Next Issue
Volume 9, September
Previous Issue
Volume 9, July

Climate, Volume 9, Issue 8 (August 2021) – 12 articles

Cover Story (view full-size image): The aim of this study is to investigate the impacts of climate change on flood hazard and damage in two municipalities of the Petite Nation River Watershed (Canada). The methodology uses a climatic, hydrologic, hydraulic, and damage approach. Projected flood frequencies, hazard, and damage maps were produced under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows at the time horizons of 2050 and 2080. In addition, the depth and inundation areas will not significantly change for the two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes are projected to decrease in the future. The results of this study should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed. View this [...] Read more.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Effects of Climate Change on the Future of Heritage Buildings: Case Study and Applied Methodology
Climate 2021, 9(8), 132; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080132 - 23 Aug 2021
Cited by 2 | Viewed by 907
Abstract
Heritage buildings and the precious artworks contained therein, represent inestimable cultural and artistic evidence from the past that must be properly preserved for future generations. In the last decades, climate change has gained relevance and is becoming crucial to assess the building performance [...] Read more.
Heritage buildings and the precious artworks contained therein, represent inestimable cultural and artistic evidence from the past that must be properly preserved for future generations. In the last decades, climate change has gained relevance and is becoming crucial to assess the building performance under such effect to provide timely mitigation actions to preserve our cultural heritage. In this regard, this paper outlines a method that combines different experimental activities and tools to forecast possible future risks due to climate change for the conservation of the artworks and provide its application in a relevant case study in Italy, the Duomo di Milano. In detail, the suggested method consists of the monitoring of the building indoor climate to validate a simulation model, defining possible future scenarios based on the Intergovernmental Panel on Climate Change (IPCC) projections, and evaluation of the future conservation risks of the main artworks. The results of the analysis carried out, show that for some artworks (e.g., stone sculptures, some organic materials, etc.), the conservation conditions will not worsen compared to the current situation, while for others (e.g., paintings, wooden objects, etc.) the risk of deterioration is expected to increase substantially. This study helps to understand how the future climate can affect the indoor environment of a huge masonry building and allow to plan targeted mitigation strategies aimed to reduce the future risks. Full article
Show Figures

Figure 1

Article
Transportation Network Companies: Drivers’ Perceptions of Ride-Sharing Regarding Climate Change and Extreme Weather
Climate 2021, 9(8), 131; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080131 - 14 Aug 2021
Viewed by 696
Abstract
The transportation sector is a major factor contributing to climate change. Transportation Network Companies (TNC) may become part of solutions to reduce emissions and their drivers play an important role in doing so. This study aims to understand TNC driver’s perceptions of climate [...] Read more.
The transportation sector is a major factor contributing to climate change. Transportation Network Companies (TNC) may become part of solutions to reduce emissions and their drivers play an important role in doing so. This study aims to understand TNC driver’s perceptions of climate change, to understand how climate change and extreme weather affects their business and how they see their role in contributing to or mitigating climate change. We conducted an in-person survey of TNC drivers in Nevada, USA, and analyzed the derived information with descriptive statistics and content analysis. Among the 75 TNC drivers, almost half believe climate change is happening and is caused by human activities. We found TNC drivers and their business are affected by extreme weather events. Currently the drivers do not see their role in mitigating climate change and lack the awareness of green initiatives already in place by TNCs’. We conclude that TNCs could increase their climate change responsibility by providing driver incentives for cars with reduced emissions or by geographically expanding customer incentives for using sustainable TNC options such as car-pooling. By doing so, TNC may play a role in reducing global greenhouse gas emissions and traffic congestion; thus, contributing to improved sustainable transportation practices. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
Show Figures

Figure 1

Article
Plant Species Richness in Multiyear Wet and Dry Periods in the Chihuahuan Desert
Climate 2021, 9(8), 130; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080130 - 13 Aug 2021
Viewed by 743
Abstract
In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) [...] Read more.
In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) periods (dry, wet, average) that occurred naturally within a 26-y time frame to examine responses of plant species richness to extreme rainfall in grasslands and shrublands of the Chihuahuan Desert. Our hypothesis was that richness would be related to rainfall amount, and similar in periods with similar amounts of rainfall. Breakpoint analyses of water-year precipitation showed five sequential periods (1993–2018): AVG1 (mean = 22 cm/y), DRY1 (mean = 18 cm/y), WET (mean = 30 cm/y), DRY2 (mean = 18 cm/y), and AVG2 (mean = 24 cm/y). Detailed analyses revealed changes in daily and seasonal metrics of precipitation over the course of the study: the amount of nongrowing season precipitation decreased since 1993, and summer growing season precipitation increased through time with a corresponding increase in frequency of extreme rainfall events. This increase in summer rainfall could explain the general loss in C3 species after the wet period at most locations through time. Total species richness in the wet period was among the highest in the five periods, with the deepest average storm depth in the summer and the fewest long duration (>45 day) dry intervals across all seasons. For other species-ecosystem combinations, two richness patterns were observed. Compared to AVG2, AVG1 had lower water-year precipitation yet more C3 species in upland grasslands, creosotebush, and mesquite shrublands, and more C4 perennial grasses in tarbush shrublands. AVG1 also had larger amounts of rainfall and more large storms in fall and spring with higher mean depths of storm and lower mean dry-day interval compared with AVG2. While DRY1 and DRY2 had the same amount of precipitation, DRY2 had more C4 species than DRY1 in creosote bush shrublands, and DRY1 had more C3 species than DRY2 in upland grasslands. Most differences in rainfall between these periods occurred in the summer. Legacy effects were observed for C3 species in upland grasslands where no significant change in richness occurred from DRY1 to WET compared with a 41% loss of species from the WET to DRY2 period. The opposite asymmetry pattern was found for C4 subdominant species in creosote bush and mesquite shrublands, where an increase in richness occurred from DRY1 to WET followed by no change in richness from WET to DRY2. Our results show that understanding plant biodiversity of Chihuahuan Desert landscapes as precipitation continues to change will require daily and seasonal metrics of rainfall within a wet-dry period paradigm, as well as a consideration of species traits (photosynthetic pathways, lifespan, morphologies). Understanding these relationships can provide insights into predicting species-level dynamics in drylands under a changing climate. Full article
(This article belongs to the Special Issue Climate System Uncertainty and Biodiversity Conservation)
Show Figures

Figure 1

Article
Local Melon and Watermelon Crop Populations to Moderate Yield Responses to Climate Change in North Africa
Climate 2021, 9(8), 129; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080129 - 12 Aug 2021
Cited by 1 | Viewed by 665
Abstract
Climate change is having a tremendous influence on world food production, with arid, semi-arid, and dry sub-humid areas especially susceptible. In these areas, locally adapted crop varieties or landraces can be used to mitigate the influence of climate change on current and future [...] Read more.
Climate change is having a tremendous influence on world food production, with arid, semi-arid, and dry sub-humid areas especially susceptible. In these areas, locally adapted crop varieties or landraces can be used to mitigate the influence of climate change on current and future food security challenges. The high genetic diversity within these populations allows for crops to adapt to changing environments or other stresses that influence growth and productivity. Thus, local Moroccan melon (Cucumis melo) and watermelon (Citrullus lanatus) landraces were compared to pure-line varieties in southwestern Morocco to identify their adaptability and possible ability to mitigate current and future climate change. Results indicated that the melon and watermelon landraces evaluated most likely could help mitigate yield losses from climate change in this area of Morocco. ‘AitOulyad’, a local muskmelon type, and ‘Rasmouka Ananas’ were both outstanding melon landraces with high plant vigor and yields. For watermelon, ‘AitOulyad’ had extremely high yields but had high numbers of seed in the flesh, while ‘Rasmouka’ had a lower yield, fewer seeds in the flesh, and a higher fruit consistency. This research indicates that melon and watermelon landraces in this area of southwestern Morocco with a semi-arid to arid climate will continue to play a major role in crop adaptation to maintain high productivity under a rapidly changing environment. Full article
Show Figures

Figure 1

Article
Adaptive Heritage: Is This Creative Thinking or Abandoning Our Values?
Climate 2021, 9(8), 128; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080128 - 11 Aug 2021
Cited by 1 | Viewed by 735
Abstract
Protected areas, such as natural World Heritage sites, RAMSAR wetlands and Biosphere Reserves, are ecosystems within landscapes. Each site meets certain criteria that allow it to qualify as a heritage or protected area. Both climate change and human influence (e.g., incursion, increased tourist [...] Read more.
Protected areas, such as natural World Heritage sites, RAMSAR wetlands and Biosphere Reserves, are ecosystems within landscapes. Each site meets certain criteria that allow it to qualify as a heritage or protected area. Both climate change and human influence (e.g., incursion, increased tourist visitation) are altering biophysical conditions at many such sites. As a result, conditions at many sites are falling outside the criteria for their original designation. The alternatives are to change the criteria, remove protection from the site, change site boundaries such that the larger or smaller landscape meets the criteria, or manage the existing landscape in some way that reduces the threat. This paper argues for adaptive heritage, an approach that explicitly recognizes changing conditions and societal value. We discuss the need to view heritage areas as parts of a larger landscape, and to take an adaptive approach to the management of that landscape. We offer five themes of adaptive heritage: (1) treat sites as living heritage, (2) employ innovative governance, (3) embrace transparency and accountability, (4) invest in monitoring and evaluation, and (5) manage adaptively. We offer the Australian Wet Tropics as an example where aspects of adaptive heritage currently are practiced, highlighting the tools being used. This paper offers guidance supporting decisions about natural heritage in the face of climate change and non-climatic pressures. Rather than delisting or lowering standards, we argue for adaptive approaches. Full article
Article
Identification of Weather Influences on Flight Punctuality Using Machine Learning Approach
Climate 2021, 9(8), 127; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080127 - 06 Aug 2021
Viewed by 771
Abstract
One of the top long-term threats to airport resilience is extreme climate-induced conditions, which negatively affect the airport and flight operations. Recent examples, including hurricanes, storms, extreme temperatures (cold/hot), and heavy rains, have damaged airport facilities, interrupted air traffic, and caused higher operational [...] Read more.
One of the top long-term threats to airport resilience is extreme climate-induced conditions, which negatively affect the airport and flight operations. Recent examples, including hurricanes, storms, extreme temperatures (cold/hot), and heavy rains, have damaged airport facilities, interrupted air traffic, and caused higher operational costs. With the development of civil aviation and the pre-COVID-19 surging demand for flights, the passengers’ complaints of flight delay increased, according to FoxBusiness. This study aims to discover the weather factors affecting flight punctuality and determine a high-dimensional scale of consequences stemming from weather conditions and flight operational aspects. Machine learning has been developed in correlation with the weather and statistical data for operations at Birmingham Airport as a case study. The cross-correlated datasets have been kindly provided by Birmingham Airport and the Meteorological Office. The scope and emphasis of this study is placed on the machine learning application to practical flight punctuality prediction in relation to climate conditions. Random forest, artificial neural network, support vector machine, and linear regression are used to develop predictive models. Grid-search and cross-validation are used to select the best parameters. The model can grasp the trend of flight punctuality rates well where R2 is 0.80 and the root mean square error (RMSE) is less than 15% using the model developed by random forest technique. The insights derived from this study will help Airport Authorities and the Insurance industry in predicting the scale of consequences in order to promptly enact and enable adaptative airport climate resilience plans, including air traffic rescheduling, financial resilience to climate variances and extreme weather conditions. Full article
(This article belongs to the Special Issue Climate Change, Sustainable Development and Disaster Risks)
Show Figures

Figure 1

Article
Mass Balance Sensitivity and Future Projections of Rabots Glaciär, Sweden
Climate 2021, 9(8), 126; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080126 - 06 Aug 2021
Viewed by 915
Abstract
Glacier mass balance is heavily influenced by climate, with responses of individual glaciers to various climate parameters varying greatly. In northern Sweden, Rabots Glaciär’s mass balance has decreased since it started being monitored in 1982. To relate Rabots Glaciär’s mass balance to changes [...] Read more.
Glacier mass balance is heavily influenced by climate, with responses of individual glaciers to various climate parameters varying greatly. In northern Sweden, Rabots Glaciär’s mass balance has decreased since it started being monitored in 1982. To relate Rabots Glaciär’s mass balance to changes in climate, the sensitivity to a range of parameters is computed. Through linear regression of mass balance with temperature, precipitation, humidity, wind speed and incoming radiation the climate sensitivity is established and projections for future summer mass balance are made. Summer mass balance is primarily sensitive to temperature at −0.31 m w.e. per °C change, while winter mass balance is mainly sensitive to precipitation at 0.94 m w.e. per % change. An estimate using summer temperature sensitivity projects a dramatic decrease in summer mass balance to −3.89 m w.e. for the 2091–2100 period under climate scenario RCP8.5. With large increases in temperature anticipated for the next century, more complex modelling studies of the relationship between climate and glacier mass balance is key to understanding the future development of Rabots Glaciär. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

Article
Flood Risk Assessment under Climate Change: The Petite Nation River Watershed
Climate 2021, 9(8), 125; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080125 - 05 Aug 2021
Cited by 2 | Viewed by 1074
Abstract
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). [...] Read more.
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed. Full article
Show Figures

Figure 1

Article
Climatology of Three-Dimensional Eliassen–Palm Wave Activity Fluxes in the Northern Hemisphere Stratosphere from 1981 to 2020
Climate 2021, 9(8), 124; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080124 - 04 Aug 2021
Cited by 1 | Viewed by 635
Abstract
Based on the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data from 1981 to 2020, the climatological features of the vertical components of three-dimensional Eliassen–Palm (EP) wave activity fluxes (WAF) were investigated. The parameter is related to eddy heat [...] Read more.
Based on the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data from 1981 to 2020, the climatological features of the vertical components of three-dimensional Eliassen–Palm (EP) wave activity fluxes (WAF) were investigated. The parameter is related to eddy heat flux and is a key indicator of the upward and downward propagation of quasi-stationary planetary-scale waves. Northern Hemisphere data from a 30 km height (or about a 10-hPa level) were used for the analysis. We evaluated the extreme values (daily maxima and minima) of the vertical WAFs, the probability of their recurrences, and their interannual and daily variability observed over the last four decades. The correlation between the upward EP WAF maxima and the 10-hPa stratosphere temperature anomalies were examined. The results show that very close relationships exist between these two parameters with a short time lag, but the initial state of the stratosphere is a key factor in determining the strength of these relationships. Moreover, trends over the last 40 years were evaluated. In this research, we did not find any significant changes in the extreme values of the vertical WAFs. Finally, the dominant spatial patterns of upward and downward extreme WAFs were evaluated. The results show that there are three main regions in the stratosphere where extremely intensive upward and downward WAFs can be observed. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

Article
Simulations of Ozone Feedback Effects on the Equatorial Quasi-Biennial Oscillation with a Chemistry–Climate Model
Climate 2021, 9(8), 123; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080123 - 29 Jul 2021
Viewed by 579
Abstract
Ozone feedback effects on the quasi-biennial oscillation (QBO) were investigated with a chemistry–climate model (CCM) by modifying ozone abundance in the radiative process. Under a standard run for 50 years, the CCM could realistically reproduce the QBO of about a 28-month period for [...] Read more.
Ozone feedback effects on the quasi-biennial oscillation (QBO) were investigated with a chemistry–climate model (CCM) by modifying ozone abundance in the radiative process. Under a standard run for 50 years, the CCM could realistically reproduce the QBO of about a 28-month period for wind and ozone. Five experiment runs were made for 20 years through varying ozone abundance only in the equatorial stratosphere from 100 to 10 hPa by −40, −20, −10, +10, and +20%, respectively, after the chemistry module and transferring the resultant ozone to the radiation calculation. It was found that the modification of ozone abundance in the radiation substantially changed the period of the QBO but slightly influenced the amplitude of the QBO. The 10% and 20% increase runs led to longer QBO periods (31 and 34 months) than that of the standard run, i.e., lengthening by 3 and 6 months, while the 10%, 20%, and 40% decrease runs resulted in shorter periods (24, 22, and 17 months), i.e., shortening by 4, 6, and 11 months. These substantial changes in the QBO period in the experiment runs indicate that the ozone feedback significantly affects the QBO dynamics through the modulation in solar heating. Full article
Show Figures

Figure 1

Article
Hydro-Meteorological Trends in an Austrian Low-Mountain Catchment
Climate 2021, 9(8), 122; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080122 - 29 Jul 2021
Viewed by 679
Abstract
While ongoing climate change is well documented, the impacts exhibit a substantial variability, both in direction and magnitude, visible even at regional and local scales. However, the knowledge of regional impacts is crucial for the design of mitigation and adaptation measures, particularly when [...] Read more.
While ongoing climate change is well documented, the impacts exhibit a substantial variability, both in direction and magnitude, visible even at regional and local scales. However, the knowledge of regional impacts is crucial for the design of mitigation and adaptation measures, particularly when changes in the hydrological cycle are concerned. In this paper, we present hydro-meteorological trends based on observations from a hydrological research basin in Eastern Austria between 1979 and 2019. The analyzed variables include air temperature, precipitation, and catchment runoff. Additionally, the number of wet days, trends for catchment evapotranspiration, and computed potential evapotranspiration were derived. Long-term trends were computed using a non-parametric Mann–Kendall test. The analysis shows that while mean annual temperatures were decreasing and annual temperature minima remained constant, annual maxima were rising. Long-term trends indicate a shift of precipitation to the summer, with minor variations observed for the remaining seasons and at an annual scale. Observed precipitation intensities mainly increased in spring and summer between 1979 and 2019. Catchment actual evapotranspiration, computed based on catchment precipitation and outflow, showed no significant trend for the observed time period, while potential evapotranspiration rates based on remote sensing data increased between 1981 and 2019. Full article
(This article belongs to the Special Issue Application of Climatic Data in Hydrologic Models)
Show Figures

Figure 1

Article
Conceptual Model for the Vulnerability Assessment of Springs in the Indian Himalayas
Climate 2021, 9(8), 121; https://0-doi-org.brum.beds.ac.uk/10.3390/cli9080121 - 23 Jul 2021
Viewed by 696
Abstract
The Indian Himalayan Region is home to nearly 50 million people, more than 50% of whom are dependent on springs for their sustenance. Sustainable management of the nearly 3 million springs in the region requires a framework to identify the springs most vulnerable [...] Read more.
The Indian Himalayan Region is home to nearly 50 million people, more than 50% of whom are dependent on springs for their sustenance. Sustainable management of the nearly 3 million springs in the region requires a framework to identify the springs most vulnerable to change agents which can be biophysical or socio-economic, internal or external. In this study, we conceptualize vulnerability in the Indian Himalayan springs. By way of a systematic review of the published literature and synthesis of research findings, a scheme of identifying and quantifying these change agents (stressors) is presented. The stressors are then causally linked to the characteristics of the springs using indicators, and the resulting impact and responses are discussed. These components, viz., stressors, state, impact, and response, and the linkages are used in the conceptual framework to assess the vulnerability of springs. A case study adopting the proposed conceptual model is discussed for Mathamali spring in the Western Himalayas. The conceptual model encourages quantification of stressors and promotes a convergence to an evidence-based decision support system for the management of springs and the dependent ecosystems from the threat due to human development and climate change. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop