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Abstract: This study addresses the long-term rainfall trends, their temporal variability and
uncertainty over mainland Portugal, a small country on the most western European coast. The study
was based on monthly, seasonal and annual rainfall series spanning for a period of 106 years,
between October 1913 and September 2019 (herein after referred to as global period), at 532 rain
gauges evenly distributed over the country (c.a. 6 rain gauges per 1000 km2). To understand the
rainfall behavior over time, an initial sub-period with 55 years and a final sub-period with 51 years
were also analyzed along with the global period. The trends identification and the assessment of
their magnitude were derived using the nonparametric Mann-Kendall (MK) test coupled with the
Sen’s slope estimator method. The results showed that after the initial sub-period with prevailing
increasing rainfall, the trends were almost exclusively decreasing. They were also so pronounced
that they counterbalanced the initial rainfall increase and resulted in equally decreasing trends for
the global period. The study also shows that approximately from the late 1960s on, the rainy season
pattern has changed, with the last months prior to the dry season showing a sustained decrease of
their relative contributions to the annual rainfalls. Overall, the results support the hypothesis of less
uncertainty on the pronounced decrease of rainfall over mainland Portugal in recent years, which is
expected to continue. They also show that the asymmetry between a less wet North, yet still wet, and
an arid South is becoming much more marked.
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1. Introduction

Progressively more noticeable signs of climate change have been detected in recent years, in the
form of increased climate variability, more and worse extreme hydrological events, rising temperature
and sea level, among others [1–3]. Such signs have become large enough to exceed the bounds of their
historical natural variability.

According to the periodical reports of the Intergovernmental Panel on Climate Change, IPCC [4–6],
the increasing sea surface temperature and the consequent intensification of the hydrological cycle [7]
has a significant effect on the rainfall, which is expected to increase globally [8]. Nevertheless,
at regional and local scales, decreasing trends in rainfall are also expected [4,9]. This is the case
of the Iberian Peninsula, in which mainland Portugal is located, where the rainfall amounts are
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projected to decrease throughout the 21st century, and become more clustered into extreme rainfall
events [10–15].

Regarding the recent climate evolution, the high northern latitudes have registered rainfall
increases, while from 10◦ S to 30◦ N decreases were reported from the 1970s onward [7]. This also
applies to Europe, with increasing rainfall in its higher latitudes and decreasing rainfall in the
Mediterranean region particularly in its western and central parts [16]. Such decrease in the rainfall is
aligned with the general trend throughout the 21st century pointed out by Gibelin and Déqué [17] and
Giorgi and Lionello [18].

Specifically for the Mediterranean region, there are several studies making use of ground-based
data about rainfall, drought characteristics, and moisture availability trends during the 20th century,
e.g., [19–23], but few have addressed climate variability in the early years of the 21st century,
e.g., [24–26]. However, such type of studies needs to be continuously updated, as the changes of
most of the hydrological variables are related to active and ongoing processes that may be more or
less visible depending on the materials and models, time-windows, and lengths of the analyzed time
series data.

Rainfall is the source of water of the hydrological cycle [9,27]. Hence, the detection and
quantification of trends and of abrupt changes (within-the-year or among years) in its series are
fundamental issues to understand the susceptibility of the hydrological environment to the effects of
the climate change, namely in terms of freshwater availability. With this in mind, long-term and recent
rainfall trends at different time scales, and their fluctuation and uncertainty are analyzed for mainland
Portugal aiming at understanding how they changed over time.

A decrease in the rainfall has been generally pointed out for mainland Portugal. However,
the results from the general circulation models (GCM) applied to different climate scenarios show
substantial differences, meaning that there is a considerable uncertainty about future projections
of the rainfall amounts and that the numerical models of climate change prediction are in need for
further insights [14,15]. To reduce uncertainty in rainfall changes studies, the use of spatially dense
ground-based observations can be an alternative to the GCM. For this purpose, long data series must
be available at a high number of monitoring points to ensure a comprehensive description of the
temporal and spatial variability of the rainfall at different timescales over the study region [28,29].

However, most of the studies on the topic for Portugal have been based on a few rain gauges
or on rainfall series generally with short records length. This was the case of the novel studies of
Portela and Carvalho Quintela [30,31], which used monthly rainfall series, almost from the beginning
to the end of the 20th century (average length of the records of 90 years), but only at 11 rain gauges
scattered over the country. Following the previous studies, it is worth mentioning de Lima et al. [32],
which used 107 rain gauges with 69 years of monthly data, from 1941 to 2000; Rodrigo and Trigo [33],
which addressed rainfall trends over the Iberian Peninsula, from 1951 to 2002, based on 22 rain gauges,
7 of which located in Portugal; and the wide-ranging analysis of Santos and Portela [34], which
used 94 years, from 1910 to 2004, of monthly rainfall series at 144 rain gauges regularly distributed
over the country. The last authors showed that the high spatial rainfall variability hampers the
establishment of an overall pattern of the rainfall changes. In fact, most of the detected monthly and
annual rainfall trends had no statistical significance (except for March with generalized pronounced
decrease), but instead were within the limits of the natural temporal rainfall variability.

Other contributions on the subject for mainland Portugal using ground-based observations are
those of de Lima et al. [35,36], based on only 10 rain gauges over Portugal, albeit with long recording
series, and of Santo et al. [16], and de Lima et al. [37] that used daily data from 1941 to 2007 at
57 rain gauges to ascertain seasonal variations and trends in the intensity, frequency and duration
of daily rainfall extremes. Portela et al. [38] summarizes previous studies done by the authors to
Portugal, including trend analysis applied to streamflow series, and Nunes and Lourenço [39] analyzes
the monthly and annual rainfall trends from 1960 to 2011 at 42 rain gauges. A more recent study by
Portela et al. [26] used 108 years of monthly records at 62 rain gauges densely covering part of southern
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Portugal (study area of 16,000 km2, i.e., approx. 18% of mainland Portugal) where the rainfall decrease
is a major problem due to the water scarcity that already characterizes the region [40]. Such study
revealed that in general, the upward rainfall trends in the early years of the 20th century switched to
pronounced significant downward trends in recent years. It also revealed that the intra-annual rainfall
pattern is changing, namely in what concerns the more contributory months of the year.

The present research work updates the results from the previous studies, with emphasis on those
of Portela et al. [26] by expanding them to the entire country, employing up-to-date ground-based
data covering both a long period (106 years, from 1913/1914 to 2018/2019) and a large number of rain
gauges (532 rain gauges, c.a., 6 rain gauges per 1000 km2) thus, providing a comprehensive assessment
of the temporal and spatial rainfall variability over Portugal.

Following this introduction, Section 2 presents the study area, the rainfall data that supported the
research, the procedure applied to fill in the monthly rainfall gaps, and the models used to characterize
the rainfall trends. Section 3 reports the results achieved. Finally, Section 4 provides a discussion and
some relevant conclusions from the trend analysis.

The main findings of this research evidence a widespread decrease of the rainfall over Portugal,
especially from 1960 onwards, that is also resulting in a more pronounced asymmetry between a
still relatively wet North and a dry South. The overall rainfall decrease is becoming less uncertain,
reinforcing the evidence of a future with less freshwater availability and, consequently, the need for
widespread public awareness and participation towards common water-saving practices. The public
institutions and those responsible for the water resources policies also need to increase their capacity
building aiming at urgent implementation of mitigation and adaptation measures and of new water
resources planning and management policies.

2. Materials and Methods

2.1. Study Area

The rainfall trend analysis considered mainland Portugal, with approx. 89,000 km2, as study
area. The country is in the western part of the Iberian Peninsula (37◦ to 42◦ N and 6◦ to 9.5◦ W),
facing the Atlantic Ocean, in the transitional region between the sub-tropical anticyclone and the
subpolar depression zones (Figure 1). The major natural factors that condition the climate of the
country are the latitude, the topography, ranging from approx. 0 to 2000 m.a.m.s.l., and the effect of
the North Atlantic Ocean as the most eastern regions of the country are only c.a. 220 km away from
it [41,42]. The mean annual rainfall over Portugal varies from more than 2800 mm, in the north-western
region, to less than 400 mm, in the southern region, following a complex spatial pattern (N–S/E–W),
in close connection with the relief [43].

2.2. Rainfall Dataset

The original rainfall records used in the study span from October 1910 to September 2019
(109 hydrological years, each starting 1 October). The records were acquired from 764 rain gauges of
the public database of the Portuguese Environment Agency, the Sistema Nacional de Informação de
Recursos Hídricos [44]. All the rain gauges have incomplete series, as briefly characterized in Figures 2
and 3.

Figure 2 shows a histogram of the number of rain gauges per class of number of available monthly
records from October 1910 on. The amplitude of the classes is equal to 10, except for the last class whose
upper limit coincides with the number of months of the recording period (109× 12 = 1308 months).
Figure 3 indicates the average number of years with monthly records in each rain gauge, obtained by
dividing the number of available monthly records by 12. The number of rain gauges with, on average,
20, 40 and 60 years with monthly records is 641, 374 and 242, respectively. Although the previous
characterization does not provide any information about the regularity of the distribution of the
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records along the different months, it shows that there is a considerable amount of monthly rainfall
series, although with several gaps.

Figure 1. General location of mainland Portugal and of the rain gauges with complete monthly data in
the period of 106 years, from 1913/1914 to 2018/2019 used in the study (532 rain gauges).

Figure 2. SNIRH database [44]. Number of rain gauges, out of 764 rain gauges, per class of available
number of monthly records, from October 1910 to September 2019 (total number of months of
119× 12 = 1308).

To fill the gaps aiming at obtaining continuous rainfall series a linear regression model based on
an each-gap specific equation was applied [26,43]. For a rainfall gap in month m of year n, in a given
rain gauge, Ri, the model identifies the candidate rain gauges, Rj, with j = 1, ..., k and j 6= i, where k is
the number of rain gauges, with records in month m of year n and, therefore, that can be used to fill
the gap. These gauges are next ranked according to the correlation coefficient between paired rainfall
series in month m in years other than n, at the rain gauge with the gap, Ri, and at each of the candidate
rain gauges, Rj.
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Figure 3. SNIRH database [44]. Average number of years per rain gauge with monthly records,
from October 1910 to September 2019.

From the candidate rain gauges, the one with the highest correlation coefficient between the
previous paired monthly rainfall series is used to fill the gap based on a linear regression model
applied to those series, provided two requisites are met: the length of the two paired rainfall series in
month m and the correlation coefficient between those series must be higher than prefixed minimum
values, so that the regression model is valid and the dependency structure significant. Regarding the
length, a minimum value of 15 years was adopted. Because 83 out of the 764 rain gauges had less than
15 rainfall records in any month, they were discarded from the filling-gap procedure, which therefore
proceeded with 681 rain gauges.

Regarding the correlation coefficient, two values were considered: 0.7 for the months from October
to June, where rainfall is expected to occur in Portugal, and 0.6 for the months from July to September
with negligible rainfall amounts (approx. 7% of the annual amount), often due to erratic short duration
rainfall events over very small areas. In the establishment of the linear regression models only recorded
values are considered (and not the values resulting from the gap filling procedure).

For the period from 1913/1914 to 2018/2019, the previous approach led to 288 rain gauges with
complete series and to 244 rain gauges, each with less than 10 monthly gaps. Taking into account
the very small number of remaining gaps compared to the number of months or even to the number
of years of the period (in each rain gauge, less than 10 months out of 106 × 12 = 1272 months,
and less than 1 year, out of 106 years), it was decided to assign the historical monthly averages
(i.e., averages prior the gap filling procedure) to those gaps. This resulted in the set of 532 rain gauges
schematically located in Figure 1, covering almost uniformly the country (c.a. 6 rain gauges per
1000 km2), with continuous monthly rainfall data over a global period of 106 years.

2.3. Long-Term Trend Analysis Models

The well-known rank-based nonparametric Mann-Kendall test was applied to assess the
significant trends [45,46]. The adopted significance level was α = 0.05. The magnitude of the monotonic
trends was measured based on the Sen’s slope estimator test [47]. A positive value of the Sen’s slope
estimator indicates an increasing (or upward) trend and a negative value a decreasing (or downward)
trend in the time series.

To produce maps with the spatial variability of the magnitude of the trends at a given time scale,
the Sen’s estimator was computed for all the corresponding rainfall time series regardless the statistical
significance of the results from Mann-Kendall test.
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3. Results

3.1. Rainfall Characterization

Figure 4 presents a simplified characterization of the intra-annual distribution of the rainfall
over mainland Portugal based on the continuous monthly rainfall data at the 532 rain gauges used
in the study (Figure 1). Each seasonal rainfall was weighted according to the grid generated by the
cubic spline interpolation [48,49]. As the study adopted hydrological years (starting each October
and finishing next September), the definition of the quarters, Q, and of the semesters, S, is as follows:
Q1—October to December; Q2—January to March; Q3—April to June; Q4—July to September;
S1—October to March; and S2—April to September. In the table, the rainfalls are expressed in
absolute values and in dimensionless values obtained by dividing the average rainfall in each month
and season by the mean annual rainfall that result from the entire set of data, i.e., approx. 961 mm.

Figure 4. Average monthly (figure and table) and seasonal (table) rainfalls at the 532 rain gauge
locations of Figure 1 in the period from 1913/1914 to 2018/2019 expressed in mm and by their relative
contribution to the mean annual rainfall. Q1 to Q4 stand for the quarters and S1 and S2 for the semesters
of the hydrological year.

According to Figure 4, the average contribution of the wet semester, S1, from October to March,
to the annual amount of rainfall is ca. 74%, approximately equally distributed by its two first quarters,
Q1 and Q2. The less contributing quarter of the year is the last one, Q4, from July to September,
which only accounts for ca. 7% of the mean annual rainfall. These results are in accordance with the
rainfall characterization of the National Water Plan [50].

Along with the analysis for the 106-year global period (from 1913/1914 to 2018/2019),
two sub-periods were also considered: (i) the initial 55 years, from October 1913 to September 1967,
and (ii) the final 51 years, from October 1968 to September 2019. This partition was done to ascertain
if the rainfall trends became more pronounced recently, as reported by [26] for southern Portugal.
The starting year of the final sub-period coincides with the one previously adopted in the study for the
south of the country, based on the application of the Sequential Mann-Kendall test [51,52], although to
a period slightly different from the one now adopted (from October 1910 to September 2017). This is
also in accordance with the findings by [53], showing that several important characteristics of the
global atmospheric circulation and climate changed in a near-monotonic fashion over the decade
centered on the late 1960s.

The map of the mean annual rainfall over mainland Portugal derived from the cubic spline
interpolation technique applied to the mean annual rainfalls at the 532 rain gauges is presented in
Figure 5. Besides the global period, the two previous sub-periods were included for a better perception
of the annual rainfall changes. The cubic spline interpolation was applied to the mean annual rainfall
in mainland Portugal, because it gives a smoother interpolation, when dealing with high-density rain
gauge network, compared to the other interpolation methods [54].

Based on Figure 5 it is easy to follow the spatiotemporal rainfall changes, with generally wetter
conditions in the 55-year initial sub-period (Figure 5b) even in the inner southern of Portugal, and drier
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conditions in the 51-year final sub-period (Figure 5c). The decrease of the mean annual rainfall from
one period to the other is almost 170 mm. This affects the whole country, but also emphasizes the
asymmetry in the rainfall distribution between the wetter north and the drier south, the latter being
recognized as suffering a progressive desertification process [55,56].

Figure 5. Mean annual rainfall maps for the global period (106 hydrological years) and for the initial
(55 hydrological years) and final (51 hydrological years) sub-periods based on the 532 rain gauges
schematically located in Figure 1 (between brackets, the weighted mean annual rainfall in each period
given by the cubic spline interpolation).

3.2. Mann-Kendall Test and Sen’s Slope Estimates

The trends at the 532 rain gauges were characterized via the Mann-Kendall and Sen’s slope
estimator tests at the annual level but also at the quarterly (Q1 to Q4) and semi-annual (S1 and
S2) timescales aiming to ascertain the intra-annual signs of the climate change [26,57]. For each of
the periods and time scales, Table 1 summarizes the number of rain gauges with significant trends
and the corresponding extreme (maximum, for increasing trends, and minimum, for decreasing
trends) and mean values of the Sen’s slope estimates. The results related to negative (downward) and
positive (upward) trends are highlighted in blue and yellow, respectively. Additionally, Figures 6–8
present the spatial distribution of the estimates from the the Sen’s slope estimator, regardless their
statistical significance.

Table 1 clearly indicates that after the initial 55-year period mostly with positive significant rainfall
trends, a more recent 51-year period almost exclusively with negative significant trends occurred.
The only exception are the summer months of July and August, which nevertheless have very small
contributions to the annual rainfall (1.2 and 1.4%, respectively—Figure 4). The negative trends in the
final sub-period were so pronounced that they counterbalanced the positive trends in the first period
and resulted in more frequent negative trends for the whole period, albeit less marked. This is the case,
for instance, of the annual rainfall with 505 rain gauges with a mean significant downward trend of
−11.42 mm/year in the final sub-period, whereas the equivalent numbers for the global period are
428 and −4.27 mm/year, respectively. These rainfall trends are aligned with the results of [26] for the
south of Portugal.
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Table 1. Summary of the significant trends for the 106-year period and for its initial 55 years and final 51 years. Number of rain gauges with significant trends.
Maximum (positive), minimum (negative) and average values of the Sen’s slope estimates for the significant increasing (in blue) and decreasing (in yellow)
trends, respectively.

106-Year Global Period 55-Year Initial Sub-Period 51-Year Final Sub-Period
(1913/1914 to 2018/2019) (1913/1914 to 1967/1968) (1968/1969 to 2018/2019)Period

Positive Trends Negative Trends Positive Trends Negative Trends Positive Trends Negative Trendsof

Number Maximum Number Maximum Mean Number Maximum Number Maximum Mean Number Maximum Number Maximum Meanthe

of Rain Value of Rain Value Value of Rain Value of Rain Value Value of Rain Value of Rain Value ValueYear

Gauges (mm/year) Gauges (mm/year) (mm/year) Gauges (mm/year) Gauges (mm/year) (mm/year) Gauges (mm/year) Gauges (mm/year) (mm/year)
October 9 0.67 2 −0.71 0.24 8 2.75 0 – 1.31 0 – 17 −3.19 −2.17

November 0 – 263 −2.89 −0.85 24 4.45 0 – 2.12 0 – 134 −5.51 −2.25
December 1 0.15 231 −2.94 −0.95 6 1.99 3 −2.95 0.20 0 – 179 −6.29 −2.40

January 1 0.26 124 −2.74 −0.86 6 1.90 1 −0.55 0.83 0 – 479 −9.45 −2.72
February 0 – 189 −2.57 −0.58 3 2.92 0 – 2.10 0 – 353 −5.92 −2.09

March 0 – 517 −2.92 −0.92 13 3.36 0 – 1.49 0 – 89 −3.13 −1.31
April 0 – 65 −0.94 −0.48 10 1.77 0 – 1.06 0 – 25 −1.93 −0.97
May 0 – 145 −1.50 −0.56 2 0.49 10 −1.92 −0.76 0 – 312 −4.87 −1.59
June 0 – 230 −0.99 −0.34 11 0.89 2 −0.85 0.22 0 – 338 −2.9 −0.72
July 23 0.40 113 −0.98 −0.30 42 0.50 220 −0.98 −0.38 10 0.92 30 −0.97 −0.18

August 58 0.90 14 −0.96 0.16 64 0.90 12 −0.80 0.20 42 0.90 3 −0.46 0.29
September 4 0.84 72 −0.79 −0.36 12 1.19 0 – 0.45 0 79 −2.67 −1.26

Q1 1 1.00 221 −5.58 −2.15 23 9.93 8 −6.88 0.07 0 – 175 −14.68 −6.00
Q2 0 – 492 −7.28 −2.15 25 13.54 0 – 0.28 0 – 492 −19.97 −5.26
Q3 0 – 193 −3.77 −1.08 12 1.90 0 – 0.03 0 – 372 −9.46 −2.83
Q4 7 0.68 73 −1.38 −0.59 21 2.30 1 −0.28 0.03 0 – 127 −4.84 −1.89
S1 0 – 446 −12.19 −3.61 63 21.14 3 −10.39 0.69 0 – 461 −36.84 −8.74
S2 0 – 189 −4.16 −1.40 31 5.24 0 – 0.11 0 – 399 −12.71 −3.44

Year 0 – 428 −15.36 −4.27 74 26.58 3 −11.60 0.89 0 – 505 −49.98 −11.42
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Figure 6. Spatial distribution of the Sen’s slope for the monthly, quarterly (Q1 to Q4), semi-annual (S1
and S2) and annual rainfall in the global period, from 1913/1914 to 2018/2019 (106 years). Only the
rain gauges with significant trends are schematically located in the maps.

The comparison of Figures 6–8 reinforces the results reported in Table 1 by highlighting the
exceptional and, for some timescales, widespread extent of the decreasing trends in the last 51 years,
especially in contrast with the initial 55 years. The results for the quarters, semesters and year are
especially marked, with reduction of the rainfall in some rain gauges often greater than 9 mm/year
in the last 51 years. The figures also point out some important information regarding the monthly
distribution of the rainfall. In fact, when looking at the 106-year global period, March appears as the
month with the highest number of significant and pronounced trends. However, when considering
the most recent sub-period it is notorious that the more noticeable trends occur in the months before,
namely in January and especially in February. The shift between February and March is also evident
based on the number of rain gauges with significant decreasing trends, as reported in Table 1: for the
global period, 189 in February and 517 in March; the equivalent values for the last 51 years are 479 and
353. These results suggest that the decrease of the rainfall is moving “backwards” and progressively
affecting the months before March.
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Figure 7. Spatial distribution of the Sen’s slope for the monthly, quarterly (Q1 to Q4), semi-annual
(S1 and S2) and annual rainfall in the initial sub-period, from 1913/1914 to 1967/1968 (55 years).
Only the rain gauges with significant trends are schematically located in the maps.

The identified “backwards” behavior resulted in aggravated decreasing rainfall trends in the last
51 years compared to the global period. For Q2, i.e., from January to March, the average decrease
of the rainfall in the last sub-period is 2.4 times the one in the global period (−5.26 mm/year versus
−2.15 mm/year), despite having the same number of rain gauges with significant trends (492).

A comparison for the remaining quarters between the last 51 years and the 106-year global
period shows the noteworthy aggravation in the rainfall decrease in Q1 (−6.00 mm/year versus
−2.15 mm/year) and in the increase of the number of rain gauges with significant trends for both
Q3 (372 versus 193) and Q4 (127 versus 73). In these two last quarters, an aggravation in the rainfall
decrease also occurs (with absolute values of the trends approx. 2.6 and 3.2 times more, respectively),
although with less pronounced decreases in terms of the rainfall itself.

Regarding the semesters, the ratio between average trends in the last 51 years and in the global
period is approx. 2.4, clearly showing more pronounced rainfall decreases. The aggravation in the rainfall
decrease in S1 (−8.74 mm/year versus−3.61 mm/year) and the increase in the number of rain gauges
with significant trends in S2 (399 versus 189) should also be stressed. The comparison for the annual



Climate 2020, 8, 146 11 of 18

rainfall shows an increase in the number of rain gauges with significant trends (505 versus 428 rain
gauges) and an aggravation in the averages of those trends (−11.42 mm/year versus −4.27 mm/year).

Figure 8. Spatial distribution of the Sen’s slope for the monthly, quarterly (Q1 to Q4), semi-annual
(S1 and S2) and annual rainfall in the final sub-period, from 1968/1969 to 2018/2019 to (51 years).
Only the rain gauges with significant trends are schematically located in the maps.

3.3. Sequential Variability of the Rainfall

To understand the intra-annual behavior of the rainfall, a complementary approach, namely the
simple moving average technique, was applied to the weighted rainfalls at the 532 rain gauges for
the different timescales based on a running length of n = 30 years. The weight assigned to each rain
gauges was given by the Voronoi or Thiessen polygons [58,59]. For the global period of 106 years,
the number of moving averages for each time scale is 106− 30 + 1 = 77.

The moving average technique allows to smooth out of short-term fluctuations and to highlight
longer-term trends or cycles in a long temporal series [60]. Periods of 30 years (as considered for the
running length) are also adopted in the computation of the climatological standard normals aiming at
to ascertain the climatic conditions likely to be experienced in a given location [61,62].

Figure 9 shows the results for the six initial months, the quarters, and the semesters of the
hydrological year, and for this year itself. The results for the months of the dry semester, from April to
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September, were not represented due to their small contribution to the annual rainfall amount (approx.
26%). The rainfalls at the different timescales were made comparable by dividing them by the mean
annual rainfall of 961 mm presented in Figure 4. In Figure 9 each moving average was assigned to the
first civil year of the 16th hydrological year of the corresponding 30-year period (first moving average
from 1913/1914 to 1942/1943 assigned to 1928 and last moving average from 1989/90 to 2019/2019
assigned to 2004).

Figure 9. Dimensionless moving average of the rainfall in different periods of the year, from 1913/1914
on, for a running length of 30 years. Each moving was made dimensionless by reference to the mean
annual rainfall and assigned to the first civil year of the 16th hydrological year of the corresponding
30-year period.

For the quarterly, semi-annual and annual timescales, Figure 9 shows the decreasing behavior
of the rainfall towards the present. The downward trends are particularly marked in the wet
season (Q1, Q2 and S1), which explains the trends at the annual level. Due to the prevailing
Mediterranean-type climatic conditions in Portugal, the wet season rainfall amount is the determining
factor in the water budgets of the hydrological cycle, namely in terms of the natural and artificial
storage replenishment. This season also plays a key role in triggering drought episodes, because the
environmental and socio-economic systems are not prepared for an unexpected lack of winter rainfall,
although they are to cope with the natural summer dryness [27].

The last three months of the wet season (i.e., Q2, from January to March) bring out new insights
into the previous behavior. In fact, the rainfall decrease in March—particularly noticeable in the moving
averages of the 30-year periods from 1940/1941 on—seems to have stabilized after the periods starting
in 1970/1971, albeit with values much smaller than the long-term historical average. The pronounced
decreasing rainfall tendency in March seems to have “moved” backwards affecting the months of
January and February. Such “displacement” is particularly evident in the moving averages starting
on the late years (in the case of January) and on the early years (in the case of February) of the
decade beginning in 1970/1971, clearly indicating that the intra-annual rainfall pattern is changing.
These downward trends seem to be sustained in recent years, resulting, for instance, in an average
rainfall from January to March in the last 30-year period (1989/1990 to 2018/2019) of 246 mm, i.e., ca.
71% of the long-term average of 348 mm and 61% of the average of 402 mm in the first 30-year period
of the moving averages (1913/1914 to 1942/1943). The more pronounced decreasing trends detected
for the final sub-period, from 1967/1968 on (Figure 8), are also visible in the moving averages along
the same period, which in Figure 9 are assigned to the years from 1982 on (i.e., 1967 + 15).

For each of the months from January to March, during which the intra-annual pattern of the
rainfall is changing, an additional analysis was done based on the moving averages of the rainfalls at
the set of 532 individual rain gauges instead of considering only spatially weighted rainfalls. In this
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respect, each set of 532 moving averages referred to a same year (from 1913/1914 to 1989/1990,
starting years of the first and last 30-year moving averages, respectively) was characterized by the
corresponding median, average, and empirical quantiles for the non-exceedance probabilities of 5%
(Q5%), and 95% ( Q95%), as shown in Figure 10. The averages curves of this figure coincide with those
of Figure 9.

Figure 10. Median, average and empirical quantiles for the non-exceedance probabilities of 5% (Q5%)
and 95% (Q95%) of the dimensionless moving averages of the rainfall in January, February and March,
from 1913/1914 on, at the 532 rain gauges (running length of 30 years). Each moving was made
dimensionless by reference to the average of the mean annual rainfalls and assigned to the first civil
year of the 16th hydrological year of the corresponding 30-year period.

For any month of Figure 10, there is always a great dispersion of the moving average values in
the set of 532 rain gauges. Along the years, the averages are always higher than the corresponding
medians, and the Q95% values are much higher than the averages, while the Q5% values are closer
to the averages. This means that (i) the data is skewed to the left, (ii) there is a long tail of low
scores on the right side of the empirical distributions, and (iii) there are a few exceptional high values
“pushing up” the averages. The results for the set of 532 rain gauges confirm the behavior towards the
present previously stressed for March, i.e., a stabilizing tendency around much smaller values than the
long-term averages. For February and January, it is also notorious a “dynamic” behavior, with markedly
decreasing tendencies which are apparently still ongoing and with no further stabilization. The figure
also shows that the amplitude between the quantiles Q95% and Q5% is consistently decreasing as the
moving averages relate to more recent periods. Such decrease indicates less variability in the rainfall
behavior within the set of 532 rain gauges, and accordingly, less uncertainty in the overall expected
decrease of the rainfall over Portugal.

4. Discussion and Conclusions

Understanding past rainfall variations and being able to anticipate the expected rainfall changes
over different time scales are of utmost importance because the hydrological processes driven by the
rainfall (e.g., evapotranspiration and surface and ground water flow) affect the whole water resources
system. The analysis of ground-based rainfall observations can help to comply with such purposes
given the corresponding series are updated, long enough [28], and supported by a dense monitoring
network able of describing the spatial rainfall variability [29]. This is the case of the present research
work which to the authors’ best knowledge represents the most thorough and comprehensive study on
rainfall trends over mainland Portugal, using ground-based data, addressing the long-term monthly,
seasonal and annual rainfall changes and the recent rainfall trends dynamics.

This study shows that in the last five decades the rainfall has been markedly decreasing over
mainland Portugal. Such decrease has been progressively affecting the more contributing months
of the wet season, in absolute terms but also regarding their relative contribution to annual rainfall,
thus strongly conditioning the intra-annual rainfall pattern. This behavior is particularly pronounced
before the long dry season start, i.e., in the last wet period of the hydrological year (Q2, January to
March), a fundamental period for the replenishing of the water, both in the soil and in the artificial
reservoirs. The analysis of the set of 532 rain gauges throughout the 106-year period showed that the
amplitude of the rainfall decrease has gradually narrowed, meaning less uncertainty about its behavior.
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When considering the global 106-year period, but especially the most recent 51-year sub-period,
from 1968/1969 on (Figures 5 and 8), the study revealed a coherent monthly spatial pattern of the
trends, with each month showing almost a same rainfall trend over the country. For the months of the
rainy season, except for October, the trends are consistently negative. Such homogeneous behavior
indicates the vulnerability of the country to the rainfall decrease given it is not expected that some
regions may become wetter, thus counterbalancing those becoming drier.

To understand the relevance of the previous vulnerability, rainfall anomalies were assigned to
each rain gauge and spatially represented based on the cubic spline interpolation (Figure 11). In each
rain gauge, the anomaly was defined as the mean annual rainfall in the last 51 years minus the mean
annual rainfall in the initial 55 years. Each anomaly was expressed in absolute terms (Figure 11a)
and made dimensionless (Figure 11b), by dividing by the average in the initial period (dimensionless
anomaly relative to the 55-year initial period).

Figure 11. Mean annual rainfall anomalies: difference between mean annual rainfalls in the 51-year
sub-period, from 1968/16969 to 2018/2019, and in the 55-year period, from 1913/14 to 1967/1968
(left side); previous difference relative to the mean annual rainfall in the 55-year initial period
(right side).

Figure 11a shows that except for very small regions, the country experienced a mean annual
rainfall decrease from one sub-period to another above 120 mm. In the northwest wettest region
such decreases exceeds 500 mm. Figure 11b allows understanding of the relevance of the magnitude
of those results. It shows that a same dimensionless rainfall reduction affects both wetter and drier
regions meaning that some of these last regions are becoming much drier than the former ones.
Such behavior reinforces the difference between a less wet, yet wetter, north and a definitely drier arid
south. This agrees with the findings of the global assessment of wetting/drying trends during the
period 1948–2005 of Greve et al. [63] that identified the southwest regions of the Iberian Peninsula as
one hot spot of the pattern “dry gets drier” (the DD paradigm).

The recent rainfall reduction, from late 1960 on, portraited in Figure 11, agrees with the widespread
drying tendency across North Africa and southern Europe, extending from the Atlantic coast to the
Middle East, detected by Hoerling et al. [64] when comparing the periods 1902–1970 and 1971–2010.

The rainfall tendency to decrease in sub-tropical latitudes mentioned in some IPCC reports [4–6],
has been verified in this case for Portugal despite the complex spatial and temporal rainfall distribution.
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This agreement was achieved with the use of spatially dense long-running rainfall series rarely available
with the necessary resolution compared to general low resolution global atmosphere reanalysis
datasets—such as the Multi-Source Weighted-Ensemble Precipitation (MSWEP) global dataset from
1979 to 2015 [65]. Although ground-based rainfall data analysis and reanalysis normally exhibit
differences due to the different inferential processes and resolution [66], a comparison between the
here obtained trends and those via global model reanalysis datasets [67], shows a consistent rainfall
reduction from December to March in recent years. However, these findings need to be interpreted
with caution depending on the data source used. The results for the final sub-period are also in
accordance with a study based on downscaling [68], denoting a significant decrease in the rainfall
amount in certain regions of the Iberian Peninsula during the last third of the 20th century.

Despite it is difficult to make a global synthesis of the results obtained from the different
observation periods, data, methods implemented, etc., there is prima-facie evidence about the
generalized rainfall decrease in Portugal. This is reinforced by the global evidence, based on likely
emission scenarios [69], of a future with less freshwater availability in sub-tropical latitudes. It also
stresses the urge for widespread public awareness and participation towards common water-saving
practices. Public participation is a key factor, also because it calls for updated information and political
commitment towards the implementation of mitigation and adaptation measures and of new water
resources planning and management policies. Both challenges are presently far from being achieved
for mainland Portugal [70].
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