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Abstract: The paper aims to quantify solar and anthropogenic influences on climate change, and
to make some tentative predictions for the next hundred years. By means of double regression,
we evaluate linear combinations of the logarithm of the carbon dioxide concentration and the
geomagnetic aa index as a proxy for solar activity. Thereby, we reproduce the sea surface temperature
(HadSST) since the middle of the 19th century with an adjusted R2 value of around 87 percent for a
climate sensitivity (of TCR type) in the range of 0.6 K until 1.6 K per doubling of CO2. The solution of
the double regression is quite sensitive: when including data from the last decade, the simultaneous
occurrence of a strong El Niño and of low aa values leads to a preponderance of solutions with
relatively high climate sensitivities around 1.6 K. If these later data are excluded, the regression
delivers a significantly higher weight of the aa index and, correspondingly, a lower climate sensitivity
going down to 0.6 K. The plausibility of such low values is discussed in view of recent experimental
and satellite-borne measurements. We argue that a further decade of data collection will be needed
to allow for a reliable distinction between low and high sensitivity values. In the second part, which
builds on recent ideas about a quasi-deterministic planetary synchronization of the solar dynamo,
we make a first attempt to predict the aa index and the resulting temperature anomaly for various
typical CO2 scenarios. Even for the highest climate sensitivities, and an unabated linear CO2 increase,
we predict only a mild additional temperature rise of around 1 K until the end of the century, while
for the lower values an imminent temperature drop in the near future, followed by a rather flat
temperature curve, is prognosticated.

Keywords: climate change; solar cycle; forecast

1. Introduction

As the heir of great pioneers [1,2], modern climate science [3] has had major difficul-
ties in narrowing down its most prominent parameter—equilibrium climate sensitivity
(ECS)—from the ample range 1.5–4.5 K (per 2×CO2) that was already given in the Charney
report [4]. This lack of specificity is sometimes discussed in terms of various interfering
socio-scientific and political factors [5,6]. Yet, in addition to those more “subjective” reasons
for climate predictions to be that vague, there are at least two “objective” ones: the paucity
of precise and reliable experimental measurements of the climate sensitivity, and the unsat-
isfying state of understanding the complementary solar influence on the climate. Notably,
a couple of mechanisms have been proposed [7–9] that could significantly surmount the
meager 0.1 percent variation of the total solar irradiance (TSI) which is routinely used as an
argument against any discernible solar impact on the climate. Among those mechanisms,
the following ones figure most prominently: the comparable large variation of the UV com-
ponent with its influence on the ozone layer and the resulting stratospheric–tropospheric
coupling [10–15]; the effects of solar magnetic field-modulated cosmic rays on aerosols
and clouds [16–19]; downward winds following geomagnetic storms in the polar caps
of the thermosphere, penetrating the stratosphere and troposphere [20]; the solar wind’s
impact on the global electric current [21,22]; the (UV) radiation effects on the growth of
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oceanic phytoplankton [23], which, in turn, produces dimethylsulphide, a major source
of cloud condensation nuclei [24]. However, even the very TSI is suspected [7,25–27]
to have risen much more steeply since the Little Ice Age than assumed in conservative
estimations [28–30]. While neither of those mechanisms can presently be considered as
conclusively proven [8,31,32], they all together entail significantly more potential for solar
influence on the terrestrial climate than what is usually discussed [33]. Any resonance-like
interaction of solar forcing with the intrinsic dynamics of the climate system (cf. [34] con-
cerning the “stadium wave”, or [35,36] concerning sub-harmonic Rossby waves) would
add further interesting aspects to this issue.

In view of claims [37] of an overwhelming scientific consensus on this complex and
vividly debated research topic, and the severe political consequences drawn from it, we
reiterate here Parker’s prophetic warning [38] that “. . . it is essential to check to what extend
the facts support these conclusions before embarking on drastic, perilous and perhaps
misguided plans for global action”. We also agree with his “. . . inescapable conclusion (. . . )
that we will have to know a lot more about the sun and the terrestrial atmosphere before
we can understand the nature of contemporary changes in climate”.

Thus motivated, and also provoked by recent experimental [39] and satellite-borne
measurements [40,41] pointing consistently to a rather low climate sensitivity, we perform
another attempt to quantify the respective shares of solar and anthropogenic climate drivers.
Specifically, we resume the long tradition of correlating terrestrial temperature data with
certain proxies of solar activity, as pioneered by Reid [42] for the sunspot numbers, by
Friis-Christensen and Lassen [43] and Solheim et al. [44] for the solar cycle length, and
by Cliver et al. [45] and Mufti and Shah [46] for the geomagnetic aa index [47]. Our
work builds strongly on the two latter papers, which—based on data ending in 1990 and
2007, respectively—had found empirical correlation coefficients between the aa index
and temperature variations of up to 0.95. Notwithstanding some doubts regarding their
statistical validity [48], such remarkably high correlations might rise the provocative
question of whether any sort of greenhouse effect is still needed at all to explain the
(undisputed) global warming over the last one and a half centuries. More recently, however,
any prospects for such a reversed simplification were dimmed by the fact that the latest
decline of the aa index was not accompanied by a corresponding drop of temperature.
By contrast, the latter remained rather constant during the first one and a half decades of
the 21st century (the “hiatus”), and even increased with the recent strong El Niño events.

This paper aims at supplementing those previous works [45,46,49,50] by taking seri-
ously into account both observations: the nearly perfect correlation of solar activity with
temperatures over about 150 years, and the notable divergence between these quantities
during the last two decades. In Section 2, using a double regression analysis, quite similar
to that of Soon et al. [51], but with the time series of the aa index as the second independent
variable (in addition to the logarithm of CO2 concentration), we show that the temperature
variation since the middle of the 19th century can be reproduced with an (adjusted) R2

value of about 87 percent. Such a goodness-of-fit is achieved for specific combinations
of the weights of the aa index and of CO2 that form a nearly linear function in their two-
dimensional parameter space. Best results are obtained for a climate sensitivity in the
range between 0.6 and 1.6 K (per 2× CO2), with a delicate dependence on whether the
latest data are included or not. Derived from empirical variations on the (multi-)decadal
time scale, this climate sensitivity should be interpreted as a sort of transient climate re-
sponse (TCR), rather than an ECS. Our range corresponds well with that of Lewis and
Curry [52], 0.8–1.3 K, but is somewhat lower than the “official” 1.0–2.5 K range [3]. The
lower edge of our estimation is plausibilized by recent experimental [39] and satellite-borne
measurements [40,41]. It is also quite close, although still higher, than the particularly low
estimate of less than 0.44 K, as advocated by Soon et al. [53] after comparing exclusively
rural temperature data in the Northern hemisphere with the TSI. The upper edge, in turn,
is not far from the spectroscopy-based estimation by van Wijngaarden and Happer [54].
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We also argue that at least one additional decade of data collection will be needed to finally
decide between low and high sensitivity values.

With the complementary share of the Sun for global warming reaching values between
30 and 70 percent, any climate forecast requires a decent forecast of solar activity. This
leads us into yet another controversial playing field, viz, the predictability of the solar
dynamo. While the existence of the short-term Schwabe/Hale cycle is a truism in solar
physics, the existence and/or stability of the mid-term Gleissberg and Suess-de Vries cycles
are already controversially discussed, and there is even more uncertainty about long-term
variations such as the Eddy and Hallstatt “cycles”, which are closely related to the sequence
of Bond events [55].

In a series of recent papers [56–62], we have tried to develop a self-consistent explana-
tion of these short-, medium- and long-term solar cycles in terms of synchronization by
planetary motions. According to our present understanding, the surprisingly phase-stable
22.14-year Hale cycle [23,61] results from parametric resonance of a conventional α − Ω
dynamo with an oscillatory part of the helical turbulence parameter α that is thought to
be synchronized by the 11.07-year spring-tide periodicity of the three tidally dominant
planets Venus, Earth and Jupiter [56–59]. The medium-term Suess-de Vries cycle (specified
to 193 years in our model) then emerges as a beat period between the basic 22.14-year Hale
cycle and some (yet not well understood) spin–orbit coupling connected with the motion
of the Sun around the barycenter of the solar system that is governed by the 19.86-year
synodic period of Jupiter and Saturn [60,62]. Closely related to this, Gleissberg-type cycles
appear as nonlinear beat effects and/or from perturbations of the Sun’s orbital motion
due to other synodic periods of the Jovian planets. Finally, the long-term variations on
the millennial time-scale (Bond events) arise as chaotic transitions between regular and
irregular episodes of the solar dynamo [62], in close analogy with the super-modulation
concept introduced by Weiss and Tobias [63].

Being well aware of the conjectural nature of this synchronized solar dynamo model,
in Section 3 we make a tentative prediction of the aa index for the next 130 years, based
on simple three-frequency fits to the aa index data over the last 170 years. While our
choice for three frequencies is motivated by the dominance of one Suess-de Vries and two
Gleissberg-type cycles, we employ different versions of fixing or relaxing their frequencies,
which leads to a certain variety of forecasts. A common feature of all of them is, however,
a noticeable decline of solar activity until 2100, and a recovery in the 22nd century. These
predictions for the aa index are then combined with three different scenarios of CO2
increase, including an unfettered annual increase by 2.5 ppm and two further scenarios
based on hypothetical decarbonization schemes. The 3 × 3 models thus obtained are then
blended with the different combinations of weights for the aa index and CO2 as derived
before in the regression analysis. For the “hottest” scenario, we predict an additional
temperature increase until 2100 of approximately 1 K, while all other combinations lead to
less warming, partly even to some imminent cooling, followed by a rather flat behaviour in
which decreasing solar activity and a mildly increasing trend from CO2 compensate each
other to a large extent. In Section 4 our results are summarized, and some conclusions are
drawn in Section 5.

2. Double Regression Analysis

In this section, we perform a double regression analysis of the temperature data
(dependent variable) on the geomagnetic aa index and the logarithm of CO2 (independent
variables). We conduct this in an intuitive and easily reproducible way by showing the
fraction of variance unexplained (FVU), i.e., the ratio of the residual sum of squares to the
total sum of squares, whose minimum was then identified. From these FVUs, we derive the
corresponding R2 value, both in its usual and in its adjusted variant. Let us start, however,
with a description of our data base.
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2.1. Data

While reliable CO2 data are obtainable for a long period of time, we decided to restrict
our data base to the time from the middle of the 19th century, for which both temperature
data and the aa index are readily available.

2.1.1. Temperature Data

There are quite a number of different temperature series which might be considered
as the basis for a regression analysis. In order to make contact with the work of Mufti and
Shah [46], we decided to use the Hadley Centre Sea Surface Temperature (HadSST) dataset
in its updated version HadSST.4.0.0.0, available from www.metoffice.gov.uk (accessed on 1
August 2021) which provided us with the sea surface temperature anomaly from 1850 to
2018, relative to the 1961–1990 average [64]. Actually, these data are not gravely different
from the combined sea/land surface temperature (HadCRUT), apart from some slight, but
systematic, divergence during the last two decades (the tendency for enhanced warming
over land has been discussed in terms of the surface energy balance by Sutton et al. [65],
although non-climatic biases in land surface temperature records, such as the urban heat
island (UHI) effect [66], might also play a role here).

The HadSST data are shown as open circles in Figure 1a, together with two exemplary
centered moving averages with windows 11 years (full line) and 23 years (dashed line),
which we will frequently refer to in the following. These curves show the typical temporal
structure comprising a slow decay between 1850 and 1905, a rather steep rise between 1905
until 1940, again a mild decay until 1970, followed by a steep increase until 1998. As for
the last two decades, we first observe the “hiatus” between 1999 and 2014, being then
overwhelmed by the recent strong El Niño events. We will return to those latest years
further below.

Figure 1. Data of the HadSST sea surface temperature anomaly ∆T (a), the aa index (b) and log2 of
the ratio of the CO2 concentration to the reference value of 280 ppm (c). The annual data between
1850 and 2018 are complemented by centered moving averages with windows 11 years and 23 years,
as also utilized by Mufti and Shah [46]. The sources of the data are described in the text.

www.metoffice.gov.uk
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2.1.2. Geomagnetic aa Index Data

A widely used measure of solar activity, the aa index represents the amplitude (in
nT) of the global geomagnetic activity during 3 h intervals at two antipodal magnetic
observatories, normalized to geomagnetic latitude ±50◦ [47]. Inspired by the work of
Cliver et al. [45] and Mufti and Shah [46], who pointed out the remarkable correlation of
up to 0.95 between (time averaged) temperature anomalies and the geomagnetic aa index,
we use the latter data as a proxy for solar activity (slight corrections of this attribution
might result from taking into account the weakly confounding factors related to the secular
change of the orientation and strength of the Earth’s magnetic field, as discussed previ-
ously [67]). A viable alternative would have been to use sunspot data, or various versions
of the TSI, as exemplified in [27,53]. Given, on one side, their generally high correlation
(r = 0.96) with sunspot numbers [68], and, on the other side, their high reliability based
on precise measurement down to 1844 (which avoids some ambiguities concerning the
correct variability of the TSI [27,53]), we focus here exclusively on the aa index data, leaving
regression analyses with other solar data to future work.

The bulk of the aa index data, between 1868 and 2010, was obtained from the ftp server
ftp.ngdc.noaa.gov. As in Reference [46], the early segment between 1844 and 1867 was
taken from Nevanlinna and Kataja [69]. The latest segment, between 2011 and 2018, was
obtained from www.geomag.bgs.ac.uk (accessed on 1 August 2021). All these aa index data
were annually averaged to provide a homogeneous dataset. Together with their 11-year
and 23-year moving averages, the annual aa data are shown in Figure 1b. Already by
visual inspection, between 1850 and 1990, we observe a remarkable similarity of their shape
with that of temperature, while after 1995, the aa index declined, whereas the temperature
continued to increase. We will have more to say on that divergence further below.

2.1.3. CO2 Data

The CO2 concentration data until 2014 were obtained from iac.ethz.ch/CMIP6/. The four
additional data points from 2015 and 2018 were taken from the website www.co2.earth
(accessed on 27 November 2020). Together with their 11-year and 23-year moving averages,
the logarithm of these data is shown in Figure 1c. The use of the logarithm relies on the
saturation effect according to which it becomes increasingly difficult for additionally added
CO2 molecules to further close the “infrared window” for outgoing radiation.

2.2. The Most Relevant Data and Their Correlations

After presenting the data that will actually be used in the remainder of this paper, we
redtake a short break to consider whether these are indeed the most relevant data. Our
reliance on the aa index might indeed be questioned, as other studies [6] have claimed
a strong temperature dependence on ocean–atmosphere variations, such as the Pacific
Decadal Oscillation (PDO) [70] and the Atlantic Multidecadal Oscillation (AMO) [71],
with their similar time structures governed by a sort of 60–70-year “cyclicity”. On the other
hand, there is also evidence for direct correlations of the aa index with regional features,
such as the Northern Annular Mode (NAM) [72]. In order to assess such possible links, in
Figure 2 we show exemplarily the 23-year averages of the AMO and the PDO data, together
with the previously shown aa index (appropriately shifted and scaled) and ∆T. It is clearly
seen that the aa index and ∆T had a particularly parallel behaviour until 1990. There is
also some similarity with AMO, while PDO has a different time dependence.

www.geomag.bgs.ac.uk
www.co2.earth
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Figure 2. Comparison between the centered moving averages over 23 years of the four datasets
∆T, aa index, AMO index and PDO index. Note the remarkable parallelity of ∆T and aa index
until 1990, and the divergence thereafter. The AMO index also has some similarity with ∆T, while
the PDO index is significantly different. The AMO index data were obtained from https://psl.
noaa.gov/data/timeseries/AMO/ (accessed on 17 December 2020), the PDO index data from https:
//psl.noaa.gov/pdo/ (accessed on 22 December 2020).

In Table 1, we quantify those relationships between various data in terms of the
empirical correlation coefficients r (including also the associated one-sided p-values). We
perform this for the two different moving average windows (abbreviated henceforth as
“MAW”) of 11 years and 23 years, and in either case for three different end points of
the time interval (2013, 2008, 2003 for MAW = 11 years and 2008, 2003 and 1998 for
MAW = 23 years; note that these are the centered points of the last interval of the moving
averages, into which the annual data from later years are included). Our first observation
(see the first row) is the significant correlation between the two predictor variables CO2 and
the aa index. Although we consider both variables as physically independent from each
other (while the independence of aa from CO2 is evident, we also presume here the CO2
increase as being exclusively of anthropogenic origin—a certain amount of ”degassing” of
the oceans due to heliogenic warming is not completely excluded, but very likely a minor
effect), this multicollinearity is at the root of the ill-posedness of our attribution problem.
Indeed, both correlations of CO2 and the aa index with ∆T have similar r-values in the
range between 0.6 and 0.95, which is a first indication for their comparable influences.
However, there are some subtleties to discern when considering different end years, both
for MAW = 11 years and for MAW = 23 years. Focusing on the latter case, the correlation
for CO2 acquires its highest value (r = 0.916) for the full time interval, and decreases
slightly to 0.869 when the time interval is shortened by 10 years. By contrast, the correlation
of the aa index with ∆T has only a value of r = 0.8 for the full interval, but grows to 0.95 for
the restricted interval. This latter result confirmed that of Mufti and Shah [46] obtained for a
similar period, and by Cliver et al. [45] for a still shorter interval. Some further correlations
are indicated exclusively for MAW = 23 years. Given the visual similarity of AMO and ∆T
in Figure 2, their correlation is surprisingly small, but would increase if the overall upward
trend of ∆T were subtracted. The PDO seems to show no relevant correlation with ∆T.

https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/pdo/
https://psl.noaa.gov/pdo/
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Table 1. Empirical correlation coefficients r between different datasets, each of which represents a centered moving average
over 11 or 23 years. The values in parentheses indicate the (one-sided) p-values, based on the “honest” number of degrees
of freedom, i.e., Ny/11 or Ny/23, wherein Ny is the number of years. Note the large values for the correlation both between
CO2 and the aa index with ∆T, compared to weak or barely existing correlations of the AMO and PDO index with ∆T.

MAW 11 Years: 1855 till MAW 23 Years: 1867 till

Correlated Data 2013 2008 2003 2008 2003 1998

CO2 with aa 0.440 0.606 0.720 0.703 0.783 0.803
(one-sided p) (0.053) (0.0099) (0.0017) (0.045) (0.023) (0.02)

CO2 with ∆T 0.926 0.911 0.891 0.916 0.894 0.869
(one-sided p) (0) (0) (0) (0.0017) (0.0037) (0.0073)

aa with ∆T 0.595 0.738 0.819 0.806 0.900 0.950
(one-sided p) (0.010) (0.001) (0.0001) (0.016) (0.0032) (0.0005)

AMO with ∆T 0.260 0.164 0.106
(one-sided p) (0.30) (0.38) (0.42)

aa with AMO −0.015 −0.013 −0.028
(one-sided p) (0.49) (0.40) (0.48)

PDO with ∆T −0.131 −0.001 0.126
(one-sided p) (0.40) (0.50) (0.41)

aa with PDO 0.050 0.049 0.074
(one-sided p) (0.46) (0.46) (0.44)

In Figure 3, we show some further correlation dependencies, this time on the time shift
δt between the two respective data, which could possibly give a clue about intrinsic delay
effects (such as the ”stadium wave” of [71]). One curve shows the correlation between
the aa index and the AMO index, whereby the aa index at earlier times is correlated with
AMO at later times. While the correlation is not large, we see at least a clear maximum
at δt = 11 years, as if the AMO index lagged behind the aa index by this delay time.
The second curve shows the corresponding relationship between ∆T and AMO, with the
correlation reaching a maximum of 0.3 at δt = 6 years. While this looks like a sort of
inverted causality (AMO lags behind ∆T), it could simply mean that ∆T is indeed governed
by the aa index, which also determines the AMO index at later times.

We also show the corresponding curves for the aa index and ∆T, in the two versions
for the full time interval and the 10-year shortened one. For the full interval, r starts at
value 0.8 for δt = 0, but reaches a maximum of 0.915 for δt = 10 years. While at face value
this insinuates a 10-years lag between the aa index and ∆T, it is more likely connected with
the implied cancellation of the last 10 years during which the aa index was decreasing.
In order to test this, in the second curve we omit the last 10 years of both data completely.
Here, we find an r = 0.95 at δt = 0, which still increases to a maximum of r = 0.962 at
δt = 3 yr. This sounds indeed like a reasonable time delay between cause (aa index) and
effect (∆T).
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Figure 3. Correlations between various data, each representing a 23-year centered moving average,
in dependence on the time shift δt between them. In each case, the first item indicates the earlier
dataset, the second the later one. The aa-∆T correlation starts at a value r = 0.8 for δt = 0 and
reaches a maximum of r = 0.915 for δt = 10 years. While this might insinuate a 10-year causal
time shift between aa index and ∆T, it is more likely connected with the canceling effect of the
latest decade with its poor correlation. In the second curve, for which we completely omitted the
last 10 years of both data, we obtain r = 0.95 at δt = 0, increasing to a maximum of r = 0.962 at
δt = 3 years. Compared to those large r-values, the correlation of ∆T and AMO is much smaller, viz
0.3 at δt = 6 years (AMO lagging behind temperature). The correlation of aa index and AMO is still
smaller, with a maximum of r = 0.129 for δt = 11 years.

2.3. Regression

After those preliminaries, we now start with the multiple linear regression analysis
which, as an extension of ordinary least-squares regression, uses several independent (or
explanatory) variables to predict the outcome of a dependent (or response) variable. Specif-
ically, we apply a double linear regression by modelling the temperature data (dependent
variable) using the ansatz

∆Tmodel = waa · aa + wCO2 · log2(CO2/280 ppm)

with the respective weights waa and wCO2 for the two independent variables aa and CO2,
and compare them with the measured data ∆Tmeas. This procedure is very similar to that
of Soon et al. [51], who, instead of aa, used the length of the sunspot cycle, the averaged
sunspot number and a more complicated composite as proxies of solar irradiance. While
Soon et al. [51] translated all these proxies into some percentage of TSI variation (fixing their
“stretching factor” by the best fit of modeled and observed temperature history), we stick
here to the somewhat weird unit K/nT for waa, without specifying in detail the physical
mechanism(s) underlying the solar–climate connection. In case of a dominant Svensmark
effect, this unit would indeed have an intuitive physical meaning, whereas in case of a
dominant UV radiation impact on the ozone layer (plus the subsequent coupling of the
stratosphere and troposphere), it would just represent a very indirect, co-responding proxy.

Note that our ansatz is significantly simpler than that of Lean and Rind [73], who used
the time series of ENSO and volcanic aerosols as additional independent predictors. Since
the latter typically vary on the time scales of a few years, our ansatz only makes sense
when considered as a low-pass filter. One of the non-trivial questions to address then was
which time average should be used. Evidently, the structures of temporal fluctuation of the
three data are quite different. As for the independent data, the monotonically rising CO2
curve is the smoothest one, so the results of any regression would be widely independent
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on the widths of the averaging window. The aa index is fluctuating much more, with its
dominant 11-year periodicity which had been taken into account, though in different ways,
by Cliver et al. [45] and Mufti and Shah [46]. Cliver et al. [45] have been working both with
a decadal average and the so-called aa baseline (aamin), i.e., the minimum value which
generally occurs within one year following the sunspot minima. The empirical correlation
coefficient of r = 0.95 between aamin and the 11-year average temperature turned out to
be even better than that between two decadal averages (r = 0.9). Mufti and Shah [46],
in turn, worked with 11-year and 23-year averages, which also serves as a first guidance
for our study, though later we will consider the dependence on the widths of the averaging
windows in a more quantitative manner.

The dependent variable, i.e., ∆T, exhibits a general upward trend, but is also charac-
terized by significant fluctuations, albeit not with the dominant 11-year periodicity of the
aa index, whose climatic impact is thought to be smoothed out by the large thermal inertia
of the oceans. As mentioned, ∆T is strongly influenced by short-term variations due to
the El Niño-Southern Oscillation (ENSO) and volcanism, which had been included in the
multiple regression analysis of Lean and Rind [73] and the recent global surface tempera-
ture reconstruction by Scafetta [74]. The biggest price we have to pay for our simplifying
neglect of those strong short-term variations is a high sensitivity of our regression results
on end effects. For illustration purposes, we will consider (in addition to the use of different
averaging windows) three cases with different end years of the utilized data. In the first
case, we take into account all data until 2018. As evident from Figure 1, it was particularly
the last decade which showed the strongest discrepancy between the decreasing aa index
and the partly stagnant (“hiatus”), partly increasing temperature—especially during the
last years dominated by a very strong El Niño (note that a similar discrepancy was also
observed in the decade around 1880; see Figure 1). In order to assess the specifics of this
divergence between the two data, and to compare them with the high correlations found
previously by [45,46], we also consider two shortened periods with end years 2013 and
2008, respectively.

Let us start, however, with the full data ending in 2018. For the two MAW’s of 11 years
and 23 years, Figure 4a,b shows the fraction of variance unexplained (FVU), i.e., the ratio
of the residual sum of squares to the total sum of squares, in dependence on the respective
weights of the aa index (waa, on the abscissa) and the logarithm of CO2 (wCO2 , on the
ordinate axis). The latter value immediately provides us with a sort of instantaneous
climate sensitivity of the TCR type. The minimum FVUmin = 0.107 is obtained for the
weights’ combination waa = 0.011 K/nT and wCO2 = 1.72 K in the case of MAW = 11 years,
and FVUmin = 0.102 is obtained for waa = 0.0162 K/nT and wCO2 = 1.54 K in the case of
MAW = 23 years. From the ellipse-shaped contour plots of FVU, we see that those minima
reflect a dominating influence of CO2 over the aa index. The two red curves in Figure 4c
now show the corresponding temperature reconstructions based on those optimized values
of waa and wCO2 , for MAW = 11 years (full line) and for MAW = 23 years (dashed line).
For both lines, we obtain a reasonable fit of the general upward trend of ∆T, but a poor
reconstruction of its oscillatory features. This clearly corresponds to the higher share of
wCO2 as compared to that of waa. Any (tentative) higher share of waa would lead to a drastic
decrease in the reconstructed ∆T for the last two decades, resulting in forbiddingly large
FVU values when compared with the relatively high observed ∆T in this late period.
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Figure 4. Regression analysis for the full data (with end year 2018). (a) FVU in dependence on waa and
wCO2 for MAW = 11 years, with FVUmin = 0.107 reached for waa = 0.011 K/nT and wCO2 = 1.72 K.
(b) The same for MAW = 23 years, with FVUmin = 0.102 reached for waa = 0.0162 K/nT and
wCO2 = 1.54 K. (c) The 11-year and 23-year moving averages for the original ∆T (purple) and for the
reconstructed ∆T (red) when using the optimized values of waa and wCO2 from (a,b).

This brings us to the question of what happens if we exclude the latest “hot” 5 years
(with their strong El Niño influence), thus restricting the date until 2013 only. The cor-
responding results are shown in Figure 5. Obviously, the optimal weights’ combination
now shifts away from CO2 to aa, with values waa = 0.0145 K/nT and wCO2 = 1.56 K
for MAW = 11 years and waa = 0.0232 K/nT and wCO2 = 1.21 K for MAW = 23 years.
Evidently, the resulting (green) temperature reconstruction curves in Figure 5c now appear
more oscillatory.
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Figure 5. Regression analysis for the reduced data (end year 2013). (a) FVU in dependence on waa and
wCO2 for MAW = 11 years, with FVUmin = 0.134 reached for waa = 0.0145 K/nT and wCO2 = 1.56 K.
(b) The same for MAW = 23 years, with FVUmin = 0.105 reached for waa = 0.0232 K/nT and
wCO2 = 1.21 K. (c) The 11-year and 23-year moving averages for the original ∆T (purple) and for the
reconstructed ∆T (red) when using the optimized values of waa and wCO2 from (a,b).

In Figure 6, we show the corresponding plots for the case in which we select the end
year 2008, which basically corresponds to the database of Mufti and Shah [46] (2007 in
their case). Evidently, the regression for this shortened segment leads to a significantly
stronger weight for the aa index. The minimum FVU is then obtained at waa = 0.0190 K/nT
and wCO2 = 1.33 K for MAW = 11 years, and at waa = 0.0305 K/nT and wCO2 = 0.80 K
for MAW = 23 years. Due to the dominance of waa, the (blue) reconstruction curves
in Figure 6c (in particular that for MAW = 23 years) now show a significant oscillatory
behaviour.
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Figure 6. Regression analysis for the reduced data (end year 2008). (a) FVU in dependence on waa and
wCO2 for MAW = 11 years, with FVUmin = 0.149 reached for waa = 0.019 K/nT and wCO2 = 1.33 K.
(b) The same for MAW = 23 years, with FVUmin = 0.099 reached for waa = 0.0305 K/nT and
wCO2 = 0.80 K. (c) The 11-year and 23-year moving averages for the original ∆T (purple) and for the
reconstructed ∆T (red) when using the optimized values of waa and wCO2 from (a,b).

While those three examples provide a first illustration of how sensible the solution
of the regression reacts on the choice of the end year, and the widths of the MAW, the
latter dependence is now studied in more detail. We first analyze the coefficient of de-
termination R2, which is related to the previously used FVU according to R2 = 1 − FVU.
The corresponding dashed curves in Figure 7a have a rather universal shape, starting
from values of 0.78. . . 0.84 for MAW = 3 years to around 0.94 for MAW = 39 years. The
monotonic increase in R2, which at first glance might suggest the use of high values of
MAW, has to be interpreted with caution. This has to do with the specific role of temporal
averaging in our regression: a significant share of the increase in R2 is just due to the
increasing ratio of explanatory terms p (in our case two: waa and wCO2 ) to the effective data
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number n. The latter is not identical to the number of considered years, Ny, but—due to
the moving average—approximately equal to Ny/MAW. To correct for this effect, we use

the so-called adjusted R2, which is, in general, R2
= 1 − FVU× (n − 1)/(n − p − 1); hence,

in our special case R2
= 1 − FVU × (Ny/MAW − 1)/(Ny/MAW − 3). This adjusted R2,

as a much more telling coefficient of determination than R2, is shown with full lines in
Figure 7a. The monotonic increase still seen for R2 now gives way to a more structured
curve. For the green (data until 2013) and blue curves (data until 2008), we observe a local
(if shallow) maximum around MAW = 25 years. The red curve (data until 2018) has a
very flat plateau between MAW = 11 and MAW = 27 years, with an extremely shallow
maximum at MAW = 25 years. We consider those local maxima around MAW = 25 years
(MAW = 27 years for the blue curve) as a sort of best fit. Although R2 still rises slightly for
the highest MAW values, the corresponding number of explained variables then becomes
too small to allow for a decent reconstruction of the structure of the ∆T curve. As a side
remark, while our methodology, with its focus on the adjusted R2, is different from that
of Love, Mursula and Tsai [48], the main results are not that dissimilar; using the lag-one
auto-correlation r1 (and a shorter time interval of 141 years), those authors had determined
the effective data number of the aa index to either be 22 or 13 when using the annual data or
the so-called first differences between cycle-averaged data, respectively (see their Table 1).
The corresponding values for the temperature were indicated as eight and six, respectively,
(and one might have guessed a similar number by a simple visual inspection of the zigzag
curve in Figure 1a). This latter effective data number of six would, in their case, correspond
to a MAW of 24 years, which is indeed encouragingly close to our optimum value of 25
years, obtained by considering the adjusted R2, and also taking into account the CO2,
which was not included in [48].

The corresponding dependencies for waa and wCO2 are shown in Figure 7b,c, respec-
tively. Figure 7d depicts the same solutions in the two-dimensional parameter space. In
this representation, all three curves (red, green and blue) form a sort of common, weakly
bent line, which appears to connect the extremal values of wCO2 ≈ 1.9 K on the ordinate
axis with waa ≈ 0.04 K/nT on the abscissa. This common line conflates the ellipsoidal
shapes of the FVU as shown in Figures 3–5 which, in turn, just reflected the significant
ill-posedness of the underlying inverse problem. To put it differently: due to the high
correlation coefficients of ∆T, both with CO2 as well as with the aa index, the separate
shares of the two ingredients are very hard to disentangle.

However questionable our fixation on the shallow maxima at MAW ≈ 25 years might
ever be, Figure 7 also proves that any alternative choice of a higher MAW would not
change the final solution drastically. In either case, both waa and wCO2 would converge to
a close-by value. Much more decisive is the distinction between the differently colored
curves; for wCO2 , they give us results somewhere between 0.6 K and 1.6 K (in the latter case,
we took into account the particular flatness of the maximum, which in reality might also
lay at slightly lower values of MAW).

In some sense, this is again a frustratingly wide range of values. As stated, it reflects
the ill-posedness of the underlying inverse problem, whose non-uniqueness led to a high
sensitivity on end effects related to the neglected factors, such as ENSO (and volcanic
aerosols). Taking into account those short-term variations in the regression, as performed
in [73,74], might have significantly sharpened the final outcome, but has to be left for future
work. Complementary to that, the temperature development during the next decade(s) will
also help; if it continues to grow, we will end up at the higher end of the wCO2 range. In case
of some imminent drop, it will point to lower values of wCO2 . At any rate, the decreasing
correlation (i.e., multicollinearity) between aa (which is supposed to fall, or, at least, not rise
significantly) and the (continuously rising) CO2 will more and more improve the quality of
the regression analysis.
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Figure 7. Results of the regression in dependence on the width of the moving average window
(MAW). (a) R2 and its adjusted version R2, each for the three time intervals ending in 2018, 2013,
2008. The (shallow) local maxima of R2 around MAW = 25 years are indicated by full symbols.
(b) waa in dependence on MAW. The full symbols are the values corresponding to the local maxima
in (a). (c) Same as (b), but for wCO2 . (d) Regression result in the two-dimensional parameter space of
waa and wCO2 . Note the universal shape of the solution resulting in a slightly bent, but nearly linear
function connecting the extremal values wCO2 ≈ 1.9 K on the ordinate axis and waa ≈ 0.04 K/nT on
the abscissa.
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In Figure 8, we show all three temperature reconstructions with the optimal combina-
tions of waa and wCO2 as taken from Figure 7, together with the original ∆T data, averaged
over 25 years. The dashed segments of the green and blue curves correspond to the later
time segments which were deliberately omitted in the corresponding regression analysis.
As expected, they exhibit an increasing divergence from the original ∆T data. On the
other hand, from the red via the green to the blue curve, we also observe an improved
reconstruction of the oscillatory behaviour of ∆T. This is the crux of our problem; the better
the reconstruction for the years until 1995, the larger is the deviation for the latest two
decades. We will need approximately one decade of more data to be able to identify the
best solution. For the green or blue lines to have any validity, a significant temperature
drop in the nearest future will be unavoidable.

Figure 8. Original ∆T data, averaged over 25 years and reconstructions based on the optimal
combinations of waa and wCO2 from Figure 7. The dashed segments of the green and blue curves
indicate the time intervals that did not enter in the respective regressions. From the red over green
to blue curve, we see an ever improving reconstruction of the oscillatory behaviour, and an ever
increasing divergence with the observed data at later years.

2.4. Some Plausibility Checks and Comparisons

Before entering the field of predictions, we would like to check the plausibility of the
obtained estimates, in particular those at the lower end of the range. For that purpose,
we shortly discuss the results of three papers, which were based on experimental and
satellite-borne measurements.

Combining measurements at optically thick samples of CO2 with a five-layer nu-
merical model for the greenhouse effect, Laubereau and Iglev [39] derived a temperature
increase of 0.26 K for the 290 ppm to 385 ppm increase between 1880 and 2010, which
resulted in a climate sensitivity of 0.636 K (per 2× CO2).

Feldman et al. [40] published results from two clear-sky surface radiative forcing mea-
surements with the Atmospheric Emitted Radiance Interferometer (AERI) between 2000
and 2010, when the CO2 concentration increased (according to their estimate) by 22 ppm.
They observed an increase of 0.2 W/m2 during this decade, which amounts to 2.4 W/m2

(per 2× CO2). With the usual zero-feedback sensitivity parameter of 0.27 K/(W/m2),
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this would translate into 0.65 K (per 2× CO2). If we were to use the modified value of
0.31 K/(W/m2) (which allows for variations with latitude [75]), we would obtain 0.75 K.

Later on, Rentsch [41] found a similar result by analyzing outgoing radiation under
night-time, cloud-clear conditions. The CO2 rise from 373 ppm to 410 ppm led to a forcing of
0.358 W/m2, corresponding to 2.63 W/m2 (per 2× CO2), i.e., to 0.71 K (with 0.27 K/(W/m2))
or 0.82 K (with 0.31 K/(W/m2)), in nearly perfect agreement with Feldman et al. [40].

Hence, these three papers are mutually consistent, giving sensitivities in the range
between 0.64 K and 0.82 K, which is close to the lower edge of our estimate. We also note
that this end of our regression results, which corresponds to approximately 70 percent “for
the sun”, is similar to the 50–69 percent range as once found by Scafetta [76,77].

That said, we also note that Wijngaarden and Happer [54] found the much higher
value of 1.4 K (at fixed absolute humidity), which would fit to our upper limit of 1.6 K
value, which is, in turn, significantly lower than their value 2.2–2.3 K, as inferred for fixed
relative humidity.

The range of our estimates is slightly sharper than the range from 0.4 K to 2.5 K of
Soon et al. [53] (with the high value deemed unrealistic by the authors), and slightly wider
than the 0.8–1.3 K range of Lewis and Curry [52], but, in either case, quite consistent with
those estimations.

3. Predictions

In the preceding Section, we have derived a certain plausible range of combinations of
the respective weights of the aa index and the logarithm of CO2 by means of a regression
analysis of data from the past 170 years. In the following, we leave the realm of solid,
data-based science, and enter the more nebulous domain of predictions. Given all the
underlying uncertainties concerning the future time dependence of the aa index, of CO2
and of further climate factors such as AMO, PDO, ENSO, volcanism, etc., any forecast
has to be taken with a grain of salt. At least we will conduct some parameter studies,
by allowing the unknown time series of the aa index and CO2, and their respective weights,
to vary in some reasonable range. Let us start with the aa index.

3.1. Predicting the Solar Dynamo

This subsection is definitely the most speculative one of this paper, as it is concerned
with forecasts of the aa index for the next 130 years. There is no doubt that the aa index is
strongly correlated with the sunspot number (SSN), with typical correlation coefficients of
around r = 0.96 when averaged over one cycle [68]. Nor is there any doubt that the SSN
and the aa index are both governed (though in a non-trivial manner) by the solar dynamo.
Therefore, any prediction of the aa index boils down to a prediction of the solar dynamo,
which many researchers believe to be impossible, at least beyond the horizon of the very
next cycle, for which “precursor methods” exist [78–80] (although the underlying neural
network methods might still learn from interesting applications in other fields [81]).

In order to justify our audacious forecast for the aa index, we have to make a little
digression on the solar dynamo and its short-, medium- and long-term cycles. The reader
should be warned, though, that our arguments do not reflect the mainstream of solar
dynamo theory. We think, nevertheless, that the last years have brought about sufficient
empirical evidence that warrants at least a cautious try.

Let us start with some recent evidence concerning the phase stability of the Schwabe
cycle, a matter that was first discussed by Dicke [82]. In [61], we reviewed the pertinent
results derived from algae data in the early Holocene [23] and from sunspot and aurorae
borealis observations, combined with 14C and 10Be data, from the last centuries. With-
out going into the details, it was shown that the Schwabe cycle was very likely phase-stable
at least over some centuries, with a period between 11.04 years and 11.07 years. While cer-
tain nonlinear self-synchronization mechanisms of the solar dynamo cannot be completely
ruled out as an explanation [83], the external synchronization by the 11.07-year periodic
spring tides of the (tidally dominant) Venus–Earth–Jupiter system provides a suspiciously
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compelling alternative. Based on previous observations and ideas [84–88], we corroborated
a model [56–59,89], in which the weak tidal forces of Venus, Earth and Jupiter served only
as an external trigger for synchronizing the intrinsic helicity oscillations of the kink-type
Tayler instability in the tachocline region. The arising 11.07-year period of the helicity
parameter α ultimately led to the 22.14-year period of the Hale cycle.

Building on this phase stability of the Hale cycle, in [60,62] we exploited ideas of
Wilson [87] and Solheim [90] to explain the mid-term Suess-de Vries cycle as a beat period
between the 22.14-year Hale cycle and the 19.86-year synodic cycle of Jupiter and Saturn,
which governs the motion of the Sun around the barycenter of the solar system. Note
that, apart from first ideas [87,90–92], the spin–orbit coupling that is necessary to translate
the orbital motion of the Sun into some dynamo-relevant internal forcing, is yet far from
understood. In our model, the Suess-de Vries cycle acquires a clear (beat) period of 193
years, which is in the lower range of usual estimates (see [93]). The situation with the
Gleissberg cycle(s) was less clear; they appeared partly as double and triple overtones of
the Suess-de Vries cycle, but also as independent frequencies resulting from beat periods
of other synodic cycles of Jovian planets with the Schwabe cycle (see Figure 10 in [62]).
Further below, this vagueness of the Gleissberg cycle(s) will be factored in when fitting
and extrapolating the aa index. Lately, in [62], we tried to explain the transitions between
regular and irregular intervals of the solar dynamo (the “supermodulation” as defined by
Weiss and Tobias [63]) in terms of a transient route to chaos.

With these preliminaries, we now fit the aa index over the last 170 years in order to
extrapolate it into the future. We assume that we have safely left the irregular period of
the solar dynamo, as reflected in the Little Ice Age which can be considered as the latest
link in the (chaotic) chain of Bond events [55]. Guided by our (double-)synchronization
model, and encouraged by Ma and Vaquero [93], who had indeed derived a 195-year cycle
in the quiet (regular) interval from 800 to 1340, we keep this Suess-de Vries period fixed
to 193 years in all fits. Concerning the Gleissberg-type cycle(s), we are less strict. In the
first version, we fix the two periods of 96 and 65 years; for the second one, we only fix the
96-year period, and for the third one, we keep both Gleissberg cycles undetermined.

In the interval between 1850 and 2150, the results of these three different three-
frequency fits are presented in Figure 9a, together with the (fitted) 23-year averaged
aa index data between 1850 and 2007. Evidently, all three curves approximate the original
data reasonably well, and all show a similar extrapolation with a long decay until 2100,
and a recovery afterwards. This behavior is quite similar to the prediction of Bucha and
Bucha [20] (their Figure 14), as well as with the variety of predictions in Reference [94].
The differences between the three fits mainly concern the high frequency part; whereas the
version with three frequencies being fixed is the smoothest, the other two fits comprise
some stronger wiggles. This simply reflects the fact that the Gleissberg cycle is more vague
than the Suess-de Vries cycle. In the following, we will always work with all three curves
obtained, hoping that they constitute a representative variety for the future of the aa index.
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Figure 9. Climate predictions until 2150. (a) The 23-year moving average of the aa index, and three
3-frequency fitted to it, extrapolated until 2150. (b) Three scenarios for CO2 concentration. (c)
Temperature forecasts for the first CO2 scenario (dashed curve in (b)), for the three pairs of waa

and wCO2 resulting from regression with end year 2018 (red), 2013 (green), 2008 (blue). Each of the
coloured bundles comprise the three different 3-frequency fits from (a). (d) Same as (c), but for the
second CO2 scenario with a mild decarbonization scheme (dotted line in (b)). (e) Same as (c), but for
a third CO2 scenario with a radical decarbonization (dash-dotted line in (b)).
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3.2. Some Scenarios

Thus prepared, we now consider three different CO2 scenarios (Figure 9b), for each of
which we further take into account the three predictions for the aa index as just discussed,
as well as the three optimal combinations of weights for the aa index and CO2 as derived
in the previous section. Deliberately, we restrict our forecasts until 2150, admitting that
neither the CO2 trend nor the aa index are seriously predictable beyond that horizon.

Let us start with the simple case (while we do not refer here to IPCC’s Representative
Concentration Pathways, this case has some similarity to their RCP 6.0, at least until 2100.)
of an unabated linear extrapolation of the recent CO2 trend to rise by 2.5 ppm annually
(upper curve in Figure 9b), which would bring us to a value of 736 ppm in 2150 (still
steeper trends are not completely ruled out, but perhaps not that realistic, given the recent
worldwide reduction commitments). For this scenario, Figure 9c shows three red, green
and blue bundles of curves, each comprising the three different fits of the aa index as
discussed above. The red bundle (“hot”) corresponds to the red solution in Figure 7, with a
rather high CO2-sensitivity of 1.5 K and an aa sensitivity of 0.017 K/nT. The green bundle
(“medium”) corresponds to the green solution of Figure 7 based on sensitivities of 1.2 K
and 0.022 K/nT. The blue bundle (“cool”) corresponds to 0.6 K and 0.032 K/nT.

We see that, in 2100, the “hot” variant leads to a temperature anomaly of ∆T = 1.3 K,
which is 0.9 K above the average ∆T ≈ 0.4 K from the first decade of this century. Such
an increase would be quite compatible with the prediction of Scafetta [74]. Our “medium”
and “cool” curves are flatter, leading to ∆T = 0.9 K and ∆T = 0.4 K, respectively. However,
for those cases to be of any relevance, an imminent drop of temperature would be required
before the corresponding curves could continue as flat as shown. In either case, the
variation of the temperature predictions between the three different fits of the aa index is
in the range of 0.1 K, which is much smaller than the respective differences between the
“hot”, “medium” and “cool” curve bundles.

The second scenario (dotted line in Figure 9b) assumes a slowly decreasing upward
trend of the CO2 concentration towards the end of the 21st century, with a hypothetical
time dependence

CO2 = [382 + 2.5(t − 2007)/(1. + (t − 2007)/100)]ppm

reaching a final value of 529 ppm in 2150. The resulting red, green and blue curves in
Figure 9d show a rather flat behavior.

The last (and rather unrealistic) CO2 scenario (dash-dotted line of Figure 9b) assumes
a radical decarbonization path with

CO2 = [382 + 2.5(t − 2007)/(1. + (t − 2007)/50)]ppm .

The resulting temperature curves (Figure 7e) are basically constant throughout the
end of our forecast horizon.

4. Summary and Discussion

This work has revived the tradition of correlating solar magnetic field data with
the terrestrial climate as pioneered by Cliver et al. [45] and Mufti and Shah [46]. Just as
these authors, we found an empirical correlation coefficient between the aa index and
∆T with remarkably high values ranging from 0.8 to 0.96, which points to a significant
influence of solar variability on the climate. Our modest innovation was to employ a
double regression analysis, with the logarithm of the atmospheric CO2 concentration as the
second independent variable, whose pre-factor corresponds to an (instantaneous) climate
sensitivity of the TCR type. For the lengths of the centered moving average window of
25 years, we identified optimal parameter combinations leading to adjusted R2 values of
around 87 percent. Depending on whether to include or not include the data from the
last decade, the regression gave climate sensitivity values from 1.6 K down to 0.6 K (per
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2×CO2), and values from 0.017 K/nT up to 0.032 K/nT for the corresponding sensitivity
on the aa index.

Ironically, if interpreted as 1.1 ± 0.5 K, the derived climate sensitivity range turns out
to have (nearly) the same ample 50 percent error bar as the “official” ECS value (3 ± 1.5 K),
which we had criticized in the introduction. Yet, in view of the impressive 95 percent
correlation (obtained for the restricted period 1850–2008), we believe the correct climate
sensitivity to be situated somewhere in the lower half of that range. This “bias” is also
supported by the fact that, during the last years, an intervening strong El Niño, a positive
PDO (prevailing between 2014 and 2016), and a positive AMO, all conspired to raise the
temperature to significantly higher values than what would be expected from the sole
combination of the aa index and CO2. With the upcoming switch to La Niña conditions,
and the imminent return of the PDO and AMO into their negative phases, we expect a
significant temperature drop for the coming years, which might then re-establish the strong
correlation between ∆T and the aa index (it remains to be seen whether the plummeting
temperatures observed from December 2020 to June 2021 were already the harbinger of a
more robust downward trend, or just a fluctuation due to intermediate La Niña conditions).
We should also mention the theoretical possibility that the (supposedly independent)
ENSO variability is, in itself, a function of the average temperature [95]. In this case, our
linear ansatz, and the underlying distinction between short-term and long-term effects,
would become increasingly problematic. At any rate, the next decade will be decisive for
distinguishing between climate sensitivity values in the lower versus those in the upper
half of the derived range. In this sense we are more optimistic than Love et al. [48], who
believed that we “. . . would have to patiently wait for decades before enough data could
be collected to provide meaningful tests. . . ”. Given the high correlation for most of the
past 170 years, and the good correspondence with the results of recent satellite-borne
measurements [40,41], our “bets” are clearly on the lower half of that range.

Based on those estimates, we presented some cautious climate predictions for the next
130 years. With the derived share of the solar influence reaching values between 30 and 70
percent, such predictions depend critically on a correct forecast of the solar dynamo (in
addition to that of CO2, of course). Following our recent work towards a self-consistent
planetary synchronization model of short- and medium-term cycles of the solar dynamo,
we extrapolated some simple three-frequency fits of the aa index to the data from the last
170 years into the next 130 years. Apart from intrinsic variabilities of such forecasts (mainly
connected with the vagueness of the Gleissberg-type cycle(s)), we prognosticated a general
decline of the aa index until 2100, which essentially reflects the 200-year Suess-de Vries
cycle. Such a prediction presupposes that we indeed have left the irregular solar dynamo
episode (corresponding to the Little Ice Age, the latest “Bond event”) and that we will
further remain in a regular phase of solar activity [62,63], similar to that between 800 and
1340 [93]. Of course, we have to ask ourselves whether our prediction of a declining aa
index could be completely wrong, with the Sun eventually becoming even “hotter” in the
future, thus adding to the warming of CO2. While such a scenario could not be completely
ruled out, we consider it as not very likely, given that the solar activity at the end of the 20th
century was perhaps the highest during the last 8000 years [96], and that it has declined
ever since.

As for the CO2 trend, we examined three scenarios, comprising an unfettered 2.5 ppm
annual increase until 2150, as well as one soft and one radical decarbonization scheme.
Even in the “hottest” case considered, we only found a mild additional temperature rise of
less than 1 K until the end of this century, while all other cases resulted in flatter curves
in which the heating effect of increasing CO2 was widely compensated for by the cooling
effect of a decreasing aa index. Hence, the advocated 2 K goal could likely be met even
without any drastic decarbonization measures. Apart from that, we also advise that any
imminent temperature drop (due to the turn of ENSO, PDO and AMO into their respective
negative phases) should not be mistaken as, and extrapolated to, a long-lasting downward
trend [97].
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5. Conclusions and Outlook

In this work, we focused exclusively on a quasi-instantaneous, i.e., TCR-like, climate
sensitivity on CO2. As for ECS, we agree with Knutti et al. [3], who opined that “(k)nowing
a fully equilibrated response is of limited value for near-term projections and mitigation
decisions” and that “(t)he TCR is more relevant for predicting climate change over the next
century”. In view of the millennial relaxation time scale underlying the concept of ECS, we
caution that any intervening grand minimum of the solar dynamo would undermine the
predictive power of our model. Moreover, we fear that the huge Milankovitch drivers [98]
will—perhaps much too soon—massively interfere with the solar and anthropogenic factors
that were considered in this paper.
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