39].

5. Conclusions

We showed that even with species-tuned model parameters, rather than generic model
parameterization that is often applied to large suites of species, results are highly sensitive to both
baseline climate period and model method. While the latter is well recognized as an important
uncertainty and is often accounted for through ensemble modeling [51], the impact of the former is
not commonly assessed. We hypothesized that one particular modeling algorithm might consistently
exhibit less impact, such as GLM because it is a simpler model with smoother response curves,
but our results indicate that, instead, we have uncovered yet another source of uncertainty for model
developers to evaluate on a case by case basis. Luckily, the development of somewhat automated
software such as ModEco [52], BIOMOD [53] and VisTrails:SAHM [26] facilitate running multiple
modeling algorithms several times to test the sensitivity of a model to a particular decision (e.g., choice
of model algorithm, threshold rules, predictor data sets, background selection, etc.). Another possibility
is that as the availability of climate data and computational processing capabilities increase, climate
normals relative to time of sampling could be used (e.g., 30-year average prior to sampling year,
or even a longer climate average spanning the range of sampling dates such as 1971–2010 in our
case). Our results further highlight the uncertainty around using these types of correlative models for
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forecasting future distributions of species to inform conservation decisions. Evaluating uncertainty in
current models is a necessary first step before determining if it is wise to proceed with projections.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/7/3/37/
s1, Figure S1. Habitat suitability maps for each species, Figure S2. Response curves by species, Table S1.
Bioclimatic variable correlations.
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