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Abstract: TCAS II is a rule-based airborne collision avoidance system (ACAS) that is used in current
commercial air transport operations, and ACAS Xa is a new optimization-based system. Operational
validation studies have mainly used deterministic simulations of ACAS performance using various
sets of encounters. Recently a new approach was developed, which employs Monte Carlo (MC)
simulation of agent-based models to evaluate the impact of sensor errors and pilot response variability.
This paper contrasts the results of both approaches in a comparison of TCAS II and ACAS Xa for
various types of synthetic encounters. It was found that conventional estimates of near mid-air
collision (NMAC) probabilities are often lower than the estimates achieved using MC simulation,
and that the biases in the P(NMAC) estimates are consistently larger for ACAS Xa than for TCAS
II. Contributions to unresolved risk are largest for pilot performance, then for encounter types, and
finally for sensor errors. The contribution of non-responding pilots is much larger than the differences
between TCAS II and ACAS Xa. It is concluded that the agent-based MC simulation overcomes the
limitations in traditional evaluation of altimetry errors and pilot response, providing an independent
means to effectively analyze the robustness of ACASs.

Keywords: airborne collision avoidance system; mid-air collision; Monte Carlo simulation; TCAS II;
ACAS Xa; pilot response; sensor errors

1. Introduction

Airborne collision avoidance systems (ACASs) form one of the last safety barriers
for avoiding mid-air collisions, together with maneuvering based on within-last-minute
visual acquisition of the threat aircraft and providence. An ACAS for commercial aircraft
operations provides the cockpit crew with traffic advisories (TAs) regarding nearby aircraft
that pose a threat, and resolution advisories (RAs) for vertical rates (e.g., Climb, Descend,
Level-Off) that are needed to avoid a potential collision within the last minute before the
closest point of approach with a threat aircraft. In a worldwide survey of 3800 pilots,
36.5% of the respondents indicated that they had experienced one or more RAs is the
last five years [1]. It has been estimated, using RA downlink data that in core European
airspace, that RAs occur 3.4 times per day, or once every 7259 flight hours [2].

Traffic Alert and Collision Avoidance System II (TCAS II) version 7.1 [3] is the commer-
cially available ACAS implementation that is required for current commercial air transport
operations in ICAO Annex 10, Volume IV [4]. ACAS Xa is a newly developed ACAS for
large commercial operations [5,6], which is intended as a successor of TCAS II, providing
largely the same types of (vertical) RAs and cockpit displays. Key objectives for its de-
velopment are improved collision avoidance, less unnecessary RAs, and effective use of
additional surveillance means.

An effective ACAS must handle large numbers of encounter geometries well, be robust
against sensor errors in the ACAS input, and be robust for variability in pilot response
to ACAS RAs. While ACAS operational validation has profited from the development
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of Bayesian network models [7,8] that represent characteristics of encounter geometries,
the analysis of the impact of sensor errors and pilot performance has lagged behind. In
particular, ACAS validation studies have mainly used deterministic simulation of ACAS
performance for encounter sets [9,10]. The impact of altimetry errors has been evaluated by
postprocessing of deterministic simulations. Evaluation of pilot performance variability
has mostly been limited to deterministic simulation of cases where pilots of one of the
aircraft in an encounter do not respond to RAs. As a way forward, an agent-based model
that systematically captures uncertainties in ACAS input and pilot performance was devel-
oped [11]. This forms the basis for a simulation tool called CAVEAT (Collision Avoidance
Validation and Evaluation Tool), which supports the use of Monte Carlo (MC) simulation
for the evaluation ACASs in stochastic encounter scenarios [12].

The purpose of this paper is to analyze the types of new results that can be attained by
MC simulation of agent-based models for ACAS encounter scenarios in comparison with
the traditional techniques for analysis of altimetry errors and pilot response probability.
This leads to the following key questions:

• What is the added value of MC simulation of uncertainties in ACAS performance?
• Given the various types of uncertainties in encounters, sensor error, and pilot perfor-

mance, what matters in the effectiveness of ACAS performance?

These questions are addressed in a use case that compares the performance of TCAS II
v7.1 with a development version of ACAS Xa for the key safety metric of near mid-air
collision (NMAC) probability. The use case in this paper purposefully has a limited scope
and does not include the broadness of encounters, types of flights and transponder modes,
means of surveillance, and the variety of metrics that would be needed in a complete
validation study. The new types of methods and the insights resulting from this use case are
presented to support such future operational validation studies, e.g., for the latest version
of ACAS Xa [6].

This paper is structured as follows. Section 2 provides more detailed background
on TCAS II and ACAS Xa, on encounter geometries, sensor errors, and pilot response
variability, and on operational validation studies for ACAS. Section 3 describes the methods
applied in the use case, including the encounters, simulation scenarios, and P(NMAC)
estimation approaches. Section 4 presents numerous simulation results for the defined
encounter-scenarios. Section 5 provides a detailed discussion of the results. Section 6
presents a concise overview of the conclusions and recommendations.

2. Background
2.1. Airborne Collision Avoidance Systems

TCAS II version 7.1 [3] is the commercially available ACAS implementation that is
used in current commercial air transport operations. In TCAS II, mode C and mode S
secondary surveillance radar transponders of nearby aircraft are interrogated. Based upon
the replies received, the system tracks the slant range, altitude, and bearing of surrounding
traffic. Using this information and a set of fixed rules for alert generation, TCAS II provides
its vertical rate advisories. Principally, the TCAS II logic estimates the time to the closest
point of approach (CPA) between the ownship and an intruder, based on the measurements
of the range and the closure rate in the encounter. It uses an altitude-dependent sensitivity
level, which determines threshold values for this estimated time, ranging from 15 s at low
altitudes to 35 s at high altitudes, as well as thresholds for the expected horizontal and
vertical distances at CPA. More detailed explanations of the TCAS II logic can be found
in [13,14], in addition to the full specification in the minimum operational performance
standards (MOPS) [3,15].

ACAS Xa is a newly developed ACAS [5,6], which is intended to be a successor
of TCAS II. ACAS Xa includes a Surveillance and Tracking Module (STM), which uses
enhanced tracking algorithms that correlate surveillance data from multiple sensors, in-
cluding the transponder-based data also used by TCAS II, but also allowing to use Global
Navigation Satellite Systems (GNSS)-based ownship position estimates and Automatic
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Dependent Surveillance-Broadcast (ADS-B) data. The largest innovation in ACAS Xa is
found in its Threat Resolution Module (TRM), which uses optimized decision logic stored
in look-up tables to determine its advisories given probabilistic estimates of ownship and
intruder states from the STM. The optimized decision logic tables have been determined
off-line using a partially observable Markov decision process model (POMDP) and dynamic
programming [16,17]. This optimization process uses (1) probabilistic dynamic models for
pilot response and aircraft movements, (2) a reward function with an extensive set of cost
components for close proximities and types of advisories, and (3) dynamic programming to
maximize the reward function, leading to state-action values that are stored in large look-up
tables. For the provision of advisories ACAS Xa extends these precomputed actions with
coordination rules for complementary advisories, and with online costs for required system
performance, e.g., low altitude inhibitions of descend RAs and RA transition penalties.

Given a perfect model in a finite Markov decision process, dynamic programming is
guaranteed to lead to an optimal deterministic policy, which maximizes the reward function.
Dynamic programming can be seen as off-line reinforcement learning for completely known
systems. Reinforcement learning is an artificial intelligence (AI) approach where a machine
learns what to do so as to maximize a reward signal for a typically not completely known
system [18]. Likewise, in the ACAS Xa application, the system is not exactly known.
Applied models of aircraft movements and pilot response include epistemic and aleatory
uncertainty, and there is no finite state space, but aircraft moving in a time-space continuum,
which is approximated using (large numbers of) discretized states. Furthermore, it is not
known beforehand what a suitable reward function is. The ACAS Xa development has
involved an iterative process in which the operational and safety impact of attained ACAS
performance has been evaluated in simulations for particular encounter sets, leading to the
adaptation of the reward function [17,19] and ACAS Xa algorithms. For instance, while
early in the development (negative) rewards were assigned only to near collisions and to
issuing initial, strengthening and reversal RAs, later in the development considerably more
reward components were found to be needed to achieve acceptable performance, where
the reward components may depend on particular vertical separations and closure rates
(see e.g., Table 10-2 in [17]). As such, the achieved alerting logic in ACAS Xa depends on
the POMDP model, the discretization grid, the reward components, the encounters, and
settings used in simulations of the dynamic programming optimized logic, the judgement
of the simulated performance, and the adaptations of the reward function in the iterations.

2.2. Uncertainties Influencing ACAS Effectiveness

An ACAS needs to effectively support mid-air collision avoidance in the context of a
range of uncertainties that may complicate achieving this objective:

1. It must be able to function effectively for a large number of encounter geometries;
2. It must be robust against sensor errors in the ACAS input; and
3. It must be able to handle variability in pilot response to ACAS RAs.

2.2.1. Encounter Geometries

In the context of ACAS, encounters describe trajectories of (typically) pairs of aircraft
within the last minute before CPA up to about 10 s after CPA. An encounter of a pair of
aircraft can be characterized by a range of aspects, including the vertical miss distance
(VMD), horizontal miss distance (HMD), relative heading and bearing when the aircraft
are at CPA, and the altitude, airspeed, vertical rate, turn rate, and acceleration during the
encounter. For the development and evaluation of ACAS, a series of encounter models have
been developed by the MIT Lincoln Laboratory in recent years [7,20–24]. These models
use Bayesian networks, which describe probabilistic relations between the characteristic
variables of an encounter given particular air spaces, types of aircraft, and the potential
influence of air traffic control. Using such networks various interdependent probability
distributions can be represented, e.g., the likelihood of rates of climb/descent given an
altitude layer and a VMD range. Large sets of USA radar data were used to tune the
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parameters of these Bayesian models. For instance, the development of an encounter model
for cooperative aircraft used data from 180 radars over 90 days, including 5.8 million
encounters [24]. Building on this approach, and using European radar data, a recent
encounter model for European airspace was developed in [8].

2.2.2. Sensor Errors

Errors exist in the sensor data that are used by an ACAS for its surveillance and the
generation of its advisories. This implies that, even for exactly the same trajectories in an
encounter, there exists some level of uncertainty in the generated ACAS advisories and
their timing. The prime sensor data that are used both by TCAS II and ACAS Xa are the
pressure altitudes and the transponder-based measurements of the slant range and bearing
of the intruder with respect to the ownship. Pressure altitude errors include static and
variable errors due to the condition of flush ports or static probes, and the transmission and
conversion of air pressure by the transducer. The transponder-based measurement errors
depend on reply delay and jitter in signal delay differences between the applied antennas
on the aircraft. Minimum performance requirements that set bounds on these sensor errors
are provided in the MOPS for TCAS II [3] and ACAS Xa [5,6]; they are the same for both
ACASs. For instance, pressure altimetry errors must be within 135 ft at sea level to 285 ft
at FL 400 on a 99.7% probability basis, and range measurements should have an error not
exceeding 50 ft RMS jitter and 125 ft bias for mode S reports.

2.2.3. Pilot Response

ICAO operational procedures for ACAS alerts (§III-3-3-2 of [25]) specify that pilots
shall not maneuver their aircraft in response to TAs only, but prepare for appropriate action
if an RA occurs. In the event of an RA, pilots are required to respond immediately by
following the RA as indicated, unless doing so would jeopardize the safety of the aircraft.
Pilots must follow the RA even if there is a conflict between the RA and an air traffic control
(ATC) instruction. The ICAO standard pilot model for ACAS evaluation (§4.4.2.5 of [4])
assumes that pilots respond with a delay of 5 s to an initial RA and a delay of 2.5 s to
subsequent (modified) RAs. If a change in vertical rate is required, this standard model
assumes an acceleration towards the required vertical rate of 0.25 g, except for (modified)
reversed-sense or increased-rate RAs, where an acceleration of 0.35 g is applied.

ACAS resolution advisories are not always followed by pilots. This has, for instance,
contributed to the Überlingen mid-air collision in 2002 [26], and “ACAS RA not followed”
is still recognized as a contributor to airborne collision risk in recent safety reviews [27].
Several studies have analyzed in detail the probability of pilot response to RAs.

• An analysis of downlinked TCAS RA’s in recorded radar data by the TCAS RA
Monitoring System (TRAMS) for the years 2008–2016 is presented in [28]. The relevant
TRAMS data concern the terminal area of 20 large airports in the US. The analysis
considered encounters where the first RA was Climb or Descend, based on a set
of 80,955 encounters. Excluding parallel approach encounters, the overall response
probability found in this data set is 0.62 overall, 0.58 for climb RAs, and 0.69 for
descend RAs. This dataset was used for the development of a Bayesian network
model for pilot response to resolution advisories [28].

• In [29] the pilot responses to 1176 downlinked RAs in European airspace were an-
alyzed. Using analysis Method B from [30], which includes a category for weak
responses, it was found that initial RAs were not followed or reacted to in the oppo-
site sense in 10% of the cases at 8 s after the RA. For Climb or Descend RAs, these
cases occurred more frequently: 27% of the cases. Weak responses (the pilot has
made an adjustment in vertical speed in the required direction, but it is insufficient in
vertical speed or acceleration to fulfil the requirement) occurred in 31% of the cases.
The compliance with subsequent RAs was found to be considerably better than for
initial RAs.
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• A survey was conducted to analyze the frequency of RAs experienced by pilots and
cases where RAs were not followed [1]. A total of 3800 pilots from 95 countries
participated in the survey. A share of 36.5% of the respondents indicated that they
had experienced one or more RAs is the last five years. A part of 14.7% of the pilots
reported that they had been in a situation where it was not possible to follow an
RA, or an RA was not precisely followed. The most important reasons indicated for
not following an RA were “decision not to follow due to visual acquisition and/or
avoidance of the conflicting traffic” (45%), “short duration RA (RA terminated before
a response could be taken)” (15%), “proximity to the ground” (11%). Based on the
survey data it was estimated that around 11% of RAs are not followed.

The downlinked RAs in the above studies provide data with a time discretization that
depends on the radar update time, typically 4 s. An analysis of airborne-recorded data for
a limited set of 79 RAs in the period 2002–2004 from four European airlines [31] provides
more detailed insights into the timing and acceleration in pilot responses. Overall, the
mean delays in this dataset are close to the ICAO standard response model of 5 s for initial
RA, but a bit longer than the standard delay for modified RAs; the standard deviation is
about 1.5 s. The observed accelerations are mostly below those of the standard model, with
a standard deviation of about 0.04 g.

2.3. Operational Validation Studies for ACAS

Since ACAS is an important safety barrier in commercial aviation, new ACAS types
need to be validated rigorously under a variety of operational conditions and must outper-
form earlier versions in a sufficient manner to be accepted for implementation in avionics
and operations. Such operational validations were performed for adaptations of TCAS II,
and they are even more important for the validation of ACAS Xa, considering the drastically
new principles applied in its advisory logic.

The key approach in ACAS operational validation studies has been the comparison
of metrics of simulated ACAS performance for a new system and a legacy system using
various sets of encounters. Herein a distinction is made between metrics and encounter
sets for the analysis of safety versus operational suitability. In safety analysis, key metrics
include the probability of a near mid-air collision P(NMAC), i.e., the situation that two
aircraft approach within 100 ft vertically and 500 ft horizontally, and the risk ratio, i.e.,
the NMAC probability with ACAS relative to the NMAC probability without ACAS. So
here, the focus is on the prime ACAS purpose: avoiding mid-air collisions. In operational
suitability analysis, key metrics concern rates of RAs in general, of specific RAs (like
strengthening, crossing, reverse), of complex RA sequences, as well as having sufficient
time between advisories. Here the focus is on the impact of an ACAS on operations and on
the trust of pilots in the effectiveness of the advisories. Different encounter sets are used for
the analyses of safety and operational suitability. For safety analysis, sets of model-based
(synthetic) encounters are used where CPAs are small and include NMAC events. For
instance, in an operational validation study of ACAS Xa [9] seven types of encounter sets
were used, including encounters generated using the Bayesian network approach described
in Section 2.2.1, and in a study of a proposed change in ACAS Xa [10] encounters generated
using a Bayesian network of European data were applied. The encounter sets typically
have subsets for altitude layers and for cases where both aircraft in an encounter have
ACAS or only one of the aircraft has ACAS. Typical numbers of encounters in these subsets
are in the order of 105 to 106. For operational suitability analysis sets of radar data as well
as sets of model-based encounters are used, which describe encounters with exceedances
of air traffic control separation standards but not very close to NMAC conditions. The sizes
of these sets are more limited, but may still be in the order of 105.

The principal approach in the ACAS operational validation studies is simulation of
the RAs generated by the ACASs for the trajectories in an encounter and the adaptation
of the trajectories following the RAs using the ICAO standard pilot response model (see
Section 2.2.3). The prime way to represent pilots that do not respond to RAs is by using
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simulations where pilots of one of the aircraft do not react to the RAs, leading to a NMAC
probability P(NMAC)0%. Next, the NMAC probability for a given pilot response proba-
bility R is calculated as P(NMAC)R = R · P(NMAC)100% + (1− R) · P(NMAC)0%, where
P(NMAC)100% is the NMAC probability for the case that the pilots of both aircraft always
respond [9]. This means that the underlying pilot response model assumes that the pilot
responds in the same way to each RA in an encounter, and that the timing and strength
of response are according to the standard model. It also means that situations where the
pilots of both aircraft do not respond are not included in the statistics.

The prime way to evaluate the impact of altimetry bias is by postprocessing of the
simulated VMD for cases where the HMD is smaller than 500 ft. Given probability dis-
tributions for the altimeter error (e.g., Gaussian [3] or double exponential [4]), simulated
VMD values larger than 100 ft also contribute to some extent to the NMAC probability.
This postprocessing approach will be explained in more detail in Section 3.3.2. The impacts
of other sensor errors, e.g., for slant range measurements or for GNSS-based position
measurements, are typically not evaluated in ACAS operational validation studies.

The results of the operational validation studies of ACAS Xa [9,10] indicate that, over-
all, ACAS Xa outperforms TCAS II in the safety as well as in the operational acceptability
metrics. For instance, the results of a recent study [10] indicate that ACAS Xa provides
a safety benefit of 16% to 24% if pilots follow the RAs, a safety benefit of 47% if one of
the pilots does not follow, and a reduction in the overall number of RAs by about 60%.
Notwithstanding this general improvement, some specific areas were also found where the
performance of ACAS Xa is less than that of TCAS II.

3. Methods

The use case in this study is completely based on simulation of synthetically generated
encounters. Section 3.1 describes the generation of the various types of encounter sets
used in the simulations. Section 3.2 describes the simulation environment and various
types of scenarios for representing the ACAS equipment, sensor errors and pilot responses.
Section 3.3 describes the types of simulation, P(NMAC) estimation, and postprocessing of
altimetry errors.

3.1. Encounter Generation
3.1.1. Aircraft Trajectories

The generation of encounters between two aircraft i and j is based on aircraft trajecto-
ries that can be curved both in the horizontal and vertical planes:

.
st,k = vt,k

vx
t,k

vy
t,k

vz
t,k

 =

 vk sin(χ0,k + ωt,kt)

vk cos(χ0,k + ωt,kt)

vz
0,k + az

t,kt

 (1)

where k ∈ {i, j}, st,k and vt,k are the 3D position and speed at time t, vk is a constant ground
speed, χ0,k is a course at time t = 0, vz

0,k is a vertical rate at time t = 0, ωt,k is a rate of
turn that is piecewise constant ωt,k ∈ {0, ωk}, and az

t,k is a vertical acceleration that is
piecewise constant az

t,k ∈
{

0, az
k
}

. The aircraft have CPA at time t = 0, when aircraft i is at

s0,i =
(

0, 0, sz
0,i

)
with particular vertical and horizontal miss distances dVMD

i,j and dHMD
i,j .

The following types of trajectories are used:

1. Straight trajectories, where ωk = 0 and az
k = 0.

2. Trajectories with a vertical rate change, where the speed in the vertical plane consists
of three phases: an initial vertical rate vz,ini

k , then changing with acceleration az
k > 0

from time tz
k, and a final vertical rate vz,end

k :



Aerospace 2023, 10, 952 7 of 26

vz
t,k =


vz,ini

k t < tz
k

vz,ini
k + az

ksgn(vz,end
k − vz,ini

k )(t− tz
k) tz

k ≤ t < tz
k+
∣∣∣vz,end

k − vz,ini
k

∣∣∣/az
k

vz,end
k t ≥ tz

k+
∣∣∣vz,end

k − vz,ini
k

∣∣∣/az
k

(2)

Here the sign function assures that the vertical rate is either increased or decreased in
line with the difference between the initial and final vertical rates.

3. Trajectories with a horizontal turn, where the size of the aircraft groundspeed vk is
constant and the course consists of three phases: an initial course χini

k , then turning
with rate of turn ωk from time th

k , and final course χend
k , where Th

k is the duration of a
turn depending on the initial and final courses, and the rate of turn:

χt,k =


χini

k t < th
k

f 360
wrap(χ

ini
k + ωk(t− th

k)) th
k ≤ t < th

k + Th
k

χend
k t ≥ th

k + Th
k

(3)

4. Trajectories with both a vertical rate change and horizontal turn, which is a combi-
nation of cases 2 and 3, assuming independent maneuvering in the horizontal and
vertical planes.

3.1.2. Sets of Encounters

Eight sets of encounters are generated with NEnc = 50, 000 encounters in each set. The
sets represent the combinations of the following aspects: (1) leading to an NMAC, or not;
(2) including vertical rate changes, or not; and (3) including horizontal turns, or not. These
encounter sets are not meant to be models for encounters in specific airspaces, but they
basically represent the inclusion or exclusion of types of variability in encounters.

The sets of encounters are generated using random sampling of parameters from
uniform distributions (between a minimum and maximum). The general settings that
apply to all of these sets are the following:

• The altitude of aircraft i at CPA is sz
0,i = 12, 000 ft (flight level 120). This is a typi-

cal altitude in a terminal maneuvering area (TMA) where aircraft may be climbing,
descending, turning, and levelling off.

• The course of aircraft i is always χ0,i = 0 deg. The course of aircraft j at time t = 0 is in
the interval χ0,j ∈ [15, 345] deg.

• The ground speeds of both aircraft are in the interval vk ∈ [250, 300] knots.
• The following vertical speed regimes are used: level flight with vz

t,k = 0, climb with
vz

t,k ∈ [1200, 2500] fpm, descent with vz
t,k ∈ [−3000,−2000] fpm.

• There is no wind.
• Each encounter starts at time t = −75 s and ends at time t = 15 s, implying a total

duration of 90 s.

Encounters leading to NMAC events and encounters not leading to NMAC events
(but close to it) are specified by the following vertical and horizontal miss distances:

• NMAC encounters: dVMD
i,j ∈ [0, 90] ft and dHMD

i,j ∈ [0, 500] ft.

• No NMAC encounters: dVMD
i,j ∈ [110, 500] ft and dHMD

i,j ∈ [0, 2500] ft.

In encounters with straight trajectories (vertical acceleration az
k = 0 and rate of turn

ωk = 0), in 50% of the cases an aircraft is flying level, in 25% of the cases an aircraft is
climbing, and in 25% of the cases an aircraft is descending. As such, sets with straight
encounters include all combinations of aircraft flying level, climbing, or descending.

In encounters with vertical rate changes, either one or both of the aircraft include a
vertical acceleration az

k 6= 0. The initial vertical rate vz,ini
k and final vertical rate vz,end

k are
chosen from one of the speed regimes (level flight, climb, descent). The acceleration for
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a vertical rate change is chosen as az
k ∈ [0.05, 0.35] g. The time of the start of a vertical

rate change is chosen as tz
k ∈ [−40,−10] s. The following combinations and frequencies of

vertical rate changes are used:

• Aircraft i: level (25%), continuous climb (12.5%), continuous climb (12.5%), level to
climb (12.5%), level to descend (12.5%), climb to level (12.5%), descend to level (12.5%);

• Aircraft j: level to climb (25%), level to descend (25%), climb to level (25%), descend to
level (25%).

In encounters with horizontal turns, either one or both or the aircraft include a rate
of turn ωk 6= 0. Course changes are chosen as ±[30, 90] deg (right or left turns). The
rate of turn is chosen as ωk ∈ [2, 4] deg/s. The time of the start of a turn is chosen as
th
k ∈ [−50,−20] s. The following combinations and frequencies are used:

• Aircraft i: straight (50%), left turn (25%), right turn (25%);
• Aircraft j: left turn (50%), right turn (50%).

At the start of encounters, there should be sufficient distance between the aircraft.
The ground speeds, time before CPA, and minimum course difference of 15 deg imply
that the horizontal distance at the start of the encounter is larger than 1.35 nautical miles,
if there are no horizontal turns. In the case of horizontal turns, sufficient distance is not
assured and encounters with an initial vertical distance below 800 ft in combination with
an initial horizontal distance below 1 nautical mile are filtered out. It has been assured that
the remaining sets have 50,000 encounters.

3.2. Simulation Scenarios
3.2.1. Simulation Environment

The simulation environment that was used in this study is CAVEAT, which has been
developed by NLR and everis/NTT-Data for EUROCONTROL as a means of simulation
and analysis of ACAS in aircraft encounters [32]. Such encounters can be single encounters
or sets of encounters, which may stem directly from radar data, or that are synthetically gen-
erated using an encounter model. CAVEAT employs an agent-based modelling approach,
which includes sensor error models representing errors in ACAS input signals and models
for pilot performance variability [11,33]. Monte Carlo simulation can be used to evaluate
the impact of sensor errors and pilot performance variability for single encounters or sets
of encounters. In this context, a scenario describes the settings of the parameters of the
model components, and an encounter-scenario is its combination with an encounter. Key
settings for the ACAS equipment, sensor errors, and pilot performance are provided next.

3.2.2. ACAS Equipment and Surveillance Data

Regarding the ACAS equipment, two types of scenarios are considered:

• TCAS II. Both aircraft in an encounter are equipped with TCAS II v7.1. This is the
current standard ACAS used in commercial civil aviation as defined in [3]. The C++
library of the TCAS II algorithms stem from InCAS version 3.3. It was developed by
the MITRE Corporation and subsequently adjusted for EUROCONTROL by Evosys to
accommodate version 7.1.

• ACAS Xa. Both aircraft in an encounter are equipped with ACAS Xa. This a newly
developed ACAS for commercial civil aviation developed in the ACAS X program
as defined in [5,6]. The C++ library of the ACAS Xa algorithms was developed by
NTT-Data in cooperation with NLR for EUROCONTROL. It is based on the algorithms
in the MOPS [5] plus some changes as part of the continuing ACAS Xa development;
it is not yet the version of the latest update of the MOPS [6].

In both the TCAS II and the ACAS Xa scenarios the aircraft have mode S transponders,
which employ 25 ft altitude quantization, and which are used for measurements of the
slant range and bearing with respect to the intruder. Although ACAS Xa allows the use
of ADS-B data, it is assumed that ADS-B In/Out is not employed. As such, in both ACAS
scenarios the same surveillance information is available for the provision of the advisories.
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3.2.3. Sensor Errors

The ACAS input data that are relevant in the encounter-scenarios presented in this
study are the pressure altitude and the slant range and bearing measurements of each
aircraft. Next the error models for these elements are described concisely.

The pressure altimetry model represents static (bias) and variable (jitter) error compo-
nents [11,33]. The bias is chosen from a zero-mean normal distribution with an altitude-
dependent standard deviation, based on requirements in the ACAS MOPS [3,5]. For FL
120 as applied in the encounters the value of this standard deviation is about 54 ft. The
jitter is represented by a first-order autoregressive process with Gaussian noise, having a
standard deviation of about 5 ft and an autocorrelation factor of 0.88.

The transponder-based slant range measurement model represents the slant range of
an intruder as measured by the ownship. It includes an error model that describes static and
variable error components, which depend on the mode of the transponder signaling [11].
For the scenarios in this paper, the bias component is chosen from a normal distribution
with a standard deviation of 125 ft [3,5]. The jitter component is Gaussian white noise
with a standard deviation of 50 ft [3,5], i.e., without correlations between subsequent
range measurements.

Bearing is the angle of another aircraft in the horizontal plane measured clockwise
from the longitudinal axis of the own aircraft. The error in transponder-based bearing
measurement is Gaussian white noise with a standard deviation that depends on the
elevation angle with respect to the intruder and the transponder signaling mode [11,33].
For the scenarios in this paper, the standard deviations of the noise are 12 to 18 degrees [3,5],
depending on the elevation angle.

Based on these error models, the following conditions for sensor errors are defined for
both aircraft in the scenarios:

• E0: There are no sensor errors; altitude, slant range and bearing are exactly known.
• E1: There are sensor errors according to the standard settings described above.
• E2: There are only biases in the pressure altitude, while there are no errors in the

other components.
• E3: There are sensor errors according to the standard settings described above, except

for the bias in the pressure altitude, which is absent.

3.2.4. Pilot Response Variability

The simulations include scenarios with deterministic and stochastic pilot response
models. The deterministic pilot model represents the ICAO standard pilot response model,
in which the pilot responds to each RA; the pilot responds with a delay of 5 s to initial RAs
and with a delay of 2.5 s to subsequent RAs; and, in the case of vertical rate changes, the
pilot applies an acceleration of 0.25 g, except for reversal or increase RAs, where 0.35 g
is applied.

The stochastic pilot model includes the following types of variability:

• There is a probability Pini that the pilot responds to an initial RA.
• There is a conditional probability Psub,1 that the pilot responds to a subsequent RA

given that the pilot responded to a previous RA.
• There is a conditional probability Psub,2 that the pilot responds to a subsequent RA

given that the pilot did not respond to a previous RA.
• The response delay is composed of a constant preparation delay of 2.5 s for initial RAs

only, and a stochastic action delay chosen from a lognormal distribution [34] with a
mean of 2.5 s and a standard deviation of 1.5 s for any RA. This implies that the mean
delay is 5 s for initial RAs and 2.5 s for subsequent RAs.

• The vertical acceleration applied by the pilot is chosen from a lognormal distribution
with a mean of 0.25 g or 0.35 g (for reversal/increase RAs) and a standard deviation
of 0.04 g.

Based on these pilot response models, the following conditions are defined in the scenarios:
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• PP: Both aircraft have standard (deterministic) pilot response.
• PN: AC1 has standard (deterministic) pilot response, while AC2 has no pilot response.
• P1: Both aircraft have pilot response with stochastic delay and acceleration, and with

response probability parameters Pini = 0.9, Psub,1 = 1, and Psub,2 = 0. This represents
a “stubborn” pilot who sticks to an initial decision to respond or not.

• P2: Both aircraft have pilot responses with stochastic delay and acceleration, and
with response probability parameters Pini = 0.9, Psub,1 = 0.95, and Psub,2 = 0.90. This
represents a “reconciliating” pilot who may adapt the response mode.

• P3: Both aircraft have pilot responses with stochastic delay and acceleration, and they
always respond to RAs (Pini = 1, Psub,1 = 1, Psub,2 = 0).

3.3. Simulation and P(NMAC) Estimation
3.3.1. Simulation Runs

Simulations of the encounter sets with NEnc = 5 · 104 encounters per set are performed
in two ways:

• Deterministic simulation. In these simulations all settings are chosen to represent
deterministic scenarios. Each encounter is simulated once, meaning that there are
NRun = 5 · 104 simulation runs per set.

• Monte Carlo simulation. These simulations include one or more settings that imply
stochastic behavior in the scenarios. Each encounter is simulated NMC = 20 times
using different realizations of the stochastic variables. This implies that there are
NRun = 106 simulation runs per set.

The postprocessing of simulation results for this paper is focused on the key metric for
ACAS safety analysis: the probability of an NMAC event P(NMAC). The principal method
for estimating P(NMAC) in this paper is the following counting-based approach. In the
simulations the vertical miss distance dVMD

i,j and the horizontal miss distance dHMD
i,j are

calculated in each run. An NMAC occurs in a run if dVMD
i,j < 100 ft and dHMD

i,j < 500 ft.
The number of NMAC events for an encounter set is NNMAC. The counting-based NMAC
probability estimate and its 95% confidence interval are determined as shown in [35]:

PNMAC = NNMAC/NRun

C95% =

PNMAC ± 1.96
√

PNMAC(1− PNMAC)/NRun if PNMAC > 0
[0, 3/NRun] if PNMAC = 0

(4)

3.3.2. Altimetry Error Postprocessing

Instead of using MC simulation, a common approach to evaluate the impact of al-
timetry errors on P(NMAC) estimates in ACAS operational validation studies is based on
deterministic simulations and the following altimetry error postprocessing (AEP) approach.
Given two aircraft i and j with altitudes sz

t,i and sz
t,j. It is assumed that the pressure altimetry

system of the aircraft induces constant errors (bias), leading to altitude estimates:

ŝz
t,i = sz

t,i + εi

ŝz
t,j = sz

t,j + ε j
(5)

where the errors εi and ε j are independent and chosen from a suitable probability distribu-
tion, such as a normal distribution [3,5] or a double exponential distribution [4]. The VMD
between the aircraft based on the real altitudes and the measured altitudes are dVMD

i,j and

d̂VMD
i,j , respectively. They differ by a combined altimetry error εij:

dVMD
i,j = sz

t,i − sz
t,j = ŝz

t,i − ŝz
t,j − (εi − ε j) = d̂VMD

i,j − εij (6)
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If the altimetry errors are chosen from zero mean normal distributions with standard
deviations σi,z and σj,z, then the combined error εij is distributed normally with standard

deviation σij,z =
√
(σi,z)

2 + (σj,z)
2. Now, the probability that the real VMD is within a

NMAC range ϑnmac (=100 ft) given a particular measured VMD is

P(−ϑnmac < dVMD
i,j ≤ ϑnmac

∣∣∣d̂VMD
i,j ) = FN(ϑnmac; d̂VMD

i,j , σij,z)− FN(−ϑnmac; d̂VMD
i,j , σij,z) (7)

with FN(·; µ, σ), a cumulative normal probability distribution. Figure 1 shows this
P(NMAC) distribution for bias altimetry errors according to the ACAS MOPS [3,5] for
a range of flight levels. The distribution gets broader for larger flight levels, as a result
of increasing standard deviations of altimetry errors at higher altitude. The peak value
of P(NMAC) at d̂VMD

i,j = 0 decreases from 0.88 at sea level to 0.54 at FL 400. Lowest

values of P(NMAC) in the depicted graphs at d̂VMD
i,j = ±400 ft are 1.2 × 10−6 at FL 0 and

1.3 × 10−2 at FL 400.
Using the same principle, P(NMAC) estimates can be derived for other altimetry error

probability distributions. A P(NMAC) estimate based on double exponential distributions,
as employed in [4], finds its origin in [36], see also Section 9.5 of [10]. The tails of the double
exponential distribution are longer with respect to the normal distribution of Figure 1,
implying that larger measured VMDs have more impact on the P(NMAC) estimate.
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Figure 1. P(NMAC) estimate for a particular measured VMD and a flight level, assuming normally
distributed altimetry errors.

In the altimetry error postprocessing results in this paper, the normal distribution at
FL 120 is applied, in line with the altitude of CPA in the encounters and the sensor error
models applied in MC simulations. This facilitates direct comparison of the estimates by the
altimetry error postprocessing with the counting-based P(NMAC) estimates. For encounter
sets the averages over all P(NMAC) estimates are provided.

4. Results

Numerous simulation results for the encounter-scenarios defined in Section 3 are
presented next. Section 4.1 presents results for the various kinds of encounter variability
and sensor errors. Section 4.2 compares results of altimetry error postprocessing with MC
simulation results. Section 4.3 provides results for resolved versus induced NMAC events.
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Section 4.4 presents results of the various pilot response models. Section 4.5 provides an
overall comparison of contributions to unresolved P(NMAC) estimates.

4.1. Sensor Errors and Encounter Variability

Table 1 shows the probability estimates of the remaining NMAC events in the various
types of NMAC encounters (Section 3.1) for three types of scenarios for sensor errors
(Section 3.2.3): no errors (E0), only altimetry bias (E2), all sensor errors (E1). In these
encounter scenarios, the pilots of both aircraft are always responding according to the
ICAO standard response model.

Table 1. Probability estimates of remaining NMAC events in NMAC encounters. Three types of
scenarios for sensor errors: no errors, only altimetry bias, and all sensor errors.

Vertical Rate
Change

Horizontal
Turn ACAS

P(NMAC): Point Estimate and 95% Confidence Interval

No Sensor Errors Only Altimetry Bias All Sensor Errors

No No
TCAS II 0 [0, 6.0 × 10−5] 2 × 10−6 [0, 4.8 × 10−6] 1 × 10−6 [0, 3.0 × 10−6]

ACAS Xa 0 [0, 6.0 × 10−5] 0 [0, 3.0 × 10−6] 0 [0, 3.0 × 10−6]

No Yes
TCAS II 2.04 × 10−3 ±4.0 × 10−4 2.07 × 10−3 ±8.9 × 10−5 2.08 × 10−3 ±8.9 × 10−5

ACAS Xa 0 [0, 6.0 × 10−5] 6.60 × 10−5 ±1.6 × 10−5 4.70 × 10−5 ±1.3 × 10−5

Yes No
TCAS II 1.06 × 10−3 ±2.9 × 10−5 1.76 × 10−3 ±8.2 × 10−5 1.80 × 10−3 ±8.3 × 10−5

ACAS Xa 7.20 × 10−4 ±2.4 × 10−4 1.59 × 10−3 ±7.8 × 10−5 1.60 × 10−3 ±7.8 × 10−5

Yes Yes
TCAS II 3.14 × 10−3 ±4.9 × 10−4 3.86 × 10−3 ±1.2 × 10−4 3.93 × 10−3 ± 1.2 × 10−4

ACAS Xa 1.96 × 10−3 ±3.9 × 10−4 4.04 × 10−3 ±1.2 × 10−4 3.43 × 10−3 ± 1.2 × 10−4

For the set of encounters with straight trajectories (no vertical rate change, no hori-
zontal turn), Table 1 shows that there are basically no remaining NMAC events for both
ACASs. Both ACASs support collision avoidance very effectively and their performance is
robust against sensor errors.

For the set of encounters with horizontal turns but without vertical rate changes, the
results show that the collision avoidance of ACAS Xa is much more effective than of TCAS
II. For ACAS Xa in the case without sensor errors, no remaining NMAC events were found,
and in the cases with sensor errors, P(NMAC) ≈ 5 × 10−5, meaning that about 19,999 out
of 20,000 NMAC encounters are resolved successfully. For TCAS II, P(NMAC) ≈ 2 × 10−3

(499 out of 500 NMAC encounters are resolved successfully) and the performance for these
encounters is not sensitive to sensor errors. An example of an encounter where a collision
is avoided when using ACAS Xa, but not when using TCAS II, is shown in Figure 2. In
this encounter AC001 is climbing and making a right turn, while AC002 is flying level and
making a left turn, leading to a VMD of 16 ft and an HMD of 79 ft at time 12:00:00. TCAS II
provides the first TAs about 45 s before CPA, and a second TA to AC002 only 6 s before
CPA, but all first RAs are only about 5 s before CPA, which is not timely enough to avoid
a collision (effectuated VMD is 0 ft). ACAS Xa provides a TA for AC001 60 s before CPA,
and a TA for AC002 only 6 s before CPA. The Climb (CL) RA provided by ACAS Xa to
AC002 matches the RA by TCAS II, but the sequence of RAs for the climbing AC001 avoid
the collision. First, there is a Level Off (LO) RA 27 s before CPA, then a Clear of Conflict
(COC) at 45 before CPA, then there are subsequent LO and Descend (DE) RAs, which all
by all lead to a VMD of 456 ft. This kind of performance is also seen in other encounters
with horizontal turns: TCAS II provides RAs too late to avoid a collision, while ACAS Xa
provides RAs to a climbing or descending aircraft, such that a collision is avoided. The
optimization of ACAS Xa thus seems to have led to a behavior where RAs are triggered for
other combinations of relative speeds and positions than the rules applied in TCAS II, such
that it is more sensitive for horizontal turns.

For the set of encounters with vertical rate changes but without horizontal turns,
Table 1 shows that here the large majority of NMAC events can also be avoided, but the
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differences in performance between TCAS II and ACAS Xa are more modest. The remaining
NMAC events are often hard-to-solve encounters, e.g., both aircraft flying level and about
10 s before CPA one starts to climb and the other to descend, thus leaving very little time to
react to initial RAs and avoid an NMAC. For the vertical rate change encounters, sensor
errors have a considerable impact on the collision avoidance effectiveness, leading to an
increase in P(NMAC) of about 70% for TCAS and of 120% for ACAS Xa. These increases
are almost completely due to the bias in the altimetry sensors. Overall, in the encounter
scenario with vertical rate changes only, and with all sensor errors, P(NMAC) is about
11% less for ACAS Xa than for TCAS II.
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Figure 2. Example encounter scenario without sensor errors where a collision is successfully
avoided by ACAS Xa but not by TCAS II. Top: TCAS II, bottom: ACAS Xa, left: horizontal plane,
right: altitude–time. Acronyms: PT = Proximate Traffic, TA = Traffic Advisory, LO = Level Off,
DE = Descend, IDE = Increase Descend, CL = Climb, ICL = Increase Climb, COC = Clear of Conflict.

For the set of encounters including both vertical rate changes and horizontal turns,
the largest P(NMAC) estimates are achieved, reflecting the larger complexity of these
encounters. Sensor errors have a considerable impact on the performance, leading to an
increase in P(NMAC) of about 25% for TCAS and 75% for ACAS Xa for the “all sensor
errors” case. Overall, in the scenario with all sensor errors, P(NMAC) is about 13% less for
ACAS Xa than for TCAS II.

The P(NMAC) estimates in Table 1 for the cases with only altimetry bias versus all
sensor errors are about the same for TCAS II in all encounter sets, and for ACAS Xa in the
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encounters without horizontal turns. For ACAS Xa we have the remarkable finding that,
in the encounter sets with horizontal turns, the P(NMAC) values are smaller if all sensor
errors are included rather than only altimetry bias. This indicates that the errors in the slant
range and bearing measurements help to reduce the collision risk in these encounter sets.
In principle different measurements can trigger different types and timings of RAs, which
may be more or less effective in preventing NMAC events. Indeed, in individual runs (like
those in Figure 2) cases exist where errors in the slant range and bearing measurements
contributed to NMAC events, as well as where they prevented NMAC events. Overall,
more NMAC events were prevented than contributed to.

Figure 3 shows histograms of the relative frequencies of the VMD for encounter-
scenarios with all sensor errors (E1 of Section 3.2.3) and standard pilot response for the
four sets of encounters. It can be observed that ACAS Xa tends to achieve larger VMDs
than TCAS II for all types of encounters. It is most prominent for encounters with straight
trajectories, where the mean VMD for TCAS II is 870 ft and for ACAS Xa is 1079 ft. Here
both distributions have considerable tails; ACAS Xa induces even a VMD of more than
2000 ft in 3.3% of the cases. Excessively large VMDs are not desirable, since they may lead
to conflicts with other traffic. The forms of the VMD distributions become less skewed if
there is more variability in the encounters. In particular, the likelihood of small VMDs is
increasing (which is in line with increase in NMAC probability observed in Table 1) and
the likelihood of large VMDs is decreasing. These shifts are more prominent for ACAS
Xa than for TCAS II. For instance, for encounters including horizontal turns and vertical
rate changes, the mean VMD is 795 ft for TCAS II (versus 870 ft for straight trajectories),
whereas the mean VMD is 839 ft for ACAS Xa (versus 1079 ft for straight trajectories).
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4.2. Altimetry Error Postprocessing

The results in Tables 2 and 3 provide comparisons of P(NMAC) estimates based on
NMAC event counting in MC simulation including altimetry errors versus probability esti-
mates achieved by altimetry error postprocessing (AEP) of VMD observations as explained
in Section 3.3.2. The same Gaussian altimetry bias distribution is used in all cases.

Table 2 is based on simulations of encounter scenarios where are only altimetry biases
(E2, NRun = 106) and where there are no sensor errors (E0, NRun = 5 · 104). The results
show that the estimates achieved by AEP are mostly below the 95% confidence intervals
of the counting-based estimates achieved in the MC simulation. Only for the cases where
both aircraft have straight trajectories do the AEP estimates fall within the 95% confidence
interval, which is facilitated by the wide intervals due to the very small numbers of observed
NMAC events. Comparison of the P(NMAC) estimates for the ACAS types in scenarios E0
and E2 in Table 2 shows that the relative differences are considerably larger for ACAS Xa
than for TCAS II. For instance, in encounters with horizontal turns but without vertical rate
change, the AEP-based P(NMAC) is 5.3% lower for TCAS, but even 38.8% lower for ACAS
Xa. So, in these results there are consistently larger differences in the P(NMAC) estimates
for ACAS Xa if altimetry error postprocessing is used.

Table 2. Comparison of P(NMAC) estimates based on simulation of altimetry biases versus postpro-
cessing of altimetry biases for the same Gaussian altimetry bias distribution. Results for case with
only altimetry biases (E2) versus case without sensor errors (E0).

Vertical Rate
Change

Horizontal
Turn

ACAS

P(NMAC) Estimates

Simulated Biases (E2)
Point Estimate/95% Conf. Int.

Postprocessed Biases (E0)
Estimate/Rel. Diff

No No
TCAS II 2 × 10−6 [0, 4.77 × 10−6 ] 4.93 × 10−13 -

ACAS Xa 0 [0, 3.00 × 10−6 ] 3.50 × 10−15 -

No Yes
TCAS II 2.07 × 10−3 [1.98 × 10−3, 2.16 × 10−3] 1.96 × 10−3 −5.3%

ACAS Xa 6.60 × 10−5 [5.01 × 10−5, 8.19 × 10−5] 4.04 × 10−5 −38.8%

Yes No
TCAS II 1.76 × 10−3 [1.67 × 10−3, 1.84 × 10−3] 1.63 × 10−3 −7.4%

ACAS Xa 1.59 × 10−3 [1.51 × 10−3, 1.67 × 10−3] 1.32 × 10−3 −17.0%

Yes Yes
TCAS II 3.86 × 10−3 [3.74 × 10−3, 3.99 × 10−3] 3.65 × 10−3 −5.4%

ACAS Xa 4.04 × 10−3 [3.91 × 10−3, 4.16 × 10−3] 3.66 × 10−3 −9.4%

Table 3. Comparison of P(NMAC) estimates based on simulation of altimetry biases versus postpro-
cessing of altimetry biases for the same Gaussian altimetry bias distribution. Results for case with all
sensor errors (E1) versus case with all sensor errors except altimetry biases (E3).

Vertical Rate
Change

Horizontal
Turn

ACAS

P(NMAC) Estimates

Simulated Biases (E1)
Point Estimate/95% Conf. Int.

Postprocessed Biases (E3)
Estimate/Rel. Diff

No No
TCAS II 1.00 × 10−6 [0, 2.96 × 10−6] 8.06 × 10−13 -

ACAS Xa 0 [0, 3.00 × 10−6] 9.46 × 10−13 -

No Yes
TCAS II 2.08 × 10−3 [1.99 × 10−3, 2.17 × 10−3] 1.96 × 10−3 −5.8%

ACAS Xa 4.70 × 10−5 [3.36 × 10−5, 6.04 × 10−5] 3.47 × 10−5 −26.2%

Yes No
TCAS II 1.80 × 10−3 [1.72 × 10−3, 1.88 × 10−3] 1.70 × 10−3 −5.6%

ACAS Xa 1.60 × 10−3 [1.52 × 10−3, 1.68 × 10−3] 1.38 × 10−3 −13.8%

Yes Yes
TCAS II 3.93 × 10−3 [3.81 × 10−3, 4.05 × 10−3] 3.60 × 10−3 −8.4%

ACAS Xa 3.43 × 10−3 [3.32 × 10−3, 3.54 × 10−3] 3.11 × 10−3 −9.3%
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The results in Table 3 concern MC-simulated encounter scenarios that include errors
in all sensors (E1, NRun = 106) and encounter scenarios without altimetry biases but
including all other sensor errors (E3, NRun = 106). AEP to account for the altimetry biases
is performed for set E3. For straight trajectories (almost) no NMAC events occurred and
the point estimates for the postprocessing are in the 95% confidence intervals. For the other
cases, the point estimates following the postprocessing are below the counting-based point
estimates, and in four cases they are below the lower boundaries of the 95% confidence
interval. The biases due to AEP are larger for ACAS Xa than for TCAS II.

4.3. Resolved versus Induced NMAC Events

Table 4 compares the probabilities of the remaining NMAC events in NMAC en-
counters with the probabilities of induced NMAC events in No NMAC encounters. The
table also shows the percentages of the probabilities of induced NMAC events versus non-
resolved NMAC events. These results were attained with a scenario including all sensor
errors and with pilots (always) responding according to the ICAO pilot response model.

Table 4. Probability estimates of remaining NMAC events in NMAC encounters compared with
induced NMACS in No NMAC encounters.

Vertical Rate
Change

Horizontal
Turn ACAS

P(NMAC) Estimates
Point Estimate/95% Confidence Interval

P(NMAC) for No
NMAC versus

NMAC Enc. (%)NMAC Encounters No NMAC Encounters

No No
TCAS II 1 × 10−6 [0, 3.0 × 10−6] 0 [0, 3.0 × 10−6] 0%

ACAS Xa 0 [0, 3.0 × 10−6] 0 [0, 3.0 × 10−6] -

No Yes
TCAS II 2.08 × 10−3 ±8.9 × 10−5 1.68 × 10−4 ±2.5 × 10−5 8.1%

ACAS Xa 4.70 × 10−5 ±1.3 × 10−5 1.00 × 10−5 ±6.2 × 10−6 21.3%

Yes No
TCAS II 1.80 × 10−3 ±8.3 × 10−5 8.50 × 10−5 ±1.8 × 10−5 4.7%

ACAS Xa 1.60 × 10−3 ±7.8 × 10−5 1.22 × 10−4 ±2.2 × 10−5 7.6%

Yes Yes
TCAS II 3.93 × 10−3 ±1.2 × 10−4 3.38 × 10−4 ±3.6 × 10−5 8.6%

ACAS Xa 3.43 × 10−3 ±1.2 × 10−4 4.85 × 10−4 ±4.3 × 10−5 14.1%

The results show that, in the encounters with straight trajectories no NMAC events
were induced, confirming the very effective performance of both ACASs for such encoun-
ters. In the encounters including vertical rate changes and/or horizontal turns, NMAC
events were induced in the encounter sets that did not originally include them. For TCAS
II the percentages of induced versus non-resolved NMAC events are in the range of 4.7% to
8.6%. For ACAS Xa, these percentages are consistently larger, ranging from 7.6% to 21.3%.
In addition, for encounters including vertical rate changes, the probabilities of induced
NMACs are higher for ACAS Xa then for TCAS II. Although ACAS Xa is more effective
for resolving NMAC encounters for these types of trajectories, the overall performance of
ACAS Xa versus TCAS II for these cases thus depends on the likelihoods of NMAC versus
No NMAC encounters and the specific characteristics of the encounter sets.

4.4. Pilot Performance

This section provides the NMAC probability estimates for the various cases/models
of pilot response. All results are achieved for the nominal set of sensor errors (E1). Table 5
shows the results for the scenarios where the pilots of both aircraft respond to provided
RAs following the standard response model (reference case), versus scenarios where only
the pilots of aircraft 1 respond following the standard response model and the pilots of
aircraft 2 do not respond.
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Table 5. Probability estimates of remaining NMAC events in NMAC encounters with nominal sensor
errors for two types of deterministic pilot response models: (1) both aircraft respond and (2) only
AC1 responds.

Vertical Rate
Change

Horizontal
Turn ACAS

P(NMAC): Point Estimate and 95% Confidence Interval

Standard Response for Two Aircraft (PP) Standard Response for AC1 Only (PN)

No No
TCAS II 1 × 10−6 [0, 3.0 × 10−6] 4.78 × 10−3 ±1.4 × 10−4

ACAS Xa 0 [0, 3.0 × 10−6] 2.24 × 10−3 ±9.3 × 10−5

No Yes
TCAS II 2.08 × 10−3 ±8.9 × 10−5 1.06 × 10−2 ±2.0 × 10−4

ACAS Xa 4.70 × 10−5 ±1.3 × 10−5 1.03 × 10−2 ±2.0 × 10−4

Yes No
TCAS II 1.80 × 10−3 ±8.3 × 10−5 2.13 × 10−2 ±2.8 × 10−4

ACAS Xa 1.60 × 10−3 ±7.8 × 10−5 1.53 × 10−2 ±2.4 × 10−4

Yes Yes
TCAS II 3.93 × 10−3 ±1.2 × 10−4 3.33 × 10−2 ±3.5 × 10−4

ACAS Xa 3.43 × 10−3 ±1.2 × 10−4 3.98 × 10−2 ±3.8 × 10−4

For encounters with straight trajectories, it was shown earlier that both ACASs are
very effective in collision avoidance and are robust against sensor errors. The results in
Table 5 show that if one of the pilots does not respond, not all NMACs can be avoided: in
about one per 210 cases (TCAS II) to one per 450 cases (ACAS Xa) an NMAC is not resolved.
For encounters with horizontal turns but without vertical rate changes, the P(NMAC)
estimates are almost equal for both ACASs if only one aircraft responds. Comparing with
the reference where the pilots of both aircraft respond, it can be recognized that there is a
much larger increase in P(NMAC) for ACAS Xa. For encounters with vertical rate changes
but without horizontal turns, the lack of pilot response in one of the aircraft leads to a
P(NMAC) increase by a factor 11.8 for TCAS II and about a factor 9.6 for ACAS Xa. So here,
ACAS Xa is a bit more robust than TCAS II for the lack of pilot response. For encounters
with both vertical rate changes and horizontal turns, the lack of pilot response in one of the
aircraft leads to a P(NMAC) increase by a factor 8.5 for TCAS II and a factor 11.6 for ACAS
Xa. So here TCAS II is more robust than ACAS Xa for the lack of pilot response.

An example of an encounter with straight trajectories that leads to non-resolved
NMACs for both TCAS II and ACAS Xa is shown in Figure 4 for the TCAS II case. In-
terestingly, the ACAS performance can be sensitive to sensor errors in such encounter
scenarios. Figure 4 shows two MC simulation runs of the same trajectories in the encounter
for different realizations of the sensor errors for TCAS II; in both cases only the pilots
of AC001 respond according to the standard ICAO response model. In run one, AC001
receives the following RAs: Level Off (LO), Climb (CL), and another LO, which lead to a
VMD of 1380 ft. In run two, AC001 receives the RAs Maintain Descent (MDE) and Increase
Descent (IDE) to 2500 fpm descent, which lead to a VMD of 53 ft and an NMAC. In this
encounter the MDE and IDE are not effective since aircraft 1 is already descending at about
2300 fpm and aircraft 2 does not react to its Level Off and Climb RAs. In this specific
encounter, the 20 MC simulation runs led to 13 NMAC events for TCAS II and to 5 NMAC
events for ACAS Xa. So, this encounter provides an example where (limited) sensor errors
can lead to different RAs and to large VMD differences.
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Figure 4. Results of two MC simulation runs for the same encounter and standard pilot response
for AC001 for different realizations of sensor errors in MC simulation runs. Acronyms: TA = Traffic
Advisory, LO = Level Off, CL = Climb, MCDE = Maintain Crossing Descent, COC = Clear of Conflict,
MDE = Maintain Descent, IDE = Increase Descent, ICL = Increase Climb.

To provide more insight into the variability in VMDs, Figure 5 shows histograms for
critical encounters with straight trajectories having at least one unresolved NMAC in its
20 MC simulation runs, for the scenarios with one pilot responding to RAs from TCAS II
or ACAS Xa. It is clear from these histograms that, for these critical encounters, the VMD
is either very small, leading to an NMAC, or the VMD is quite large, attaining a higher
mode than that for the VMDs for straight trajectories when both pilots are responding (see
Figure 3). So, the (limited) sensor errors basically lead to divergence in the attained VMD.
This is an example of the butterfly effect in chaos theory, where a small change leads to
large consequences in a nonlinear dynamical system.
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Figure 5. Histograms of the relative frequencies of the vertical miss distance for critical encounters
with straight trajectories having at least one unresolved NMAC in the scenarios with one pilot
responding to RAs from TCAS II or ACAS Xa.

The above simulation results applied deterministic pilot models. In reality the perfor-
mance of pilots in responding to RAs is variable. To evaluate variable pilot performance,
pilot models P1, P2, and P3 were defined in Section 3.2.4. Table 6 shows the P(NMAC)
estimates for scenarios with these pilot response models. Model P3 means that the pilot
always responds, but that there is variability in the timing and acceleration of the response.
Comparison of P3 with the reference case PP in Table 5 shows the following.

• For encounters with straight trajectories, no NMAC events are found for ACAS Xa,
while there is a considerable increase in the P(NMAC) estimate for TCAS II. However,
the numbers of simulated NMACs are small.

• For encounters including vertical rate changes and/or horizontal turns, the P(NMAC)
estimates increase for both TCAS II and ACAS Xa. The relative increases are consis-
tently larger for ACAS Xa (34% to 600%) than for TCAS II (13% to 30%). So, in these
cases, ACAS Xa is found to be less robust for the inclusion of timing and acceleration
variability in pilot response. Nevertheless, the P(NMAC) estimates remain smaller for
ACAS Xa, except for encounters with both vertical rate changes and horizontal turns.

Table 6. Probability estimates of remaining NMAC events in NMAC encounters. Three types of
scenarios for stochastic pilot response models P1, P2, and P3.

Vertical Rate
Change

Horizontal
Turn ACAS

P(NMAC): Point Estimate and 95% Confidence Interval

Stoch. Pilot Model P1 Stoch. Pilot Model P2 Stoch. Pilot Model P3

No No
TCAS II 1.11 × 10−2 ±2.1 × 10−4 1.20 × 10−3 ±6.8 × 10−5 1.80 × 10−5 ±8.3 × 10−6

ACAS Xa 1.03 × 10−2 ±2.0 × 10−4 1.44 × 10−3 ±7.4 × 10−5 0 [0, 3.0 × 10−6]

No Yes
TCAS II 1.34 × 10−2 ±2.3 × 10−4 3.89 × 10−3 ±1.2 × 10−4 2.34 × 10−3 ±9.5 × 10−5

ACAS Xa 1.19 × 10−2 ±2.7 × 10−4 3.14 × 10−3 ±1.1 × 10−4 2.82 × 10−4 ±3.3 × 10−5

Yes No
TCAS II 1.63 × 10−2 ±2.5 × 10−4 4.66 × 10−3 ±1.3 × 10−4 2.34 × 10−3 ±9.5 × 10−5

ACAS Xa 1.54 × 10−2 ±2.4 × 10−2 4.30 × 10−3 ±1.3 × 10−4 2.14 × 10−3 ±9.1 × 10−5

Yes Yes
TCAS II 1.95 × 10−2 ±2.1 × 10−4 7.61 × 10−3 ±1.7 × 10−4 4.63 × 10−3 ±1.3 × 10−4

ACAS Xa 2.11 × 10−2 ±2.8 × 10−4 9.47 × 10−3 ±1.9 × 10−4 4.89 × 10−3 ±1.4 × 10−4
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Models P1 and P2 include the same timing and acceleration variability as model P3;
moreover, they include two types of response models. Model P1 reflects stubborn pilots,
who make a decision to respond once and who do not reconciliate in the case of subsequent
RAs. The following results for P1 can be observed in Table 6.

• The P(NMAC) estimates all lie in the range of [1.03 × 10−2, 2.11 × 10−2]. A priori
is it known that the minimum of P(NMAC) is 1 × 10−2, since the probability of not
responding was set as 0.1 per pilot and the probabilities per aircraft are modelled as
independent. These probabilities are all considerably larger than those in the reference
case with a standard ICAO response model, which lie in the range [0, 3.93 × 10−3]
(see PP results in Table 5).

• The P(NMAC) estimates are smaller for ACAS Xa than for TCAS II, except for encoun-
ters that include both vertical rate changes and horizontal turns.

For model P2, representing pilots who do reconciliate in the case of subsequent RAs,
the following results can be observed.

• The P(NMAC) estimates lie in the range [1.20 × 10−3, 9.47 × 10−3]. They are consis-
tently smaller than those of P1 and consistently larger than those of the standard PP.

• The P(NMAC) estimates are smaller for TCAS II in the cases of straight trajectories as
well as the cases with both vertical rate changes and horizontal turns. In the other two
sets, the P(NMAC) estimates are smaller for ACAS Xa.

4.5. Comparison of Variability Contributions

In support of the main objective of this paper, to provide insight in contributions of
various sources of variability, Figure 6 provides a comparative visualization of the main
results. The bars show the contributions of P(NMAC) in encounters leading to an NMAC
without resolution using the following three components:

• Base: point estimates for scenarios without sensor errors and with standard pilot
response (from Table 1);

• Sensor error: differences between point estimates for scenarios with and without
sensor errors; both with standard pilot response (from Table 1);

• Pilot performance: differences between point estimates for scenarios with sensor errors
and standard pilot performance (from Table 1) and scenarios with sensor errors and
one of the pilot response models P1, P2, or P3 (from Table 6).

These bars are shown for TCAS II and ACAS Xa, as well as for the type of trajectories
in the encounters: straight trajectories, including horizontal turns only, including vertical
rate changes only, and including horizontal turns and vertical rate changes.

Figure 6 shows that pilot performance is typically the most important factor for the
effectiveness of ACAS, both for TCAS II and ACAS Xa. The sizes of the pilot performance
contributions largely depend on the type of pilot response model and their parameteriza-
tion, but also the types of encounters and ACAS type influence the P(NMAC) contributions.

The base risks stemming from the types of trajectories in the encounters mostly provide
the second most important contribution. These base risks are especially prominent for
encounters that include vertical rate changes with or without horizontal turns, as well as
encounter scenarios with horizontal turns and TCAS II. ACAS Xa is considerably more
effective in attaining low base risks than TCAS II for these types of encounters. For
encounters with straight trajectories, both TCAS II and ACAS Xa are very effective, and the
base risk is practically zero.

The contributions of sensor errors to P(NMAC) are mostly the smallest. Especially
in encounters with straight trajectories or involving only horizontal turns, these contribu-
tions are very small. In encounters with vertical rate changes, sensor errors play a more
prominent role, and their contribution is larger for ACAS Xa than for TCAS II.
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trajectories: straight, with horizontal turns (HT), with vertical rate changes (∆VR), with HT and ∆VR.

5. Discussion

The objective of this paper is to present and analyze the types of new results that can
be achieved by MC simulation of agent-based models for ACAS encounter scenarios and to
contrast them with customary techniques applied in ACAS operational validation studies.
This has been attained in a use case comparing the performance of a development version
of ACAS Xa with TCAS II v7.1. A detailed discussion of the results is presented below. The
main conclusions and recommendations are summarized in Section 6.

As already indicated in the Introduction, the scope of this use case is considerably
limited with respect to the scope that would be needed in an operational validation study.
The use case considers pairs of aircraft that are both equipped with TCAS II or with ACAS
Xa, neglecting TCAS II–ACAS Xa pairs, or pairs where one of the aircraft is not ACAS
equipped. All aircraft use mode S transponders, neglecting mode C, which has less accurate
slant range and bearing measurements, and coarser altitude discretization. The ACAS
Xa option to employ ADS-B for threat resolution was not used. This implies that the
same surveillance information was available for TCAS II and ACAS Xa, thus creating a
level playing field for comparing the tracking and alerting modules of both ACASs, but
it also means that the benefit that ADS-B can provide to ACAS Xa was not accounted
for. The CPA of all encounters is attained at flight level 120, neglecting other flight levels.
The performance of TCAS II and ACAS Xa depends on the altitude, and it is known that
their performance varies for different altitude layers [9,10]. The encounters in the use
case were constructed to represent classes with different types of variability (horizontal
turns, vertical rate changes), but they do not represent the probabilistic characteristics
of a particular airspace using some Bayesian network model [7,8,20–24]. The use case
considered the safety metrics P(NMAC) and VMD distributions, but it did not include
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operational acceptance metrics like generic or specific RA alert rates, time between TA and
initial RA, or altitude crossings. Notwithstanding these limitations, the agent-based models
and their implementation in CAVEAT fully support extending the scope and performing
MC simulation for additional scenario settings of balanced encounter sets and to analyze
additional evaluation metrics.

As explained in Section 3.3.2, ACAS operational validation studies have consistently
used altimetry error postprocessing (AEP) of deterministic simulations to account for the
dispersion of altitude estimates [9,10,36]. A key result of this paper (see Section 4.2) is that
that the postprocessing of altimetry errors leads to P(NMAC) estimates that are often lower
than the estimates achieved by MC simulation for the same altimetry error distribution.
AEP is based on the assumption that the real VMD differs from the VMD measured in a
deterministic simulation by a combined error with a probability distribution that is based
on the altimetry error distributions of the involved aircraft. The lower P(NMAC) estimates
achieved by AEP indicate that this assumption is not valid. An explanation for the failing
of this assumption is the finding in Section 4.4 that limited differences in altimetry biases
can lead to large VMD differences, since they trigger different RA sequences. Such small
sensor error differences leading to large VMD differences is an example of the butterfly
effect in nonlinear dynamical system. It implies that the key assumption underlying the
AEP does not consistently hold.

The results in Section 4.2 also show that the AEP-induced biases in the P(NMAC)
estimates are consistently larger for ACAS Xa than for TCAS II. A possible reason for
this could be that the adaptation of the optimization criteria, such as the components
of the reward function, during the development of ACAS Xa has been driven by AEP-
based P(NMAC) estimates. This could mean that the biases in the P(NMAC) estimates
have influenced the ACAS Xa decision logic, leading to decisions that are more favorable
to such biased P(NMAC) estimates. Whatever the reason, it follows from the butterfly
effect identified in Section 4.4, and the results in Section 4.2, that the usual approach of
altimetry error postprocessing can lead to the underestimation of P(NMAC) and in a
different evaluation for ACAS Xa and TCAS II. Since such biases in P(NMAC) estimates
should be avoided in certification of new ACASs, it is advised that future operational
validation studies use MC simulation and counting-based P(NMAC) estimates to account
for altimetry errors instead of AEP-based estimates.

Conducting an MC simulation requires more computational resources and/or time
than deterministic simulation of encounter scenarios. In CAVEAT, the simulation engine for
deterministic and MC simulations is largely the same (except for the inclusion of random
effects) and their processing times for same numbers of runs are about the same. For
illustration, the simulations performed for this paper were carried out on a Windows PC
with maximum utilization of eight cores. Here, the simulation time of 50,000 runs was
10 min for TCAS II encounter scenarios and 20 min for ACAS Xa encounter scenarios. The
simulation time increases linearly with the number of MC simulation runs per encounter
scenario, e.g., 20 MC simulation runs per encounter scenario last 200 to 400 min for the
indicated sets and PC.

To address the question “what matters in the effectiveness of ACAS performance?”,
fractions of remaining NMAC events in sets of encounters that included NMAC events
before ACAS advisories were compared for various conditions. The overview in Section 4.5
clearly shows that pilot performance has the largest contribution to the P(NMAC) estimates
and that the size of these contributions depends on the type of pilot response model. The
smallest contributions are for the model where the pilots always respond but apply variable
response times and acceleration. Although relatively small, these risk contributions can be
similar to those induced by sensor errors. This type of pilot response variability has not
been included systematically in operational validation studies. Larger contributions exist
for cases where pilots may not respond to RAs. Here the sizes of the contributions strongly
depend on the type of decision making used by the pilots. If the pilots of an aircraft decide
once to not respond to RAs, then the risk is considerably larger than if the pilots reconciliate
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and update their earlier decision given a subsequent RA. The first type of behavior has
typically been included in operational validation studies, but downlinked RA data in [29]
indicate that the compliance for subsequent RAs is better than for initial RAs. As such,
the use of a “reconciliating” pilot response model in MC simulation facilitates a more
comprehensive analysis of pilot response. Naturally, the sizes of the pilot response risk
contributions strongly depend on the values of the response probability. The simulations in
this study used a non-response probability of 10% for initial RAs, which is similar to data
from [1,29], but in [28], larger non-response probabilities were found. For the probability
of response to subsequent RAs less data are available. So, it is fair to say that there exists
considerable uncertainty in the values of response probabilities, while they have a large
impact on the risk contributions.

Notwithstanding the uncertainty in the type of pilot response model and its parame-
terization, it stands out that pilot performance has a very large contribution to the overall
effectiveness of ACAS advisories in avoiding collisions. In addition, the attained results
indicate that the contributions of pilot performance are far larger than the performance
differences between TCAS II and ACAS Xa. The design of ACAS Xa has focused on the new
surveillance & tracking and the threat resolution modules. The human machine interface
of ACAS Xa is largely the same to that of TCAS II, it uses the same visualization and only
has some changes in aural annunciations (e.g., the advisory to maintain vertical speed
while descending is announced as “Maintain vertical speed, maintain” in TCAS II v7.1,
while it is announced as “Descend, descend” in ACAS Xa). Historically, the main way to
improve pilot response probability has been by training and safety awareness campaigns
for pilots. A technical solution supporting response to RAs is the automatic response by the
autopilot/flight director TCAS capability [37], which is available on a number of Airbus
aircraft [38]. In the future, means to support effective response to RAs will remain essential
to assure the overall effectiveness of TCAS II and ACAS Xa.

The second most important contribution to unresolved NMAC events stems from the
types of trajectories in the encounters. In the attained results, encounters with straight
trajectories are handled very effectively by TCAS II and ACAS Xa, encounters with only
horizontal turns lead to some problems for TCAS II but not for ACAS Xa, encounters with
vertical rate changes lead to some problems for TCAS II as well as for ACAS Xa, and these
problems become worse if they also include turns. In interpreting these results it should
be realized that the encounter sets are not based on an airspace-specific encounter model,
but that they hold various types of encounters with characteristics chosen from uniform
distributions as a way to represent various types of variability in the trajectories. In real
operations some types of encounters are more likely than others, e.g., encounters with
straight trajectories are far more likely than encounters where aircraft are turning and
levelling off. In addition, some speeds, rates of turn, and vertical accelerations are more
likely than others, impacting P(NMAC) estimates in the classes. In operational validation
studies, encounter models based on radar observations should remain to play a key role.
Nevertheless, the insights that can be attained by clustering for horizontal turns and/or
vertical rate changes can be an added value.

Overall, the impact of sensor errors on unresolved NMAC probability is smaller than
the contributions by pilot performance and encounter trajectories. The attained results
indicate that the impact of sensor errors depends considerably on the types of trajectories
in the encounters. In encounters without vertical rate changes (i.e., straight trajectories
or only horizontal turns) both TCAS II and ACAS Xa are very robust against sensor
errors, while in encounters with vertical rate changes sensor errors lead to a considerable
increase in unresolved NMAC events. In these latter types of encounters, ACAS Xa is more
sensitive to sensor errors than TCAS II. This is remarkable since there are more advanced
tracking algorithms in ACAS Xa than in TCAS II. A possible explanation could be that the
optimization process of the ACAS Xa decision logic has not consistently included sensor
errors, such that its performance was tuned towards cases without such sensor errors. The
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more generic rules in TCAS II have not been optimized in such a detailed way, and as a
result, it can be more robust for sensor errors.

For judging the overall collision avoidance performance of an ACAS, one needs to
evaluate the likelihood of unresolved NMAC events, which were discussed above, as well
as the likelihood of induced NMAC events, which are cases where ACAS contributes to an
NMAC event that would not have occurred otherwise. In the MC simulation of encounter
scenarios, the induced risk can be evaluated straightforwardly by counting NMAC events
resulting in encounters that were without NMAC originally. No troublesome assumptions
about combined altimetry error distributions have to be made to account for altimetry
errors in such evaluation. While NMAC encounters describe a limited set of well-defined
vertical and horizontal miss distances, the VMD and HMD boundaries of No NMAC
encounters are not strictly defined. Clearly the induced risk strongly depends on these
boundaries, and it will tend to be zero for large enough values. Induced risk results for
a particular choice of VMD and HMD boundaries were shown, which illustrate the MC
simulation-based evaluation including sensor errors. A meaningful evaluation of induced
risk, however, requires an encounter model with proper distributions of VMD and HMD of
No NMAC encounters, in combination with other encounter characteristics.

As has been explained in the Introduction, dynamic programming as used in the
design of ACAS Xa is an off-line reinforcement learning approach [18]. Its achieved
alerting logic depends on its underlying models, the reward function, the data-informed
encounters, and the settings used in simulations of the logic, the judgement of the simulated
performance and resulting adaptation of the reward function. As such, it depends on a
combination of models, underlying data, simulation settings, and judgements. The way
that machine learning approaches can be effectively applied to achieve trustworthy AI
in aviation applications is a key topic in current research and development. As part
of its AI roadmap, the European Aviation Safety Agency (EASA) has published first
guidance for machine learning applications [39]. The scope of this release is supervised
learning applications and suitable learning assurance processes, which aims at providing
assurance on sufficient performance of the intended function of the AI-based system, and
at ensuring that the resulting trained models possess sufficient guarantees of generalization
and robustness. While [39] does not yet address reinforcement learning, these general
objectives are also appropriate for systems based on reinforcement learning. For an ACAS
this means that it effectively supports collision avoidance (intended function) for a broad
range of encounter conditions (generalization) while it is robust for sensor errors and
variability in pilot response. In above discussion, some cases were indicated where the
optimization process may have been influenced by its conditions and the choices made,
thus rendering it less robust for some variabilities. It is advised to pursue more detailed
analyses concerning the generalization and robustness of ACASs for sensor errors and pilot
response in operational validation studies.

6. Conclusions and Recommendations

The following main conclusions and recommendations are derived from the above
discussion of the results.

• The scope of the use case has been limited, such that no final conclusions on the
performance of ACAS Xa versus TCAS II are drawn. It is advised to extend the scope
as part of a future validation study for the latest version of ACAS Xa [6].

• The assumption underlying altimetry error postprocessing, namely that VMD equals
deterministically simulated VMD plus a (limited) altimetry error, does not consistently
hold. MC simulation shows that the butterfly effect of non-linear dynamical systems
exists; limited altimetry errors can lead to large VMD differences for the same en-
counter. It has been shown that AEP-based P(NMAC) estimates are often lower than
the estimates achieved by MC simulation for the same altimetry error distribution. It
is advised to use MC simulation of altimetry errors in future validation studies.
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• Pilot response probability has the largest impact on overall ACAS effectiveness, and
it is much larger than performance differences between TCAS II and ACAS Xa. Ad-
vanced pilot models with different response probabilities for initial and subsequent
RAs lead to different results for ACAS effectiveness. It is advised to include advanced
types of pilot response models in future validation studies.

• The obtained results show that AEP-based biases in P(NMAC) estimates are larger for
ACAS Xa than for TCAS II, and that ACAS Xa can be more sensitive to sensor errors
than TCAS II. It is possible that sensor errors neglected in the optimization process of
ACAS Xa have led to more specific and less robust performance in its alerting logic,
while TCAS II uses generic rules. It is advised to perform more detailed analyses of
the generalization and robustness of ACAS in future operational validation studies, so
as to assure trustworthy AI performance in ACAS Xa.
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