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Abstract: Annual trends in storm wave intensity over the past 41 years were evaluated during the
present study. Storm wave intensity is evaluated in terms of total storm wave energy (TSWE) and
storm power index (SPI) of Dolan and Davis (1992). Using an accurate long-term wave hindcast
developed using a calibrated SWAN model, all storm wave events occurring over the past 41 years
were characterized in terms of significant wave height (Hs) and total storm duration. Thus, both SPI
and TSWE was computed for each storm wave event. The Theil–Sen slope estimator was used to
estimate the annual slopes of the SPI and TSWE and the Mann–Kendall test was used to test the trend
significance with different confidence levels. The present study is spatially performed for the western
Mediterranean Sea basin considering 2308 grid points in a regular grid of 0.198◦ resolution in both
directions. Results allow as to define five hotspots covering a large area, experienced a significant
increasing slope in both SPI and TSWE (annual maxima and average). The confidence level in this area
exceed 95%, with a steep slope between 100 kWh·m−1·year−1 and 240 kWh·m−1·year−1 for annual
max TSWE and between 28 m2·h·year−1 and 49 m2·h·year−1 for annual max SPI. Consideration of
the present findings is strongly recommended for risk assessment and for sustainable development
in coastal and offshore area and to identify areas sensitive to global climate change in the western
Mediterranean Sea.

Keywords: wave modeling; storm wave intensity; total storm wave energy; storm power index;
trend; Western Mediterranean Sea

1. Introduction

Marine storms are one of the major preoccupations of sea users and marine security
services. They are often responsible for significant damage and loss in several sectors of
marine activity such as aquaculture [1] and navigation [2,3]; additionally, these storms are
responsible for several changes in the coastlines [4,5] and cause damage to coastal and
port infrastructure [6–8]. The extent of this damage can have a considerable impact on
the economies of countries. Currently, several researchers are interested in assessing the
impact of storms on coastal areas in the Mediterranean [9–15]. These contributions have
been motivated by the alarming climate changes observed over the last decades [5,16–18],
considering the increasing trend in significant wave heights (Hs) reported in several stud-
ies [19–24], as well as the increase in Hs during tropical cyclones [25,26], and also the
variation in storm wave intensity [4], linked to the local variation in the storm power index
of Dolan and Davis [27]. Thus, the intensity of storm waves depends on several factors,
mainly the wave heights and wave period during the storm, the persistence of storms,
and the direction of storm waves with respect to the shoreline. An assessment of these
parameters that characterize storm waves occurred over a considerable period of time will
provide a better understanding of the storm regime and allow for a better assessment of
the likely intensities of a storm wave along the coast.

In the present study, we aim to evaluate the trend in storm wave intensity based on
total storm wave energy of each storm event (TSWE), also called energy flux and computed
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following Molina et al. [28], and on the storm power index (SPI), derived by Dolan and
Davis [27], calculated for each characterized storm. The SPI index is applied by several
researchers in the evaluation of the impacts of storms in the coastal zones [5,29–32]. These
studies showed a significant correlation between the storm power index [27] and the storm’s
causality. For our aim, the storm wave events occurred in the whole western Mediterranean
Sea basin during the last 41 years were characterized according to the definition adopted
by Ojeda et al. [33], which characterizes a storm as an event during which significant wave
heights exceed a minimum threshold Hs for a minimum period of 12 h. Thus, the storm
threshold height is defined according to the wave climate data of each grid point of the
western Mediterranean based on the formula proposed by Birkemeier et al. [34] and used
by Walker and Besco [35] and Mendoza et al. [36].

Trend analysis was based on the Theil–Sen slope estimator and the Mann–Kendall test
to assess the significance of trends with several levels of confidence. Spatial assessment of
storm wave intensity trends helps to assess the influence of global warming and global
change on storm regimes in the Western Mediterranean basin and helps to define the areas
most affected by climate change hazards. Thus, the database and the results developed
during this study will constitute a decision-making tool that should be considered to ensure
a more sustainable development of maritime activities carried out in areas experiencing
significant trends in storm wave intensity.

2. Methodology

Increases in storm intensity and wave heights constitute an important factor to be
considered in the assessment of global climate change and coastal hazards [25]. For the
Mediterranean climate, several observable physical changes are experiencing trends that
may extend into the future [16,37]. Increasing trends in storm intensity resulting from
global climate variations may increase coastal vulnerability, risk in maritime transport, risk
in offshore activities, and affect sustainable development on the Western Mediterranean
coasts. Increased storms accompanied by a temporary rise in local sea level [38] will allow
energetic storm surges to reach higher beach and dune areas, which can lead to severe
erosion [39].

During this study, trends in storm wave intensities are assessed in three main steps.
Taking into account one grid point every 0.198◦, extracted from a validated wave hindcast of
0.033◦ resolution (Section 2.1), the first step consists of characterizing the storm wave events
occurring in the western Mediterranean Sea during the last 41 years. These storms are
characterized by their persistence, their average direction, and the variations in significant
wave heights during the storm. The second step consists of the calculation of two main
parameters used to determine the storm’s intensity. These two parameters are the storm
intensity index of Dolan and Davis [27] and the total wave energy during each storm
calculated according to [28] as detailed below. The final step is the analysis of annual trends
in storm wave energies and SPI storm power index. For this analysis, the Theil–Sen slope
estimator was used for the slope estimation and the Mann–Kendall test was used for the
assessment of the significant of the storm intensity trends. Details on the analysis method
are presented in following subsections.

2.1. Wave Hindcast

During this study, a high-precision hindcast wave dataset was used. This wave
hindcast, developed using a SWAN model [40,41], was calibrated specifically for the
western Mediterranean Sea [42]. This wave hindcast was developed to carry out a detailed
assessment of the wave energies resources in the Algerian coast [43], and it is updated
annually using the same model, the same numerical and physical parameters, and the
same spatial and temporal resolution of 0.033◦ and 3 h, respectively.
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The CFSR (Climate Forecast System Reanalysis) wind [44,45] was used for forcing the
wave model. This reanalysis was developed and provided by the National Centers for
Environmental Prediction (NCEP) from the webservices https://rda.ucar.edu/. CFSR data
are characterized by a very high temporal resolution of 1 h, considered to be necessary in
the estimation of storm peaks [46], and covers 41 years. The CFSR’s accuracy was approved
in several studies with a slight overestimation of wind speed [47–53]. For an efficient study
of coastal hazards, a slight overestimation of wind speed and significant wave heights
can be preferred than a slight underestimation to ensure sustainable development and an
improved security.

Using the CFSR wind field [44,45], the model was run in the third generation and in
nonstationary mode using the STOPC (Stop Criterion) convergence criterion requiring 99%
of the active grid points to be converged across the entire western Mediterranean Domain
from 17◦ E to 6◦ W and from 35◦ N to 45◦ N. The selected time step was 30 min with a
maximum of 4 iterations per time step, and the directional wave energy density spectrum
function was discretized using 36 directional bins and 35 frequency bins between 0.033 Hz
and 1.0 Hz. For the boundary condition, the southeastern and western boundary of the
computational grid was defined with the JONSWAP spectrum with a peak enhancement
parameter gamma = 3.3. Further information on the wave model setup are detailed in
Amarouche et al. [42], and some physical computation settings are summarized in Table 1.

Table 1. The calibrated physical processes’ settings of SWAN model used for the development of the
wave hindcast database [42].

Physical Process Formula References Parameters

Linear wind growth [54]
Exponential wind growth [55]

Whitecapping [56,57] Cds2 = 1.0 & delta = 1
Quadruplets wave–wave

interactions
the discrete Interaction

approximation (DIA) [58]
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8

= 0.25 & Cn/4 = 3.0 × 107

Triads wave–wave
interactions [59] αEB = 0.1

Depth-induced breaking [60] αBJ = 1.0 & γBJ = 0.73
Bottom friction [61] CFJON = 0.038

For the evaluation of the wave hindcast accuracy, validation was carried out based
on 11 wave buoys. The results were detailed in Amarouche et al. [42,43]. In Table 2, we
presented same statistical errors obtained by comparing the hindcast wave data against
wave measurements of 11 buoys around the western Mediterranean sea. The results show
a good accuracy of the wave hindcast, with average scatter index of 0.298 and 0.194 for
both significant wave height (Hs) and zero crossing wave period (Tm02), respectively. Thus,
a high correlation is recorded in all buoys, with an average of 0.925 and 0.83 for Hs and
Tm02, respectively, reflecting the high precision of the calibrated SWAN model used during
this study. Further detail on the SWAN model calibration and accuracy assessment can be
found in Amarouche et al. [42].

https://rda.ucar.edu/
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Table 2. Statistical error results obtained during the validation of SWAN coarse grid model [42,43].

Buoy
Name/Positions Used Period

Nbr of
Observation

SI Bias R

Hs Tm02 Hs Tm02 Hs Tm02

Matifou
3.22◦ E 36.84◦ N

1 October 1998 to
31 March 1999 1304 0.3 0.15 0.15 0.17 0.92 0.88

Azzefoun
4.39◦ E 36.917◦ N

1 September 2000 to
28 February 2001 1196 0.31 0.21 0.09 −0.03 0.92 0.78

Kala
8.43◦ E 36.92◦ N

1 January 2002 to
31 December 2002 2480 0.3 0.18 0.01 −0.43 0.93 0.89

Palos
−0.33◦ E 37.65◦ N

1 January 2007 to
31 December 2009 25,470 0.30 0.14 0.15 −0.07 0.92 0.82

Dragonera
2.1◦ E 39.55◦ N

1 January 2007 to
31 December 2009 25,222 0.30 0.18 0.05 −0.45 0.92 0.84

Tarragona
1.47◦ E 40.68◦ N

1 January 2008 to
31 December 2008 8717 0.30 0.17 0.03 −0.35 0.91 0.86

Buger
3.65◦ E 41.92◦ N

1 January 2008 to
31 December 2008 6374 0.27 0.18 −0.04 −0.48 0.94 0.88

Mahon
4.42◦ E 39.71◦N

1 January 2007 to
31 December 2009 23,257 0.29 0.15 0.16 −0.30 0.94 0.88

Nice
7.23◦ E 43.63◦ N

1 January 2008 to
31 December 2008 8177 0.38 0.27 −0.02 −0.76 0.87 0.63

Porquerolles
6.20◦ E 42.97◦ N

1 January 2000 to
31 December 2000 3129 0.25 0.17 −0.03 −0.4 0.94 0.88

Marseille
3.66◦ E 43.33◦ N

1 January 2000 to
31 December 2000 2095 0.28 0.29 −0.06 −0.92 0.96 0.84

2.2. Storm Wave Characterization

A storm wave is a climate event defined as a time period during which the significant
wave height exceeds a minimum threshold Hs during a considerable time lapse. The
storm wave events identified during the present study are characterized according to
the definition established by [33], who considered a storm wave as an event where the
observed significant wave heights exceed a threshold height for at least 12 h, whereas the
Hs, threshold is calculated according to the long term wave climate data in the concerned area
according to Birkemeier et al. [34] and Walker and Besco [35], which defines Hs, threshold
for each study area as the long-term mean of significant wave heights X plus twice the
standard deviation according to the following formula:

Hs, threshold = X + 2 σ (1)

Figure 1 shows the threshold heights calculated based on this formula for all the grid
points evaluated during the present study. This figure clearly shows a variation in the
threshold heights to be considered in each zone and their dependence on the local wave
climate, which is related in turn to the depth and proximity of the coast. Thus, in order
to ensure that the event is statistically independent [33], two consecutive storm waves
are considered independent if the significant wave heights between two events remain
above Hs, threshold for a minimum of 48 h; this separation period allows a distinction of
macro-meteorological phenomena [62]. The total storm number characterized based on
these criteria are mapped.
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Figure 1. Significant wave height thresholds used for the characterization of storm wave events.

Figure 2 illustrates three independent consecutive storms that are characterized based
on the definition of [33] in the time series plot of significant wave heights; thus, on the
same figure the total energy of each storm wave is illustrated by a green area above the
time series plot of wave powers (Pw) between the starting time t0 of the storm and the
ending time tn. This area is mathematically represented by the following integral:

TSWE =
∫ tn

t0

PW(t) dt (2)

where TSWE represents the total energy during the storm wave and Pw is the wave energy
flux (wave power) approximated by the following formula

PW =
ρg2

64π
× H2

S × Te. . . (3)

where Te is the energy period defined in terms of spectral moments, Hs is the significant
wave height, and ρ is the seawater density taken as 1027 kg/m3. The wave parameters
(Hs and Te) used for the calculation of the wave power Pw were both obtained from the
same wave hindcast database developed using the SWAN model. This simple definition of
TSWE based on the total wave power during the storm period is adopted and illustrated
by Molina et al. [28] and can be used to quantitatively evaluate and classify storm waves in
terms of their intensities.

In addition to the TSWE, the storm power index [27] was computed for each storm
event and was also used for the evaluation of storm intensity trends in the Mediterranean
Sea. The SPI is determined only from the mean significant wave heights during the storm
and the persistence of the storm as follows:

SPI = Hs
2 × Td (4)

where Td is the storm duration in hours. The several studies [29,30,36,50,63–66] have shown
a strong correlation between the SPI and the damage recorded in coastal areas. As such
an evaluation of the annual trend in the SPI is considered valuable to assess the annual
trend in the SPI as an indicator of storm intensity trends. The storm intensity trend is thus
evaluated in terms of both TSWE and SPI.
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height threshold of 2.7 m with a minimum interval between two consecutive storms of 48 h.

2.3. Trend Aanalysis Method

Currently, the combined approach of Theil–Sen slope estimator [67,68] and Mann–
Kendall test [69,70] is one of the most commonly practiced methods in the analysis of
wave and wind climate trends [71–77]. The Theil–Sen slope estimator was adopted by
Theil [68] and reviewed by [67] by considering the asymptotic properties of the estimators.
This method does not require that constant values should be all distinct, and it is based
on weaker assumptions [67]. Furthermore, the Theil–Sen estimator is not sensitive to the
non-normality. Therefore, this method is more suitable for the analysis of the wave climate
trend. The statistical approach of this method consists of determining the slopes aij between
the set of values distributed as a function of time, two by two, by considering all possible
pairs using the following formula:

aij =

(
Yj −Yi

)(
tj − ti

) with 1 < i < j < n (5)

where Y is the annual average data and t is the year, n is the total observations, and i and j
are indexes that point out the position of all the pair of observations points used for the
slope estimation. Then, the non-parametric Theil–Sen slope is determined as the median
value of all pair’s points slope aij.

For the evaluation of the trend significant in storm intensity, the non-parametric test
of Kendall was used. This test was developed and initiated by Mann [70] and illustrated
statistically by Kendall [69]. For the application of the Mann–Kendall test, the normality
distribution of the evaluated data is also not required. The Mann–Kendall test hypothesis
are H0 (null hypothesis), in which we assume that the trend over the time is not existing
or nonsignificant, and H1 (alternative hypothesis), in which we assume an increasing or
decreasing trend over time and that this trend is significant.

Practically, the Mann–Kendall test can be summarized in four steps. The first step
is preparing and ordering the data chronologically. To study the annual (mean and max)
trends in TSWE and SPI over 41 years, the total observation n is 41 and the annual observa-
tions (Yi) (mean and max) of each parameter was chronologically ordered Yi . . . Yn. The
second step of the test is the calculation of the total n(n − 1)/2 possible difference yj − yi;
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where i-values indicate the order of the years of observation; i = 1 . . . n − 1, and j = i + 1
. . . n. In the third step, the signs of the possible difference set Yj − Yi are to be used to
calculate The Mann–Kendall test statistic S as follows:

S =
n−1

∑
i

n

∑
j

sgn
(
Yj −Yi

)
(6)

The signs of the differences yj − yi are used to calculate the Mann–Kendall test

statistic S using the following formula
n−1
∑
i

n
∑
j

sgn
(
Yj −Yi

)
, where sgn(yj − yi) is an indicator

function defined on the basis of three criteria:

sgn(Yj − Yk) = 1 if Yj − Yk > 0
sgn(Yj − Yk) = 0 if Yj − Yk = 0

sgn(Yj − Yk) = −1 if Yj − Yk < 0
(7)

The fourth step is to compute the standardized S statistic “Z” following [67] description.

Z =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0
(8)

where Var(S) is computed according the following

Var(S) =
1
18

[
n(n− 1)(2n + 5)−

m

∑
i=1

Ti(Ti − 1)(2Ti + 5)

]
(9)

where m is the number of related values in the time series, whereas Ti is the number of
data values in the mth group up to observation i.

Finally, the last step is the test of the null hypothesis (H0) by comparing the test statistic
Z absolute computed value against the theorical Z1−α/2 obtained from the standard normal
table. This test was evaluated by considering different significance levels α of 0.01, 0.05, 0.1,
and 0.2. H0 is rejected if |Z| > Z1−α/2, and that means that there is a significant trend for
a confidence level of 1 − α, and the trend direction is defined as increasing or decreasing
depending on the Z value sign.

3. Results and Discussion

Based on the storm criteria detailed in Section 2.2, the storm wave events occurring
across the whole western Mediterranean Sea were characterized according to the significant
wave heights and their duration. The number of storms occurring during the last 41 years
was computed spatially every 20 km from the initial wave hindcast grid of 3 km of
resolution (the exact point value of the grid was mapped without interpolation). Figure 3
illustrates the number of storm events recorded during these last four decades. This result
shows a considerable spatial variation in the distribution of the number of wave storm
events, which mostly varied from 400 to 690 events, corresponding to around 10 to 16
events per year. The average annual number of storm events is almost in accordance with
the results of Martzikos et al. [78], although the methodologies used for the storm wave
characteristics are different. The area that has experienced the higher storm event numbers
during the last four decades is located above the latitude 40, an area also characterized by
a high probability of the Medicane (Mediterranean tropical-like cyclone) development [79],
and also in the Eastern part of the Alboran Sea (S1). By comparing the spatial distribution
of storms (Figure 3) with the long-term annual mean and maxima of wave energy and Hs
presented in [42], we observe a significant difference in the spatial distribution between
these three parameters. This difference may depend on the variability of wave climate
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in each region and implies that the number of storms is not directly dependent on the
long-term annual mean and/or annual maxima of significant wave height and wave energy.
The western Mediterranean basin is often exposed to different strong winds: the Vendaval
wind from South West of the Balearic basin, the Ponente wind from the West through the
Straits of Gibraltar, the Mistral wind from the northwest, the Sirocco wind from the south
and southeast, the Levant wind from east and northeast, the Libeccio wind from southwest
in Corsica and the Tyrrhenian basin, the Tramontane wind from the north, and the Marin
from the southwest Gulf of Lion.
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All the storm occurring in each point, was considered in the computation of the annual
mean of the TSWE and the storm power index, was used for the annual trend’s analysis
and the result was mapped by considering the real grid point without interpolation. In the
present study, the storm intensity was evaluated in terms of the total energy during each
storm events and in terms of the storm power index [27].

The annual trends of these parameters shown in Figures 4–7 are used as indicators
of storm wave intensity trends, given that there is no defined and specific parameter
quantifying the storm wave intensity. Trends in maximum and mean TSWE and SPI were
assessed. The results show a strong spatial correspondence between the area experiencing
a significant trend in maximum storm intensity and the area experiencing a significant
trend in mean storm intensity. Figures 4–7 illustrate the areas experiencing a significant
annual trend in TSWE and SPI (mean and maximum) according to Mann–Kendall test
results as well as the estimated slope values for each area based on the Theil–Sen slope
estimator. These results show that a very important part of the western Mediterranean
Sea basin has experienced an increasing slope and a considerable area has experienced
a significant increase in the TSWE with a confidence level >95%. This area is principally
located in five different parts. The first part is located in the east of the Alboran Sea, where
a significant trend in storm intensity is estimated with a slope >32 kWh·m−1·year−1 and
>100 kWh·m−1. year−1, respectively, for annual average and maximum of TSWE and a
slope >6 kWh·m−1. year−1 and >28 kWh·m−1. year−1 for annual average and maximum
of SPI, respectively. The second part is the eastern Algerian basin, where a significant
increase in both SPI and TSWE was recorded with a confidence level >95% and a very steep
slope for both the annual average SPI and annual average TSWE of > 6 m2·h·year−1 and
>32 kWh·m−1·year−1, respectively. Thus, a very steep slope has been estimated for annual
maximum SPI and annual maximum TSWE of >28 m2·h·year−1 and >120 kWh·m−1·year−1,
respectively.
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The third area, is located in western part of Genoa coast, where a significant trend is
estimated for max and average TSWE with a confidence level exceeding 95% and a slope
>8 kWh·m−1·year−1 for the average TSWE and >40 kWh·m−1·year−1 for max TSWE. In
the same area, a significant trend was also recorded for the SPI but with a lower confidence
level, and only in one grid point significant trend was detected with a 95% confidence
level. This can be explained by an influence of wave period variation and trend, which
is considered only in the wave TSWE formulation. The fourth interesting area is located
off Cap de Creus in the western part of the Gulf of Lion, where the significant trend is
estimated with a confidence level >99% for both SPI and TSWE. The slope value estimated
in this area exceeds 6 m2·h·year−1 and 32 kWh·m−1·year−1 for the annual average of
SPI and TSWE, respectively, and exceed 42 m2·h·year−1 and 200 kWh·m−1·year−1 for
the annual maximum of SPI and TSWE, respectively. The last area that experienced a
significant trend in storm intensity is located off the coast of Tarragona and covers a
considerable area of the Balearic on which a significant trend in both annual average and
maximum of the TSWE and SPI are estimated with a confidence level exceeding 95% and
with a slope of 6 m2·h·year−1 and 16 kWh·m−1·year−1 for average SPI and TSWE and
21 m2·h·year−1 and 40 kWh·m−1·year−1 for maximum SPI and TSWE, respectively. This
part of the Balearic sea as well as the eastern part of Gulf of Lion experienced an extreme
catastrophe in January 2020 (Storm Gloria) during which new records were recorded by the
wave buoy measurements of Tarragona and Valencia, causing catastrophe damage along
the French and Spanish coasts [12]. Knowing that the results obtained during this study
are elaborated based on wave climate data from 1979 to 2019, we can note that the results
obtained by this analysis allowed us to estimate the increase in the intensity of storm waves
in the affected area during Storm Gloria 2020 [12]. However, other catastrophic storms
may probably occur in the coming years and in all areas characterized by a very significant
trend. Consideration of trends in storm wave intensities in the prediction of areas with
high risks and in the future planning on sustainable development can therefore provide
significant guidance.

For a better visualization, a time series plot indicating the annual variation of TSWE
and SPI was presented for five different stations located in the areas experiencing an
increasing trend in TSWE and SPI (presented in Figure 3); the time series plots are presented
in Figures 8 and 9 and details on the geographical location and estimated slope in these five
stations are presented in Table 3. The plots illustrate clearly the annual variation and the
increasing trend in both SPI and TSWE for the annual average and maximum. Thus, these
plots show a strong correspondence between the trends in mean storm intensity and trends
in the most violent annual storm waves; this information may reveal that the assessed
trends are not only due to exceptional annual events but to a deeper change and trend
in the storm pattern observed during the year, and these areas may therefore experience
strong climate change.

Table 3. Geographic information and estimated slopes of SPI and TSWE in five selected stations.

Stations. Lon. Lat. Depth
(m)

Distance
from the

Coast (km)

Estimated
Annual Slope
of Mean SPI

(m2·h·year−1)

Estimated Annual
Slope of Mean

TSWE
(kWh·m−1·year−1)

Estimated
Annual Slope

of Max SPI
(m2·h·year−1)

Estimated Annual
Slope of Max

TSWE
(kWh·m−1·year−1)

S1 2.6◦ W 35.8◦ N 750 51 5.9 26.1 23.2 114.8

S2 1.4◦ E 40◦ N 1439 88 3.3 14.2 14.1 57.2

S3 3.6◦ E 41.8◦ N 1326 35 6.4 26.5 37.4 149.7

S4 5.8◦ E 37.6◦ N 2812 74 5.7 40.8 21.7 98.5

S5 7.6◦ E 43.4◦ N 2418 44 2.1 5.9 7.5 18.5
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The present study represents the first attempt to assess the intensity of storm waves
according to the TSWE and SPI. The existing studies [19,75–77,80–85] are focused on the
evaluation of individual significant wave height trends and wind speed trends on which
the storm wave events are highly dependent. Compared to the global study on wind and
wave trend analysis, the result obtained during this study are in the line with the trend
results of the 90th and 99th percentile significant wave height and wind speed obtained
by [19,80]. Thus, a study on significant wave height trends recently made by Timmermans
et al. [81] shows a strong and significant increasing trend in significant wave height in
the western part of the Mediterranean basin for several analyses of wave data sources.
Timmermans et al. [81] results show that the Mediterranean basin experiences one of
the higher positives slope around the world during the period of 1992–2017. Thus, in
comparing the area experiencing a significant increase in storm intensity with the area
experiencing a significant increase in the maximum Hs as defined by De Leo et al. [74],
we can notice an intersecting correspondence along the western European coast but not
along the African coast. The area characterized by a significant increasing trend in storm
intensity covers a more important space. This difference can be a fact of the trend in
storm duration, which can considerably affect storm intensity. Results obtained are also in
agreement with the results obtained by Molina et al. [28], which show an increase in the
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intensity of storm waves in the eastern Alboran basin between 1979 and 2014, and with
the results of Jiménez [4], which show an increase in the intensity of storms on the Catalan
coast for the period of 1958–2008. The results obtained in the present study and in the
above-mentioned studies are based exclusively on the trends of the SPI and the TWSE by
considering the overall storm wave events. However, consideration of storm direction can
provide more detailed information on the main climatic events causing the trends in storm
wave intensity. Table 4 illustrates the occurrence of storms by direction in the five selected
hotspots. Western storm waves are very dominant in the Alboran Basin, these storms can
be generated by strong Vendaval and Ponente winds, and a trend in storm intensity in
this area can be affected by the Atlantic climate. The storms that occur in the Balearic
Basin mainly originate from the north and northeast and can be linked to the Mistral, the
Tramontane, and probably the Levantine wind. In the station S3, located off Cap de Creus
in the western part of the Gulf of Lion, the dominant storm waves are from northward and
can be linked to the Mistral and Tramontane. In the southern hotspot S4, the storm wave
directions are practically north and west and can also be related to the Mistral, Tramontane,
Vendaval, and Ponente winds. For the S5 hotspot located off of Monaco, we observe a
domination of storm wave events from the southwest, probably related to the Libeccio
storm winds. The storm wave events can also originate by exceptional storm events, such
as Storm Gloria and other medicane events.
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Table 4. Number of storm wave events per direction in the five selected stations.

Stations: S1 S2 S3 S4 S5

N 10 107 348 167 1
NE 187 166 40 7 102
E 0 28 65 20 78

SE 0 7 10 0 10
S 0 11 6 0 28

SW 0 70 23 0 347
W 323 34 0 148 4

NW 11 84 7 148 0

4. Conclusions

All storm wave events occurring in the western Mediterranean Sea over the last
41 years were characterized one by one, and the SPI and TSWE were determined for each
storm event and in each grid point. Based on the Theil–Sen slope estimator and the Mann–
Kendall test, the annual trend of the maximum and average of the SPI and TSWE were
determined for the entire western Mediterranean Sea. The results allowed us to determine
the trend slope of the SPI and TSWE and to identify the areas characterized by a significant
increasing trend with an acceptable confidence level. According to the results, a very large
part of the western Mediterranean Sea shows an annual increasing trend in SPI and TSWE,
both in maximum and average, which is in line with the results of Young et al. [80], Young
and Ribal [19], and Timmermans et al. [81]. Five areas are defined as hotspots, with a
significant increasing trend and a confidence level above 95%. These areas are the East
Albert Sea, the eastern Algerian Basin, the West Genoa coast, off of Cap de Creus, and
off the coast of Tarragona. These last two areas were recently exposed to a record storm
in January 2020 (Storm Gloria), which caused heavy damage on the French and Spanish
coasts [12]. According to the present findings, a considerable and very probable risk can be
expected in this area, and more intensive storms are likely to occur in the coming years.

The area that experienced a significant trend in storm intensity based on the SPI
and TSWE are considerably larger than the area that experienced a significant trend in
significant wave height determined by De Leo et al. [74] for the western Mediterranean
basin. This can be explained by a significant influence of the storm duration trends. In
order to ensure a sustainable development of the coasts and offshore in these hazardous
areas, it is strongly recommended to take into account the results presented on the storm
intensity trend with a detailed analysis of the wave climate variation in order to support
decision-making as well as for risk assessment and management. Thus, a consideration
of the wave direction during storm events can provide advantageous knowledge about
the storm wave regime in the hotspot area. Our perspective is to develop a more detailed
study in the selected hotspots, by considering the storm waves’ direction to assess the
likely effect of the detected change in storm wave climates on the coastal zone and for the
location of the most affected coasts by the increasing trend in storm wave intensity.
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