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Abstract: We investigate historical and projected precipitation in Tanzania using observational
and climate model data. Precipitation in Tanzania is highly variable in both space and time due
to topographical variations, coastal influences, and the presence of lakes. Annual and seasonal
precipitation trend analyses from 1961 to 2016 show maximum rainfall decline in Tanzania during the
long rainy season in the fall (March–May), and an increasing precipitation trend in northwestern
Tanzania during the short rainy season in the spring (September–November). Empirical orthogonal
function (EOF) analysis applied to Tanzania’s precipitation patterns shows a stronger correlation
with warmer temperatures in the western Indian Ocean than with the eastern-central Pacific Ocean.
Years with decreasing precipitation in Tanzania appear to correspond with increasing sea surface
temperatures (SST) in the Indian Ocean, suggesting that the Indian Ocean Dipole (IOD) may have
a greater effect on rainfall variability in Tanzania than the El Niño-Southern Oscillation (ENSO)
does. Overall, the climate model ensemble projects increasing precipitation trend in Tanzania that is
opposite with the historical decrease in precipitation. This observed drying trend also contradicts
a slightly increasing precipitation trend from climate models for the same historical time period,
reflecting challenges faced by modern climate models in representing Tanzania’s precipitation.

Keywords: East Africa; Tanzania; climatology; rainfall variability; trend analysis; empirical orthogonal
functions; Indian Ocean; El Niño-Southern Oscillation; projection

1. Introduction

In Africa, the change in precipitation extremes affects agriculture and industries that either directly
or indirectly rely on the replenishment of water resources. Many studies have identified a widespread
decline in precipitation in several eastern and southern African countries and these trends were linked
to global warming [1–3]. Major water-related threats to Africa’s geographic landmarks include melting
of snow caps on Mt. Kilimanjaro in Tanzania [4], receding water levels of Lake Victoria in Tanzania,
Kenya, and Uganda [5], and decreasing river flow of the Victoria Falls in Zambia and Zimbabwe [6].
Droughts have become more frequent, longer, and more severe in the last two decades, particularly
the 2010–2011 East African drought when famine plunged several countries into a humanitarian
crisis. This observed drying trend contradicts a projected increase in East African rainfall by climate
models [2,7–9]. However, in recent years, East African countries have been plagued by frequent floods
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that have displaced many people and claimed lives [10]. Further analysis is necessary to understand
the seemingly contradictory precipitation trends experienced in East Africa during the recent years.

In this study, we focused on Tanzania and explored the historical and projected precipitation
trends in the country. Tanzania lies just south of the equator between the East African Great Lakes
and the Indian Ocean. Although precipitation extremes affect Tanzania’s livelihood, natural resources,
and ecosystems, the future of its climate regime remains uncertain. This drawback is largely due to
the shortage of in situ observations, and inconsistencies between observations and climate model
simulations. Studies on East African climatology show that mean elevation has a greater effect on the
frequency of rainfall than the amount of rainfall [11]. Indeed, topographic differences contribute to
regional rainfall variations throughout Tanzania. Elevation increases from coast to inland and is highest
in the Southern Highlands in Iringa and Mbeya, and in northeastern Tanzania in Arusha, Kilimanjaro,
and Tanga (Figure 1a,b). Average annual rainfall distribution in Tanzania is unimodal (Figure 1c)
and is influenced by the movement of the Intertropical Convergence Zone (ITCZ). The ITCZ reaches
south of Tanzania in December before retreating north in January until it is furthest from Tanzania in
June-July-August (JJA). The peak rainy season in Tanzania is in December-January-February (DJF),
followed by a gradual decline in March-April-May (MAM), before the dry season in JJA (Figure 1c).
Modes of large-scale climate variability of oceanic origins are also reported to contribute to variations
in Tanzania’s precipitation patterns [12–16].

Although considerable research has been done on East African climate, the lack of consensus
on dominant modes of climate variability and conflicting past and future precipitation trends calls
for re-examination of Tanzania’s precipitation patterns. We present a semi-review paper with new
analysis to update literature on Tanzania’s climate and trends. We conducted annual and seasonal
climatology and regional analysis within Tanzania using gridded data and compared our results to
those of previous studies that focus on East Africa (e.g., [15]). We apply the updated climatology for
further examination of variability and trends that are not yet satisfactorily addressed for Tanzania.
Section 2 presents the datasets and methods used in this study. Section 3 discusses the results with
interpretations and how they compare to findings from other studies. Section 4 presents conclusions
derived from this study.

2. Materials and Methods

Observational data used in this study are the 0.25o Global Precipitation Climatology Centre
(GPCC) monthly precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their website at https://www.esrl.noaa.gov/psd/ [17,18]. GPCC data from 1901 to 2016 are derived
from 67,200 quality-controlled global stations [17,18] with a minimum observation of 10 years [19].
The quality of GPCC data with respect to Tanzania’s domain is discussed in the supplementary
material. GPCC datasets have high resolution over extended periods that allow for more robust
precipitation analyses such as trend and climatological analyses, comparison with climate model
simulations, and drought monitoring. For topography, we used the 1-arc-minute shaded relief data
from ETOPO1 Global Relief from the National Geophysical Data Center (NGDC) of the National
Oceanic and Atmospheric Administration (NOAA; [20]) using bathymetric, topographic, and shoreline
data from numerous global and regional digital datasets.

GPCC precipitation datasets were used to perform annual and seasonal trend analyses and
empirical orthogonal function (EOF) analysis to study spatial patterns of climate variability and how
they change with time [21,22]. EOF analyzes space-time datasets by reducing the data to spatial
patterns known as EOFs that explain most of the data, and temporal patterns known as principal
components (PC; [23]) that can be correlated with other variables [24]. We applied EOF analysis
on annual precipitation in Tanzania during 1961–2016 to explore spatial variations in precipitation
patterns and used the principal components of precipitation from EOF analysis to explore the temporal
variations of the leading precipitation patterns. Additionally, monthly Sea Surface Temperature (SST)
dataset of 2o resolution was derived from NOAA’s extended reconstructed SST (ERSST, version 5; [25]).

https://www.esrl.noaa.gov/psd/
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The SST dataset was used to assess remote climate influences (i.e., teleconnections) of persistent ocean
temperature anomalies on regional precipitation patterns by correlating the principal components
from the EOF analysis with the SST anomalies.

Reanalysis data are compilations of meteorological data spanning extended time scales (decadal
to centennial) from various sources (e.g., rain gauge, remote sensing, radiosonde etc.) that maximize
available information and resolution of the data by using numerical weather forecast and data
assimilation techniques. Reanalysis data for 850-hPa temperature, winds, and relative humidity of 2.5o

resolution were obtained from the National Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis 1 (R1; [26]). Low-level 850-hPa winds and relative
humidity were used to study annual and seasonal climatology of the atmospheric circulation patterns
over Tanzania.

To understand climate change caused by natural variability or changes in radiative forcings, climate
model outputs need to be analyzed collectively for the examination of future climate projections [27,28].
Coupled Model Intercomparison Project (CMIP) is a collaborative effort that set protocols to improve climate
models by comparing model simulations under similar scenarios to each other and to observations [29].
Climate model simulations for historical and projected precipitation were downloaded from the CMIP5
server at http://climexp.knmi.nl/ [30]. The annual extremes of daily CMIP5 data are from ETCCDI extreme
indices archive at the Canadian Center for Climate Modelling and Analysis [31,32]. Each CMIP5 model
was based on anthropogenic forcing of the representative concentration pathway 8.5 (RCP8.5; [33,34]) to
study extreme scenario. Historical precipitation time series were derived from 44 ensembles of CMIP5
data from 1861 to 2005 and from 2006 to 2100 for future projections.

3. Results

3.1. Climatology

The climatology of Tanzania’s precipitation is heterogeneous across the country due to complexities
related to combined large-scale effects of topography, winds, humidity, and dynamics of tropical
circulation; therefore, it is important to revisit and examine the climatological features of precipitation.
Seasonality of rainfall along coastal areas is different than further inland, and annual precipitation is
higher near coasts (Figure 2a–e). Annual precipitation climatology shows maximum cumulative rainfall
in southwestern Tanzania while the central region receives the lowest rainfall in the country (Figure 2a).
Two high precipitation centers are localized over the Southern Highlands: one over Morogoro and
Iringa, and another over Mbeya to the north of Lake Malawi (Figure 2a). Other precipitation centers
occur in northwestern Tanzania over Kigoma, Kagera, and western Lake Victoria, and in northeastern
Tanzania over Tanga and Kilimanjaro (Figure 2a). Seasonal climatology reveals that most of the annual
rainfall occurs between December and May, with varying spatial distribution from DJF to MAM
(Figure 2b,c). Southern and western to central Tanzania receive maximum seasonal rainfall in DJF
whereas northern and eastern Tanzania receive maximum seasonal rainfall in MAM (Figure 2b,c).
In JJA, precipitation is uniformly distributed among regions and does not typically exceed 100 mm
(Figure 2d). In the spring of September-October-November (SON), northwestern Tanzania receives the
most rainfall in the country (Figure 2e).

http://climexp.knmi.nl/
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Figure 1. Shaded relief (m) maps of (a) Africa and (b) Tanzania from ETOPO1. (c) 10-day running 
mean (1981–2010) precipitation (mm) for Tanzania (0–15S, 30–40E) (shaded in blue), and 850-hPa 
temperature (oC, orange curve). The 850-hPa temperature data are taken from the R1 data archive. 

An important point of note here is that Tanzania’s precipitation patterns in the southern and 
central parts do not coincide with those of its East African counterparts in southern Uganda and 
central to southwestern Kenya (Figure 2a–e), where rainfall distribution is bimodal, i.e., with 
prolonged rains in MAM when the ITCZ moves northward slowly, and a brief rainy season in SON 
when the ITCZ moves southward. Distinct high precipitation centers occur in southern Uganda and 
central to southwestern Kenya just north of Tanzania in MAM and SON (Figure 2a–e). Eastern 
Kenya is also slightly wetter in MAM than the rest of the year (Figure 2a–e). For bimodal rainfall 
distribution in East Africa, the precipitation centers are stronger in MAM than SON (Figure 2a–e). 
As the ITCZ does not linger over southern and western to central Tanzania in the austral spring, 
SON rainfall is low, and a significant precipitation increase is not observed until December. This 
yields a more unimodal distribution influenced by position of the ITCZ over southern Tanzania 
where the rainfall period lasts approximately six months (Figure 2b–e). However, northern Tanzania 
has a bimodal rainfall distribution similar to Kenya and Uganda (Figure 2b–e), as the ITCZ crosses 
over the region twice a year. Low-level tropospheric temperatures in Tanzania reflect both 
precipitation regimes. The 850-hPa air temperature reaches its annual maximum in November 
before the end of the short rainy season, followed by a slight cooling in December, and peaks again 
in late February before the onset of the prolonged rainy season (Figure 1c). The 850-hPa air 
temperature (Figure 1c) reaches its annual minimum in July during the peak of the dry season; the 

Figure 1. Shaded relief (m) maps of (a) Africa and (b) Tanzania from ETOPO1. (c) 10-day running mean
(1981–2010) precipitation (mm) for Tanzania (0–15S, 30–40E) (shaded in blue), and 850-hPa temperature
(◦C, orange curve). The 850-hPa temperature data are taken from the Reanalysis 1 (R1) data archive.

An important point of note here is that Tanzania’s precipitation patterns in the southern and
central parts do not coincide with those of its East African counterparts in southern Uganda and
central to southwestern Kenya (Figure 2a–e), where rainfall distribution is bimodal, i.e., with prolonged
rains in MAM when the ITCZ moves northward slowly, and a brief rainy season in SON when the
ITCZ moves southward. Distinct high precipitation centers occur in southern Uganda and central
to southwestern Kenya just north of Tanzania in MAM and SON (Figure 2a–e). Eastern Kenya is
also slightly wetter in MAM than the rest of the year (Figure 2a–e). For bimodal rainfall distribution
in East Africa, the precipitation centers are stronger in MAM than SON (Figure 2a–e). As the ITCZ
does not linger over southern and western to central Tanzania in the austral spring, SON rainfall
is low, and a significant precipitation increase is not observed until December. This yields a more
unimodal distribution influenced by position of the ITCZ over southern Tanzania where the rainfall
period lasts approximately six months (Figure 2b–e). However, northern Tanzania has a bimodal
rainfall distribution similar to Kenya and Uganda (Figure 2b–e), as the ITCZ crosses over the region
twice a year. Low-level tropospheric temperatures in Tanzania reflect both precipitation regimes.
The 850-hPa air temperature reaches its annual maximum in November before the end of the short
rainy season, followed by a slight cooling in December, and peaks again in late February before the
onset of the prolonged rainy season (Figure 1c). The 850-hPa air temperature (Figure 1c) reaches its
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annual minimum in July during the peak of the dry season; the 850-hPa level is about 1500 m above
sea level and is therefore representative of the air temperature over the complex terrains.
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northeasterly trade winds, the southeasterly trade winds, and the westerly Congo air [36]. The trade 
winds are associated with a subsiding motion and are relatively dry while the Congo air is moist and 
unstable. In the austral summer, when the ITCZ is south of Tanzania, the northeasterly trade winds 
that are parallel to the Great Horn of Africa diverge along the coastal areas of Tanzania and converge 
with low-level moisture fluxes from the southern Congo Basin over Lake Tanganyika (Figure 3b). In 
the austral winter, when the ITCZ is north of Tanzania, the southeasterly trade winds diverge into 
two different directions (Figure 3d), with one towards western Tanzania and the other northward 
along the Somali coast (Figure 3d). Coastal areas are drier where northeasterly and southeasterly 
trade winds are parallel to the coastline because friction between the coast and the water causes 
subsidence [37]. Coastal aridity is further enhanced by presence of the rift valley system that blocks 
the warm moist Congo air from reaching the Tanzania shorelines [36].  

Figure 2. Annual and seasonal precipitation climatology calculated from 1961–2016 Global Precipitation
Climatology Centre (GPCC) precipitation data. (a) Annual precipitation, (b) Dec–Feb summer
precipitation, (c) Mar–May fall precipitation, (d) Jun–Aug winter precipitation, and (e) Sep–Nov spring
precipitation. Precipitation is in mm.

Low-level atmospheric circulation and relative humidity patterns over Tanzania vary considerably
throughout the year (Figure 3a–e). Due to Tanzania’s close proximity to the equator, its climate is
shaped by trade winds that are controlled by the position of the ITCZ [35]. The three major air streams
that affect circulation patterns and distribution of moisture in Tanzania are the northeasterly trade
winds, the southeasterly trade winds, and the westerly Congo air [36]. The trade winds are associated
with a subsiding motion and are relatively dry while the Congo air is moist and unstable. In the
austral summer, when the ITCZ is south of Tanzania, the northeasterly trade winds that are parallel
to the Great Horn of Africa diverge along the coastal areas of Tanzania and converge with low-level
moisture fluxes from the southern Congo Basin over Lake Tanganyika (Figure 3b). In the austral winter,
when the ITCZ is north of Tanzania, the southeasterly trade winds diverge into two different directions
(Figure 3d), with one towards western Tanzania and the other northward along the Somali coast
(Figure 3d). Coastal areas are drier where northeasterly and southeasterly trade winds are parallel to
the coastline because friction between the coast and the water causes subsidence [37]. Coastal aridity
is further enhanced by presence of the rift valley system that blocks the warm moist Congo air from
reaching the Tanzania shorelines [36].



Climate 2020, 8, 34 6 of 18
Climate 2020, 8, x FOR PEER REVIEW 6 of 19 

 

 

Figure 3. Annual and seasonal 850-hPa winds (vectors) and relative humidity (shaded) climatology 
calculated from 1979–2016 R1 data. (a) Annual patterns, (b) Dec–Feb summer patterns, (c) Mar–May 
fall patterns, (d) Jun–Aug winter patterns, and (e) Sep–Nov spring patterns. Winds are in m/s. 
Relative humidity is expressed as percent. 

Tanzania’s precipitation is also influenced by local circulation patterns along coastal areas and 
around large lakes [38]. Lake Victoria is reported to affect the regional distribution, diurnal cycles, 
and seasonal variation in precipitation in northern Tanzania [39,40]. Total precipitation for Lake 
Victoria comes from nocturnal rains over the western lake surface and afternoon rains over the 
eastern lake surface [39]. Most of the rainfall is controlled by the nocturnal component of land-breeze 
circulation when the land surface becomes cooler than the lake surface [40–42]. The associated 
convergence and thermal instability produce mesoscale convective systems over the central and 
western lake surface, and lasts several hours [39]. Prevailing easterly winds ensure that the 
thunderstorm clusters associated with the convergence are centered over the western and central 
part of the lake during the mature stage [39]. As a result, most of the Lake Victoria’s rainfall occurs 
over the western part of the lake (Figure 2a–e), and at night during storm activity. This circulation 
pattern occurs approximately 175 days a year [43] and generates 80% of the water source for the lake 
[5]. Although Lake Victoria’s water levels are receding [5], future projections predict an increase in 
intense thunderstorms and extreme precipitation over the lake [44].  

3.2. Trends 

Trend analysis for rainfall accounts for the long-term change in precipitation, and provides 
information about precipitation patterns and variability [45]. An overall decreasing annual 
precipitation trend is observed in Tanzania from 1961 to 2016 (Figure 4a). This negative trend is 
strongest and expansive for the Southern Highlands in Lake Malawi, Ruvuma, and southern Iringa, 
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Figure 3. Annual and seasonal 850-hPa winds (vectors) and relative humidity (shaded) climatology
calculated from 1979–2016 Reanalysis 1 (R1) data. (a) Annual patterns, (b) Dec–Feb summer patterns,
(c) Mar–May fall patterns, (d) Jun–Aug winter patterns, and (e) Sep–Nov spring patterns. Winds are in
m/s. Relative humidity is expressed as percent.

Tanzania’s precipitation is also influenced by local circulation patterns along coastal areas and
around large lakes [38]. Lake Victoria is reported to affect the regional distribution, diurnal cycles,
and seasonal variation in precipitation in northern Tanzania [39,40]. Total precipitation for Lake Victoria
comes from nocturnal rains over the western lake surface and afternoon rains over the eastern lake
surface [39]. Most of the rainfall is controlled by the nocturnal component of land-breeze circulation
when the land surface becomes cooler than the lake surface [40–42]. The associated convergence and
thermal instability produce mesoscale convective systems over the central and western lake surface,
and lasts several hours [39]. Prevailing easterly winds ensure that the thunderstorm clusters associated
with the convergence are centered over the western and central part of the lake during the mature
stage [39]. As a result, most of the Lake Victoria’s rainfall occurs over the western part of the lake
(Figure 2a–e), and at night during storm activity. This circulation pattern occurs approximately 175 days
a year [43] and generates 80% of the water source for the lake [5]. Although Lake Victoria’s water
levels are receding [5], future projections predict an increase in intense thunderstorms and extreme
precipitation over the lake [44].

3.2. Trends

Trend analysis for rainfall accounts for the long-term change in precipitation, and provides information
about precipitation patterns and variability [45]. An overall decreasing annual precipitation trend is
observed in Tanzania from 1961 to 2016 (Figure 4a). This negative trend is strongest and expansive for
the Southern Highlands in Lake Malawi, Ruvuma, and southern Iringa, and near coastal areas in Tanga,
Dar-es-Salaam, Morogoro, and Pwani (Figures 1b and 4a). Other strong negative trends are localized
in Rukwa and Tabora in western Tanzania, and western Lake Victoria (Figures 1b and 4a) where water
levels dropped significantly in recent years [5,46]. In northeastern Tanzania, Arusha and Mara just east of
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Lake Victoria yield a moderately decreasing annual precipitation trend (Figure 4a). The rest of Tanzania
experienced either a very slight increase or no significant change in precipitation (Figure 4a).

Seasonal precipitation trends in Tanzania reveal eminently decreasing precipitation in coastal areas
throughout the year (Figure 4b–e). In DJF, the negative trend is strongest in the Southern Highlands and
coastal areas, and the positive trend is strongest for central Tanzania in Tabora, Singida, and northern
Iringa (Figure 4b). DJF rainfall is also suppressed in western Tanzania, western Lake Victoria, and Mara
(Figure 4b). A drying trend in MAM is evident from negative anomalies throughout the country,
particularly in the Southern Highlands (Figure 4c). The MAM precipitation trend resembles the annual
precipitation trend more closely than other seasons (Figure 4a-e), indicating that the overall drying
trend in Tanzania is largely a result of extreme negative anomalies during the long rains season. MAM
is the only season in which the most of precipitation in Tanzania exhibits a significant trend; this is
consistent with previous studies on East Africa that show the greatest negative rainfall departures
in MAM [1,7,8,15,47–52]. All other seasons either show a locally significant trend or do not reveal
any significant change in the long run. In JJA, the negative trend is strongest near coastal areas,
and a positive trend is apparent in central to northwestern Tanzania (Figure 4d). In SON, a general
decreasing trend is observed throughout Tanzania with exception of the northwestern regions where
precipitation increased i.e., wet areas became wetter and dry areas became drier (Figure 4e). Lake
Victoria experienced an increasing trend during the short rains season (Figure 4e). Interestingly,
although East African annual rainfall has declined in the past three decades, precipitation during the
short rains season has increased [1,16].
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Figure 4. Annual precipitation trend (slope*total number of years) in Tanzania calculated from
1961–2016 Global Precipitation Climatology Centre (GPCC) observations. Precipitation trend are
plotted during different season with (a) annual precipitation trend, (b) Dec–Feb precipitation trend,
(c) Mar–May precipitation trend, (d) Jun–Aug precipitation trend, and (e) Sep–Nov precipitation trend.
Hatched areas indicate significant values with confidence level > 90%. Precipitation is in mm.
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3.3. Variability

The EOF analysis was used to study spatial and temporal patterns of seasonal precipitation
from 1961 to 2016. The first four modes of EOF explain 55% of the variation of annual precipitation
in Tanzania. The first mode of EOF (EOF1) of annual precipitation corresponds to the climatology
(Figure 5a) and the second mode of EOF (EOF2) of annual precipitation closely resembles the annual
precipitation trend (Figure 5b). EOF1 shows positive anomalies throughout Tanzania and explains 34%
of the total variation (Figure 5a). EOF2 shows negative anomalies over southern Tanzania and explains
10% of the total variation (Figure 5b). The positive anomalies of EOF1 reflect the decreasing trend in
PC1 (Figure 5a,e). The anomalies of EOF2 reflect the multi-decadal increase in PC2 from 1961 to 1997,
followed by a decrease from 1998 to 2016 (Figure 5b,f). EOF3 shows the decreasing precipitation with
7% variance over the eastern part of the country in coastal region (Figure 5c) while PC3 does not show
any trend (Figure 5g). EOF4 also shows both increasing trend and precipitation with only 4% of the
variance (Figure 5d), however PC4 shows the increasing trend (Figure 5h). Additionally, we also looked
the seasonal precipitation EOF, focusing on summer rainfall (December to May); the distribution is
similar to the annual precipitation (result not shown).

Comparison of the principal components of precipitation time series with global SSTs over
the study period 1961-2016 stresses the effects of ocean forcings on Tanzania’s climate (Figure 6).
We detrended both variables (PCs and SSTAs) first before constructing the correlation maps of Figure 6
to better depict the interannual variations. The first mode of precipitation is linked to SST variability
over the eastern and western Indian Ocean in an opposite manner (Figure 6a), a pattern characteristic
of the Indian Ocean Dipole (IOD). Pattern of PC1 correlation with SST shows correlations in the
eastern Indian Ocean and western Pacific (Figure 6a), however the correlation is not significant after
detrend. PC2 shows a positive yet insignificant correlation with the El Niño-Southern Oscillation
(ENSO) pattern, similar to that found by Mazzarella et al. [53], albeit weaker (Figure 6b). PC3 is related
to reduced precipitation over the east coast of Tanzania (Figure 5c,g) in association with increased SST
in the Arabian Sea and the western Pacific Ocean (Figure 6c). This suggests that when SSTs in the
western Pacific Ocean increase, precipitation in eastern Tanzania decreases while precipitation over
western Tanzania increases. Finally, PC4 shows strong correlation with increased Indian Ocean and
eastern Pacific temperature (Figure 6d). However, PC4 shows increasing trend (Figure 5h) with no
significant precipitation change over Tanzania (Figure 5d), indicating that warmer ocean (Indian and
Pacific Oceans) may not directly alter precipitation patterns in Tanzania.

Various modes of climate variability have been proposed as possible drivers of interannual and
intraseasonal variability of East African rainfall. Some studies link the recent drying trend to changes
in SSTs in the tropical Pacific basin [2,49,50]. Lyon and Vigaud [15] show that the decline in MAM
rains in East Africa started in 1999 and link the timing of the abrupt shift to the Pacific Decadal
Variability (PDV). Wainwright et al. [54] believe that the drying trend is caused by shortening of the
MAM rainy season due to more rapid movement of the ITCZ rather than simply decreasing rainfall
amounts. They attribute the faster migration of the ITCZ to an increasing pressure gradient caused by
the warming SSTs to the north in the Arabian Sea in JJA, and to the south near Madagascar in DJF.
Others argue that an increasing east-west SST gradient in the western Pacific intensifies the Walker
circulation over the Indian Ocean and enhances subsidence over East Africa [1,55,56], a finding that
coincides with our SST correlation analysis with PC1 (Figure 6a). Other remote forcings have also
been investigated as possible drivers of East African rainfall variability [57,58]. However, the two
most dominant modes of climate variability proposed for East Africa are ENSO [12] and IOD [59,60],
which appear to be the case for Tanzania as well.
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Figure 5. (a–d) First four modes of empirical orthogonal function (EOF) of annual precipitation over
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Numerous studies show that ENSO affects rainfall variability over many parts of the world,
including East Africa. Although maximum rainfall for East Africa occurs in MAM, interannual
variability of East African rainfall is greater during the short rains period than the long rains
period [36,61,62]. Rainfall distribution is also more spatially coherent throughout Tanzania in SON
than MAM [36,63], particularly during the peak of the spring rainy season [64]. Spatial rainfall anomaly
patterns in May differ from those in March and April, and spatial coherence is stronger for March than
April [65]. These seasonal and intraseasonal contrasts are attributed to ENSO which is more intense
in OND than MAM. East African rainfall anomalies in OND are positive during El Nino years and
negative during La Nina years [14,66,67]. ENSO is either strongly positive or strongly negative in
OND but shifts between positive and negative phases in MAM as it gets weaker towards the end of
the event [68].

Adding to the above studies, our results show that the Indian Ocean SST also exerts a marked
influence on Tanzania’s precipitation, especially on its long-term trend (Figure 6b). Although ENSO
has some effect on climate variability in East Africa [12,69], this association is weak in Tanzania and
demonstrates considerable spatial variability [60,67,70,71]. Atmospheric general circulation models
(AGCM) indicate that Indian Ocean SSTs have a greater effect on the East African rainfall than SSTs in
other oceans [72–75]. Various studies show that the interannual variability of short rains in East Africa
is modulated by the IOD as it reaches its peak intensity in SON [76,77]. The increased rainfall during
the short rains season is linked to positive IOD events when the western Indian Ocean is warmer
than the eastern Indian Ocean [77,78]. This temperature contrast weakens the Walker circulation over
the Indian Ocean and reduces subsidence over East Africa [59]. Precipitation is further enhanced
by subsequent lowering of mean sea-level pressures over the western Indian Ocean, which allows
westerly moisture fluxes from the Congo Basin to converge with easterly moisture fluxes from the
Indian Ocean [78].

3.4. Projected change

The historical precipitation trend for the entire domain of Tanzania shows a slightly increasing
trend from 1860 to 2005 punctuated with short periods of decreasing rainfall (Figure 7). The projected
precipitation trend for the same region shows a more significant increase in precipitation from 2005
to 2100 (Figure 7). This increasing trend is consistent with future projections from other studies that
consider scenarios with maximum radiative forcings for rainfall projections in East Africa (e.g., [15]).
With the global temperature rising, evaporation rates would increase and moisture is retained in
the atmosphere over longer periods which can exacerbate drought [79]. Eventually, water in the
saturated atmosphere condenses and produces heavy rainfall [80–82]. As the long-term response to
anthropogenic warming from climate model projections is increasing rainfall for Tanzania, the recent
decline in East African rainfall is likely a consequence of lower-frequency natural climate variability
superimposed on anthropogenic global warming.

The observational data in this study vary from the climate model data in that they display opposite
annual precipitation trends (Figure 8). GPCC data show a general decreasing trend while CMIP5 data
show a general increasing trend (Figure 8). However, both datasets capture decadal variability and
follow similar trends from 1980 to 2000 and to a lesser degree from 2004 to 2016 (Figure 8). Interactions
between global warming and natural variability modes can affect regional precipitation trends [83].
Modes of variability are fluctuations in atmospheric and climate conditions that can occur at a range
of time scales and exhibit different characteristics such as periodicity, gradual trends, sudden shifts,
and positive vs. negative trends [84]. Instrumental records of climate variables include influences
of both natural variability and anthropogenic forcings. Natural variability modes are reported to
dampen the effects of anthropogenic warming by redistribution of heat in the climate system [85–88].
Our results indicate that the natural variability signals in the precipitation trend for Tanzania likely
result from superimposition of IOD events and ENSO phases combined. However, with intensification
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of global warming and the water cycle, the influence of natural variability on the long-term precipitation
variation can be overtaken by anthropogenic forcings [89,90].

Climate 2020, 8, x FOR PEER REVIEW 12 of 19 

 

The observational data in this study vary from the climate model data in that they display 
opposite annual precipitation trends (Figure 8). GPCC data show a general decreasing trend while 
CMIP5 data show a general increasing trend (Figure 8). However, both datasets capture decadal 
variability and follow similar trends from 1980 to 2000 and to a lesser degree from 2004 to 2016 
(Figure 8). Interactions between global warming and natural variability modes can affect regional 
precipitation trends [83]. Modes of variability are fluctuations in atmospheric and climate conditions 
that can occur at a range of time scales and exhibit different characteristics such as periodicity, 
gradual trends, sudden shifts, and positive vs. negative trends [84]. Instrumental records of climate 
variables include influences of both natural variability and anthropogenic forcings. Natural 
variability modes are reported to dampen the effects of anthropogenic warming by redistribution of 
heat in the climate system [85–88]. Our results indicate that the natural variability signals in the 
precipitation trend for Tanzania likely result from superimposition of IOD events and ENSO phases 
combined. However, with intensification of global warming and the water cycle, the influence of 
natural variability on the long-term precipitation variation can be overtaken by anthropogenic 
forcings [89,90]. 

 

Figure 7. Annual average CMIP precipitation over Tanzania (2–12S, 30–40E) from CMIP5 simulation. 
Data from all 44 members are considered to calculate the average precipitation (blue line) and 
shaded area shows the ± 1 standard deviation calculated from all members. Anomalies in mm/day 
are calculated based on the average value from 1971–2000. 

The inconsistencies in the overall precipitation trend raise questions about the reliability of 
climate models for future projections. Although significant progress has been made to study extreme 
events, such events are characterized by the tail ends of probability distribution curves and involve 
higher-order statistics that are difficult to represent in climate models, especially at longer time 
scales [91]. Dominant sources of uncertainties in climate models depend on the variable of interest. 
The robustness of a prediction is indicated by the signal-to-noise ratio (S/N) which is higher for 
temperature than precipitation [92]. Parametric and structural uncertainties are also much larger for 
precipitation than temperature. Moreover, cloud and precipitation processes occur at scales too 
small for coarse resolution models to explicitly resolve [93–95]. Internal variability also affects the 
S/N for precipitation and is reported to account for most of the uncertainty in regional precipitation 
simulation [91,92]. Parametric and structural uncertainties resulting from the complexities of 
modeling precipitation can affect both the magnitude and direction of the projected change in 
precipitation [92]. These uncertainties are especially large in the tropics [91,96,97] where largest 
precipitation change is projected [98–104] and the S/N for precipitation is lowest [92], a case that is 

Figure 7. Annual average Coupled Model Intercomparison Project (CMIP) precipitation over Tanzania
(2–12S, 30–40E) from CMIP5 simulation. Data from all 44 members are considered to calculate the
average precipitation (blue line) and shaded area shows the ± 1 standard deviation calculated from all
members. Anomalies in mm/day are calculated based on the average value from 1971–2000.
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Figure 8. Annual precipitation over Tanzania for the 1961–2014 period from observations (orange line:
Global Precipitation Climatology Centre (GPCC) 5-year running average) and from climate model (blue
line: Coupled Model Intercomparison Project 5 (CMIP5) 44 ensembles average). Dashed lines show
the trend of precipitation during that period. Both datasets show significant trend (95% confidence
level) however observations show decreasing precipitation trend while climate model show increasing
trend. Both datasets capture the decadal variability and show better agreement for the later period
(ãfter 1980). Anomalies in mm/day are calculated based on the average value from 1971–2000.
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The inconsistencies in the overall precipitation trend raise questions about the reliability of
climate models for future projections. Although significant progress has been made to study extreme
events, such events are characterized by the tail ends of probability distribution curves and involve
higher-order statistics that are difficult to represent in climate models, especially at longer time
scales [91]. Dominant sources of uncertainties in climate models depend on the variable of interest.
The robustness of a prediction is indicated by the signal-to-noise ratio (S/N) which is higher for
temperature than precipitation [92]. Parametric and structural uncertainties are also much larger
for precipitation than temperature. Moreover, cloud and precipitation processes occur at scales too
small for coarse resolution models to explicitly resolve [93–95]. Internal variability also affects the
S/N for precipitation and is reported to account for most of the uncertainty in regional precipitation
simulation [91,92]. Parametric and structural uncertainties resulting from the complexities of modeling
precipitation can affect both the magnitude and direction of the projected change in precipitation [92].
These uncertainties are especially large in the tropics [91,96,97] where largest precipitation change
is projected [98–104] and the S/N for precipitation is lowest [92], a case that is likely applicable to
Tanzania. In short, biases and diverged internal variations in climate models could alternate the trend
within the relatively short period (< 50 years).

4. Conclusions

As Tanzania becomes increasingly vulnerable to climate change, a scientific understanding of
precipitation patterns across the country is critical to predict the evolution of its climate with ensuing
global warming, and develop effective mitigation strategies against water-related natural hazards.
In this study, we conducted a review while further examining the annual and seasonal climatology
of Tanzania to understand past, present, and future precipitation trends and compared them with
findings from other studies. The main conclusions derived from the literature review and our new
analyses are as follows:

1. Precipitation patterns in Tanzania are highly variable in both space and time, largely due to
topographical variations, coastal influences, and presence of lakes.

2. The average annual rainfall distribution is unimodal in southern and western to central Tanzania
with one rainy season from November to May, and bimodal in northern and eastern Tanzania
with two rainy seasons: the MAM long rains and the SON short rains.

3. A general decreasing precipitation trend is observed in Tanzania since 1960, with the greatest
decline in the MAM long rains season.

4. A weak increasing precipitation trend for the SON short rains is observed in northwestern
Tanzania around Lake Victoria, contradictory to the decreasing lake level.

5. The IOD exerts a greater influence on Tanzania’s precipitation than other modes of climate
variability including ENSO.

6. Future projections show an increase in Tanzania’s rainfall in response to global warming; this trend
contradicts the historical drying trend over East Africa.

7. Observational data and climate model data show opposite precipitation trends for Tanzania,
reflecting the challenges faced by climate models in the representation of natural variability.

For reliable projections of future climate in Tanzania, historical climate change and forced
variability must be consistently simulated by climate models used by the IPCC. Future work should
include other means of precipitation measurement derived from long satellite sources, different
trend analyses methods, and varying time intervals (e.g., monthly, annual, decadal) to account for
possible uncertainties.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/8/2/34/s1, Figure S1:
Map of Tanzania showing the number of stations and observations from 1961 to 2016, Figure S2: Graph showing the
number of observations per year in Tanzania since 1891, Figure S3: MAM precipitation series from different datasets
and their ensemble mean averaged over Tanzania.
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