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Abstract: This article reports the ongoing work on an environment for hardware-in-the-loop
(HIL) and software-in-the-loop (SIL) tests of CubeSats and the benefits gained from using such
an environment for low-cost satellite development. The satellite tested for these reported efforts was
the MOVE-II CubeSat, developed at the Technical University of Munich since April 2015. The HIL
environment has supported the development and verification of MOVE-II’s flight software and
continues to aid the MOVE-II mission after its launch on 3 December 2018. The HIL environment
allows the satellite to interact with a simulated space environment in real-time during on-ground tests.
Simulated models are used to replace the satellite’s sensors and actuators, providing the interaction
between the satellite and the HIL simulation. This approach allows for high hardware coverage
and requires relatively low development effort and equipment cost compared to other simulation
approaches. One key distinction from other simulation environments is the inclusion of the electrical
domain of the satellite, which enables accurate power budget verification. The presented results
include the verification of MOVE-II’s attitude determination and control algorithms, the verification
of the power budget, and the training of the operator team with realistic simulated failures prior
to launch. This report additionally presents how the simulation environment was used to analyze
issues detected after launch and to verify the performance of new software developed to address the
in-flight anomalies prior to software deployment.

Keywords: CubeSat; hardware-in-the-loop; software-in-the-loop; simulation; verification; attitude
determination; attitude control; electrical power system; Simulink; satellite; operations

1. Introduction

Designing and building systems to operate in a space environment is a complex and demanding
engineering challenge. Reproducing all conditions encountered in space before the launch of the
spacecrafts into orbit is not feasible. Correcting faults on any orbiting spacecraft is extremely costly
and usually not an option. Therefore, spacecraft designers must go to great lengths to ensure the safe
operation of their system in an environment they were never able to test in. For flight software
testing, hardware-in-the-loop (HIL) and software-in-the-loop (SIL) simulations are widely used
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verification methods [1]. In addition to the software verification, HIL simulations also cover some of
the hardware of the satellite, which might include the processor with its peripheral electronics, the
sensors, and actuators. Most literature about simulations for CubeSat and small satellite verification
focuses on the attitude determination and control system (ADCS). One approach towards ADCS
simulation utilizes facilities resembling the physical characteristics of the space environment, like
Helmholtz cages, sun simulators, and air bearings, allowing the ADCS to utilize its real sensors and
actuators [2–4]. Another approach is replacing the real sensors and actuators with simulation models
and using the corresponding subsystems in hardware [5] or simulating all of the hardware of the
satellite to verify the flight software and train operators [6,7].

Both HIL and SIL contributed to the development and verification of MOVE-II’s ADCS.
For MOVE-II’s Electrical Power System (EPS) and the safe mode switching implemented on the
Command & Data Handling (CDH), we exclusively used HIL testing for verification.

In comparison to other CubeSat simulation approaches, the MOVE-II HIL environment
implements both digital sensor signals and electric voltages to provide a useful interface to ADCS and
EPS simultaneously. Including the electrical domain enables the developers to discover errors caused
by the interaction between ADCS and EPS. Another novelty is the application of HIL simulations
for augmenting the operator training with realistic failure scenarios and accurate reaction to the
operator’s commands.

MOVE-II, the Munich Orbital Verification Experiment II, is a 1.2 kg, 1U CubeSat developed from
April 2015 onwards at the Technical University of Munich and launched into space on 3 December
2018 [8]. Like its predecessor First-MOVE, MOVE-II was designed, built, and is currently operated
mainly by students at the Technical University of Munich. Lessons learned from MOVE-II’s first
months of operations were implemented on a twin-satellite, called MOVE-IIb, which was launched
on July 5th, 2019. From the beginning of the development of the MOVE-II satellites, lessons learned
from First-MOVE and other CubeSat teams [9,10] were implemented in the program. We followed a
development approach similar to the Bread–Brass–Silver–Gold approach of the Air Force Research
Laboratory’s University Nanosatellite Program [11,12].

MOVE-II features an active magnetorquer-based ADCS, which is based on six printed
circuit boards (depicted in Figure 1). All boards feature integrated magnetorquers, coil driving
electronics, a gyroscope, a magnetometer, and a microcontroller. The Sidepanels, as well as the
Toppanel, include individual sun sensors. Each of the satellite’s body axes feature a magnetorquer,
resulting in redundancy of the actuation system. Figure 2 illustrates the corresponding body-fixed
coordinate system.

1 Toppanel (shared with payload)

1 Mainpanel (in stack)

4 Sidepanels

Figure 1. Arrangement of all six attitude determination and control system (ADCS) boards.
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Figure 2. ADCS body-fixed frame.

The ADCS features two different control modes, both of which are mission-critical: First,
to slow down the initial angular velocity of the satellite after separation from the CubeSat deployer,
a detumbling maneuver has to be executed, using a B-dot control algorithm [13]. The second control
mode is sun-pointing, for which a linear model-based controller is used to direct the payload on
the Toppanel and the solar cells of the satellite towards the sun to ensure enough power generation
and successful payload measurements. A spin around the z-axis stabilizes the pointing vector [14].
The state vector for the controller can be either directly attained by sensor measurements or by
estimation. For the latter option, an Extended Kalman Filter (EKF) is implemented. Thus, sensor data
is fused together to provide an estimation of the satellite’s attitude. More information on the ADCS of
MOVE-II as well as its control strategies used can be found in [15].

The EPS of MOVE-II features four deployable solar panels that are populated with two cells each
and provide a peak power of 10 W. Once deployed, they all point in the same direction (negative z-axis,
see Figure 2) and are the main source of power income for the satellite. Additionally, the Sidepanels
are populated with two smaller cells each, providing backup power if the satellite is tumbling.
The solar cells are grouped in three arrays and charge the battery of the satellite over maximum
power point trackers.

To derive a suitable system architecture for our simulation, we do not divide the satellite into
several subsystems, but into the domains: Processing, Interfaces, and Physics. Figure 3 shows these
domains plus the space environment that the satellite is interacting with. All of the satellite’s software
and most of the satellite’s hardware, grouped in the block Processing, is not significantly affected by the
space environment, at least not during the time frame of a simulation, i.e., less than 24 h. All hardware
components with a significant dependence on the environment’s physical stimuli are grouped in the
block Interfaces, separate from the rest of the satellite’s hardware. The interfaces include sensors, solar
cells, etc., but also a battery that significantly increases its internal resistance at low temperatures,
which qualifies as an interface. The block Physics comprises the satellite’s physical properties like
the inertia tensor or its thermal capacitance and is an intermediary between the space environment
and the satellite’s interfaces. The block “Space Environment” contains all external stimuli influencing
the satellite.

Figure 3. The satellite operating in space spans the domains physics, interfaces, and internal processing
hardware and software.
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2. The Simulation Environment of MOVE-II

HIL simulations enjoy widespread use in the small satellite community, especially for ADCS
verification. Many teams opt for a physical approach for the simulation of the space environment,
utilizing air bearing platforms with attitude sensors to enable quasi-frictionless rotation, Helmholtz
cages for the simulation of the magnetic field of the Earth, and sunlight simulators [2,3]. This setup
allows the teams to perform HIL tests by mounting ADCS sensors and actuators for testing generic
attitude control and estimation algorithms [16], or using flight components by simply mounting the
desired sensor or actuator onto the platform [4].

Another strategy is to use a numerical simulation of the space environment, replacing the real
sensors with models by mimicking their signals and sending them to the actual control computer.
To simulate the effect of the actuation and close the loop, the commands for the actuators generated by
the control computer are read or, in the case of magnetorquers, it is also possible to measure the actual
response of the actuators, in order to account for transient behavior, nonlinearity, and uncertainty of
the magnetorquers [17]. This means that the space environment is not replicated in a physical way and
interacting with the satellite’s hardware. Instead, the space environment is simulated and the sensor’s
values are computed and sent to the control computer, and the effect of the actuation is also simulated.

More processing hardware than just that of the ADCS can be included in the simulations [5],
for example, power units connected to the EPS board, emulating the voltage and current supplied
by each solar panel, information which can be obtained based on the simulated thermal flow in the
satellite, and the temperatures on the solar panels, together with information of sun position and the
satellite attitude [18].

Another approach is simulating most, or even all, of the hardware of the satellite [7], executing
the software as if it were operating in space, with simulated data inputs, to verify the flight software
and/or train operators [6].

With their varying levels of hardware coverage and different ways to inject fault conditions,
all these approaches result in different regions of test coverage and complement each other. For
the MOVE-II simulation environment, we combined real processing hardware with simulated
sensors, mimicking their signals, and simulated actuators commanded by the response of the
processing hardware.

Adhering to the abstract model depicted in Figure 3, we placed the simulation boundary between
the interfaces and processing as shown in Figure 4. This means that the simulation discussed
in Section 2.2 covers the domains Space Environment, Physics, and Interfaces. The simulation
environment only includes the processing hardware as device-under-test. To achieve full coverage,
we must combine the simulation-based verification of this HIL environment with separate additional
tests of the sensors and actuators in, e.g., a Helmholtz cage. We selected this test approach
for MOVE-II, because we are mainly interested in verifying the software and controllers in an
integrated configuration.

Figure 4. Adaptation of the structure in Figure 3 for the Hardware in the Loop setup of MOVE-II.

2.1. Overview

MOVE-II’s HIL environment includes a simulation containing the space environment, physics,
interface models of the ADCS and EPS, and temperature sensors for CDH. It also computes the distance
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and orientation to the ground station for the channel simulator. Table 1 lists all interface emulators
forwarding the simulated interface data to the processing hardware of the satellite. The processing
hardware consists of the stack of subsystem boards of MOVE-II’s engineering model. The Sidepanels,
the Toppanel, and the antennas were disconnected. All components except the PC running the
simulation and the ground station containing the channel simulator are shown in Figure 5.

Figure 5. Photo of the satellite and interface emulators in the MOVE-II integration room. The satellite’s
Sidepanels, Toppanel, solar cells, and antennas are either removed or disconnected.

Table 1. List of subsystems, their associated interface emulators, and the transferred data streams.

Subsystem Interface Emulator Sensor Streams Actuator Streams Section

ADCS Panel Emulator Magnetometers, gyroscopes,
sun sensors

Magnetorquers Section 2.3.1

EPS Solar Array Simulator Solar cell illumination, solar
cell temperatures

none Section 2.3.2

CDH Universal Interface Node Temperature sensors none Section 2.3.4
COM Channel Simulator none none Section 2.3.5

The following sections will give a detailed description of the MOVE-II HIL environment used for
verifying the satellite’s software and power budget. Section 2.2 covers the simulation model, Section 2.3
lists the interface emulators, and Section 2.4 shows how we can use the same environment for HIL,
SIL, and simple simulations. Section 2.5 shows the types of data exchanged in the HIL environment,
and Section 2.6 gives the most significant characteristics of the test environment.

2.2. Simulation

The complete simulation is implemented in Matlab/Simulink. Space environmental aspects,
the satellite’s physical properties, sensors, and actuators are modeled as blocks in a Simulink model.
Figure 6 gives an overview of the top-level structure of the Simulink environment.



Aerospace 2019, 6, 130 6 of 25

Figure 6. Simulink model.

The block Space Environment incorporates a magnetic field model, a sun position model including
Earth’s eclipse, and an orbit propagator. It outputs a magnetic field vector B, a sun vector αsun, the
position vector r, velocity vector v, and the angle to the ground station αgs, respectively. All vectors
are in the body frame of the satellite depicted in Figure 2. A satellite dynamics model and a simple
thermal model describe the satellite’s physical state. They calculate the angular velocity ω, the attitude
quaternion q, and the temperature T of the satellite. The environmental information and the satellite’s
physical state are forwarded to the Sensor Models block, which provides measurements of the sun
vector αsun,meas, magnetic field vector Bmeas, angular velocity vector ωmeas, and of the temperature
Tmeas. Section 2.2.1 will cover the sensor models of this block. The temperature measurement is
forwarded to the Universal Interface Node (UIN), whereas the ADCS sensor measurements are
forwarded to the Panel Emulator. The Solar Array Simulator sends the power of the maximum power
point (MPP), denoted as the available power Pavail , and the power actually drawn by the battery charge
regulator, the accepted power Pacc, for every of the three channels to the simulation PC. The quotient
of these two values yields the instantaneous maximum power point tracking efficiency of the EPS.

The Power Estimator uses αsun, Pavail , Pacc, and the actuator currents (not included in the diagram
for simplicity) to compute the overall power dissipation Psat and the solar intensity φe. The Channel
Simulator requires the orbital position vector and the velocity vector of the satellite as well as its angle
with respect to the ground station.

The ADCS sensor data forwarded to the Panel Emulator is processed on the ADCS Mainpanel.
The desired control currents ictr,H IL from the control algorithms are forwarded back to the simulation
and used within the Actuator Models to compute the control torque vector τctr. This torque plus the
disturbance torques from the Disturbances model τd are input to the Rotational Dynamics model.
The modeled disturbances include residual magnetic dipole moment, drag caused by the residual
atmosphere, the gravity gradient disturbance, and a magnetic dipole moment disturbance induced by
the illumination of the solar panels [19].

Besides the HIL interface, the simulation environment provides two more possibilities to close the
control loop for the ADCS: The first approach is using a simple Simulink model of the contol law being
used. This is denoted by in Figure 6. The second approach incorporates the firmware implementation
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of the control strategy in the simulation environment. Therefore, the C++ code of the algorithms are
embedded in Level-2 S-functions which are included as a block into the Simulink model (denoted
by Controller Software in Figure 6). This block exchanges data with the remaining Simulink blocks.
This method is referred to as Software-in-the-Loop. The corresponding control current outputs for
these approaches are denoted as iIS/RS and iSIL, respectively. These different approaches can be also
applied on the estimation part of the ADCS. More information on these different approaches is given
in Section 2.4.

2.2.1. Sensor Models

All the sensor models follow the same principle. At first, a reference value is calculated by the
simulation. In our simulation environment, the reference values are the magnetic field vector B, the sun
vector αsun, the angular velocity ω, and the temperature T. Then, to model a magnetometer, a sun
sensor, a gyroscope, and a temperature sensor, respectively, some realistic aspects are considered.
For all ADCS related sensors models, the reference values are sampled and rotated into the sensor
frame. In the specific context of vector measurements Bmeas and αsun,meas, the true satellite attitude q
is required to rotate the reference vectors into the satellite’s body fixed frame before being transformed
into their sensor frames. To model the measurements, various errors are introduced to represent the
various inaccuracies in the sensor. This may include white noise, bias, scaling, and misalignment
errors. The output of the sensor model is then discretized to introduce quantization errors to emulate
a digital signal. Table 2 gives an overview of the modeled effects for the magnetometer, gyroscope,
the sun sensor, and the temperature sensor.

Table 2. Error parameters for the sensors.

Sensor Type Modeled Effects

Magnetometer White noise, scaling, bias, misalignments, nonorthogonalities, quantization, time
sampling, low-pass filtering

Gyroscope White noise, scaling, random walk process on bias, misalignments, nonorthogonalities,
quantization, time sampling, low-pass filtering

Sun sensor White noise, scaling, bias, misalignments, nonorthogonalities, quantization, time
sampling, low-pass filtering, limited field of view and overshadowing

Temperature sensor White noise, scaling, bias, quantization, time sampling

Deterministic parameters such as scaling and bias as well as noise characteristics are estimated
using recordings of real sensor measurements. To validate the sensor models, the real sensor
measurements were compared to readings produced by the simulation. The recordings where both
compared in the time and frequency domains.

2.2.2. Controller Models

The simulation environment enables students to develop and test a variety of attitude
determination and control algorithms and to evaluate them as a part of the firmware of MOVE-II. It is
difficult to predict the behavior of control laws solely with analytical methods. Linearized controllers
in particular often show unwanted or unexpected behavior far away from their operation point. Table 3
lists all attitude determination and control algorithms that have been evaluated in our simulation
environment and the section that explains the algorithm’s verification in more detail. Section 2.4
gives an overview on the simulation approaches mentioned in the third column. The simulation
approaches are Ideal Simulation (IS), Realistic Simulation (RS), SIL, and HIL. All algorithms, which are
included in the flight software of either MOVE-II or MOVE-IIb, are verified in the HIL configuration of
the environment.



Aerospace 2019, 6, 130 8 of 25

Table 3. List of ADCS algorithms and the most extensive simulation approach they were evaluated in.

ADCS Algorithm Type Evaluated in Section

B-Dot Controller B-Dot proportional, detumbling IS, RS, SIL, HIL Section 3.1
Non-Spinning Sun-Pointing Controller State feedback, sun-pointing IS, RS, HIL Section 3.1
Spinning Sun-Pointing Controller State feedback, sun-pointing IS, RS, SIL, HIL Section 3.1
Attitude Determination Extended Kalman filter RS, SIL, HIL Section 3.2
Extended LQR Controller State feedback, sun-pointing RS Section 3.6.1
Delta-H Controller Lyapunov-based, sun-pointing RS, SIL, HIL Section 3.6.1
JC2Sat Controller Lyapunov-based, sun-pointing RS Section 3.6.1
Modular Controller Lyapunov-based, sun-pointing RS Section 3.6.1
Fast-Detumbling B-Dot proportional, detumbling RS, SIL, HIL Section 3.6.2

2.3. Hardware Interfaces

Replacing the interfaces of the satellite with simulation models requires physical hardware
interfaces that translate the data of the simulation to the electrical buses of the processing hardware.
The following interface emulators allow the simulation to talk to the ADCS, the maximum power point
(MPP) trackers of the EPS, and the CDH. Additionally, the channel simulator controls the properties of
the transceiver’s (COM) communication channel to the ground station.

2.3.1. Panel Emulator

The Panel Emulator connects the simulation and the ADCS of the satellite [20]. As explained in
Section 1, the ADCS of MOVE-II is comprised of the Mainpanel, five Sidepanels, and the Toppanel.
The Mainpanel runs the attitude determination and control algorithms. The Sidepanels and the
Toppanel house the sensors and actuators as well as a microcontroller for controlling them. The
Mainpanel reads the sensor values and writes the actuator commands via direct memory access
(DMA). The Panel Emulator replaces the Sidepanels and the Toppanel by utilizing five microcontrollers
that mimic the individual panels and relay the sensor and actuator values via SPI to a Beaglebone
running Debian Linux. The Beaglebone connects over Ethernet to the simulation PC. A python script
on the simulation PC talks over UDP to the simulation and over WebSockets to the Panel Emulator
Beaglebone. On the Beaglebone, a C++ program acts as relay between the WebSockets connection and
the SPI bus to the microcontrollers.

For power budget verification, the wiring between the Panel Emulator and the Mainpanel also
provides a read-only connector for the real Sidepanels and the Toppanel. Thus, the real panels will
receive and execute the commands from the Mainpanel; however, the pin for sending sensor readings
to the Mainpanel is not connected. Therefore, the real panels will consume a realistic amount of power
but will not interfere with the communication between Panel Emulator and Mainpanel.

2.3.2. Solar Array Simulator

The Solar Array Simulator interfaces between the satellite’s EPS and the simulation [21]. In general,
Solar Array Simulators are special power supplies that replicate the electrical behavior of a solar array,
which can be described by a voltage–current characteristic curve (VI curve). The VI curve of a solar
array defines its output current as a function of its output voltage and is dependent both on the
illumination level and on the temperature of the photovoltaic cells in the array. The Solar Array
Simulator in the HIL setup communicates to the simulation PC via Ethernet. In every simulation cycle,
the Solar Array Simulator receives the current illumination level and temperature of each solar cell and
computes the VI curves of the three solar arrays of MOVE-II based on that information using a method
described in [22]. The Solar Array Simulator then drives its three output channels to behave according
to the determined curves. The output channels of the Solar Array Simulator are connected to the three
battery charging regulators of the EPS. The exact voltage and current supplied by a certain channel, i.e.,
the operating point on the simulated VI curve is determined by the load represented by the respective
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battery charge regulator. The EPS tries to set this operating point to the maximum power point of the
VI curve where the most power possible is extracted from the solar array or Solar Array Simulator.

2.3.3. Connection to CDH

The CDH of MOVE-II runs the main state machine controlling the mode of ADCS and EPS and
reads out the temperature sensors of the satellite. The simulation can send commands to CDH during
setup to set the time and the mode of all relevant subsystems. The simulation also allows commanding
CDH during the run, e.g., switching the gain of ADCS in eclipse. Sending commands to CDH is
possible over three different methods:

• Serial link: The satellite allows commanding CDH directly in integrated configuration over the
External Debug Interface (EDI). EDI includes a UART link to the CDH that the simulation PC
can use over a UART-USB converter. This connection is easy to setup and does not significantly
disturb the power budget of the satellite.

• Mission Control: The simulation registers as a user at the operations interface of the satellite.
The operations interface sends the command over the experimental ground station in the
integration room to the transceiver of the satellite and the CDH executes it. This connection
is very realistic regarding the hardware involved, but significantly impedes the power budget due
to the higher power consumption of the satellite’s transceiver when a ground station is in sight.

• Low-cost CDH: MOVE-II’s CDH was a commercial component that was only bought for the
Engineering-Model and the Flight-Models of MOVE-II and MOVE-IIb. To overcome the shortage
of hardware, the team built a Beaglebone-based low-cost CDH with a PC/104 connector that runs
the MOVE-II Linux operating system plus all software controlling the subsystems [8]. This cheap
and simple solution found its way into many prototypes of the satellite including several HIL
setups. The simulation can login to the low-cost CDH over SSH and issue commands.

2.3.4. Universal Interface Node

The multitude of processing nodes involved in the links of the simulation to ADCS and EPS
introduces a high latency of more than 100 ms. Also, WebSocket uses TCP, and therefore has more
latency than UDP communication. As an effort to simplify the connection between simulation and
hardware, the universal interface node uses only one device translating from UDP packets sent by the
simulation to the bus of the device under test. Instead of defining a fixed packet format, the simulation
serializes and packetizes the sensor values using Google Protobuf. The UIN is in development and
only allows for communication over the buses Onewire and SPI at the time of writing. Multiple UINs
emulate a subset of MOVE-II’s temperature sensors, which are read out by the CDH.

2.3.5. Channel Simulator

The RF link between the ground station and the satellite heavily impedes operations, especially
when the satellite is tumbling or using a directional antenna that needs to track the ground station.
The Channel Simulator is a GNU radio block that adds Doppler shift and dampening to the digital
signal depending on the satellite’s range, orientation, and velocity with regard to the ground station.
The antennas of the satellite and the experimental ground station in the integration are replaced with
an RF cable and an attenuator. The channel simulator block can run on the ground station PC or on a
PC with a separate SDR (software-defined radio). The channel simulator is a work in progress and will
be included in a future iteration of the HIL setup.

2.4. Simulation Approaches

The simulation environment is capable of executing different simulation approaches by
deactivating blocks and rerouting signals in the Simulink model shown in Figure 6:
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• Ideal Simulation (IS): The Simulink model only considers the minimum set of blocks to build
a control loop. Therefore, the Sensor Models, Actuator Models, and Disturbances blocks are
deactivated. The selected controller block is Simulated Controller.

• Realistic Simulation (RS): The Simulink models considers a high-fidelity space environment,
sensor and actuator models. Again, the selected controller block is Simulated Controller.

• Software-in-the-Loop (SIL): The control algorithm implemented in C++ code processes the sensor
readings. This algorithm is implemented in the block Controller Software. The C++ code of the
algorithm is part of the ADCS firmware. Therefore, parts of the flight firmware can be tested
within the simulation environment.

• Hardware-in-the-Loop (HIL): This approach incorporates the satellite hardware into the setup
as depicted in Figure 4. Algorithms are no longer directly implemented in the Simulation
environment, but on the satellite hardware. Simulations in HIL run at real-time, and are therefore
substantially slower than in any of the less extensive approaches above.

By default, the simulation approaches RS, SIL, and HIL include all models, whereas the IS
approach only includes a minimum set as mentioned before. If desired, the user may choose whether
to disable any of the models or to change specific simulation parameters for these models.

The simulation allows a user to easily switch between the different approaches depending on
the purpose of the test run. These methods provide a wide range of possibilities to verify and test
algorithms or other aspects under different perspectives. The IS method provides a very simple
simulation framework for a first proof-of-concept of algorithms such as control laws. Using the RS
method, we can utilize the high-fidelity implementation of models. This allows simulating algorithms
implemented in Matlab/Simulink under more realistic conditions. As opposed to the IS method,
the simulation speed of the RS method can be significantly slower. For the SIL method, we embed
the code algorithms in a Simulink block by using Level-2 S-functions. As depicted in Figure 4, these
blocks containing the code can be connected to the remaining blocks of the Simulink model. Thus,
the software implementation of an algorithm can be easily verified and tested with simulated inputs.
Finally, the HIL approach utilizes the processing hardware on which the algorithms are implemented.
This allows us to account for hardware-related issues that are not considered in the other methods.
However, due to the implementation of the HIL setup, delays and roundtrip times can affect the
simulation output, as described later in Section 2.6. Table 4 gives an overview of the objectives and
constraints for each method.

Table 4. Objective and constraints of the simulation approaches

Approach Objective Constraints

IS Evaluation of new controller concepts Low fidelity of modeling
RS Realistic verification of algorithms No verification of firmware
SIL Verification of the source code of algorithms No consideration of hardware issues
HIL Verification of the hardware implementation Sensors and actuators still simulated

The development and verification process of an algorithm typically starts with the IS approach and
ends with the HIL approach. The implementation of an algorithm in Matlab/Simulink is rather easy,
allowing the developer to evaluate new concepts and ideas in short time. In a next step, the performance
of these algorithms can be investigated in more detail using the RS approach. The simulations can
be executed a lot faster than real-time allowing evaluation of the long-term stability. If the algorithm
shows promising results, one may decide to implement it in C++ code and integrate it into the
simulation via the SIL approach. The software modules are verified for correct implementation. The
last step is a HIL verification where the algorithms are finally implemented in the firmware of the
ADCS Mainpanel.

Before starting a simulation, one can choose to do a single run or to enter a special simulation
mode. These special modes are useful for performing several simulations automatically at once. They
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are especially interesting when evaluating control algorithms, but they also can be used for different
analysis like determining the power budget of the satellite. The modes are introduced in the following.

• A list with test cases. Each test case specifies a set of simulation parameters. The simulation will
run through all test cases until the list is finished in one go.

• A Monte Carlo simulation with randomized initial attitude and angular velocity. This simulation
helps in analyzing the convergence behavior of a control algorithm with respect to varying
initial conditions. Both the average convergence time as well as the probability of convergence
are measured.

• A sensitivity analysis, where multiple simulation parameters are varied over a preset value range.
This simulation mode reveals if the controller is robust to environmental changes and deviations
from the target orbit.

We use Matlab/Simulink for editing the simulation and adjusting its parameters. The user
selects the correct settings and simulation parameters in a Matlab script. This script calls different
functions which set the interface emulators to the correct mode, initialize the Simulink model and
issue commands to the satellite’s CDH. Afterwards, depending on the selected settings, the specified
series of simulations is executed automatically.

2.5. Data Flows

Figure 7 shows the components mentioned in the previous section including the type of connection
and the transferred information. Most connections carry digital signals. Only the interface to EPS
includes analog voltages mimicking an array of solar cells. The Panel Emulator translates from
WebSockets to the ADCS’s SPI bus, and the Solar Array Simulator translates from WebSockets to the
VI curve that the EPS’s MPP trackers expect. Both the Panel Emulator and the Solar Array Simulator
use a dedicated WebSockets server that connects to the simulation via UDP messages. The Universal
Interface Nodes translates directly from UDP to the CDH’s Onewire bus. Also, the Channel Simulator
uses UDP messages for connecting to the simulation.

2.6. Characteristics of the HIL Environment

As jitter is introduced by the timing of the simulation steps running on an asynchronous operating
system and the network roundtrip times vary, two runs with the same parameters will never yield the
exact same results. Moreover, only a Simulation Pace block in the Simulink model slows down the
execution time to real-time. We can show that the repeat accuracy is better than 0.3◦ when considering
the pointing error for a run of two orbits [20]. The reference here is a test case demonstrating Spinning
Sunpointing with all disturbances on realistic level. The longer the simulation, the bigger the difference
between two runs with the same parameters; therefore, the HIL environment is not suitable for
conducting sensitivity analyses of highly accurate attitude control systems. To overcome this limitation
in the future, the simulation needs a dedicated real-time target and the interface emulators need to
use low-latency protocols, similar to the Universal Interface Node. The round-trip-time between
simulation and Panel Emulator is 300 ms with the maximum sample time in the simulation set to 50 ms.
If one assumes that a change in attitude below 10◦ can be considered insignificant, the maximum
angular velocity of the satellite should never exceed 33 ◦/s. Simulations at higher velocities will always
suffer significantly from delays and jitter introduced by the HIL environment.
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Figure 7. The components of the hardware-in-the-loop (HIL) environment along with the transferred signals.

3. Results

As the HIL environment is a tool rather than a method, we see its applications and the insight
gained through these applications as the results of the HIL environment. Consequently, we want
to show how the HIL environment has been used during different phases of the MOVE project in
this section. Sections 3.1 to 3.3 show how the HIL environment contributed to the development of
the ADCS algorithms and the EPS configuration before delivery of the satellite. Section 3.4 describes
usage of the HIL environment to make operator trainings more realistic. Section 3.5 covers how the
simulations helped to interpret flight data and provided useful insights to the mission controllers.
Section 3.6 shows the verification of new ADCS algorithms that shall overcome the shortcomings we
found during the initial verification phase and during flight of the satellite.

3.1. Verification of the ADCS Control Algorithms

Tests in a Helmholtz cage with the satellite suspended on a string showed the B-Dot detumbling
controller working well, but the behavior of the satellite in space with all three rotational degrees
of freedom and its long-term stability were not known. The HIL setup allowed the team to verify
all ADCS algorithms in a simulated space environment before delivering the satellite for launch.
The reference orbit is a circular sun-synchronous orbit with a height of 575 km and a period of 5770 s.
More information about the B-dot detumbling controller, as well as the non-spinning and spinning
sun-pointing controller is given in [20]. A more detailed analysis of the spinning sun-pointing controller
can be found in [23].

B-Dot Detumbling Controller: Test cases with an initial angular velocity of up to 50 ◦/s show that
the B-dot algorithm as it is implemented on MOVE-II works reliably. Figure 8 shows the satellite
detumbling from 50 ◦/s to 1 ◦/s in 162 min. Detumbling from the maximum separation velocity expected
from the ISIS Quadpack deployer (10 ◦/s) to a velocity at which the satellite considers itself detumbled
and activates the sun-pointing mode (7.5 ◦/s) takes 12 min.

Tests of the B-dot controller in the Helmholtz cage showed good performance at velocities up to
20 ◦/s. The HIL simulation verifies that the B-dot controller handles rotations around three axes well
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and the damping of the string does not shadow any instabilities. Furthermore, the simulated motion
shows how the non-diagonal inertia tensor of MOVE-II leads to precession of the spin axis.
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Figure 8. Angular velocity of the satellite over time while the B-dot detumbling controller actuates.

Non-Spinning Sun-Pointing Controller: The ADCS team planned to use a sun-pointing controller
without a stabilizing spin at first. This state-feedback controller showed promising results when
executed in a simulation without disturbances, but needed manual tuning of the gains to compensate
environmental disturbances [14]. Figure 9 shows a HIL simulation of the controller over six orbits with
realistic disturbances. One MOVE-II orbit corresponds to 5770 s or 96 min. The controller is only active
in sunlight. During eclipse, the satellite remains passive to save power.
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Figure 9. Pointing error and angular velocity of the satellite over time while actuating with the
non-spinning sun-pointing controller. Eclipse periods are marked in gray.

The controller shows the tendency to align the axis of the desired torque with the direction of
the magnetic field B, thereby making the satellite uncontrollable. Equation (1) shows that all feasible
torque vectors τctr lie in a plane perpendicular to B. Therefore, one cannot find a dipole moment
vector mctr that would allow a control torque pointing in the same direction as the magnetic field.

τctr = mctr × B (1)

Depending on the initial conditions, this behavior needs a few orbits until it shows up. In Figure 9,
the satellite becomes uncontrollable after 1.2, 4, and 5 orbits. In a physical test setup with an air bearing,
this loss of control would be significantly harder to detect.
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Spinning Sun-Pointing Controller: The non-spinning sun-pointing controller’s tendency to align
the desired torque vector with the magnetic field is overcome by adding a spin around the z-axis.
The spin of 5.73 ◦/s stabilizes the pointing vector and enables the ADCS to counter the simulated
disturbance torques reliably. The ADCS stays on during eclipse to maintain the spin. Figure 10
shows the pointing error and angular velocity of the satellite over six orbits simulated with the
HIL environment at realistic levels of disturbances. When starting at an initial velocity of 10 ◦/s, the
controller takes ~12 min to reduce the pointing error below 10◦. The mean pointing error is 20.6◦ with
a standard deviation of 7.7◦. A test run of 16 orbits verifies the long-term stability of the spinning
sun-pointing controller and a sensitivity analysis shows that this controller does not become unstable
with varying sensor characteristics [20]. Consequently, spinning sun-pointing replaced non-spinning
sun-pointing as the default controller on MOVE-II shortly before freezing all software in preparation
for the delivery.
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Figure 10. Pointing error and angular velocity of the satellite over time while actuating with the
spinning sun-pointing controller. Eclipse periods are marked in gray.

After the software for MOVE-II had been finalized, a Monte Carlo analysis with 100 individual
simulation runs was performed to extend the controller’s analysis. This analysis randomly varies the
initial attitude and velocity vector. Table 5 shows the results. We can categorize four different types of
behaviors for the spinning sun-pointing controller. Nominal behavior is defined as the convergence to
a pointing error below 10◦ within a time of 25 min. Runs are categorized as slow convergence, when an
converging trend is obvious, but the pointing error is still above 10◦ after 25 min. Two other behaviors
are observed, which are highly undesirable. Anti-pointing describes simulation runs where the satellite
stabilizes at an attitude pointing away from the sun. Furthermore, in 24% of the cases, the controller
causes an oscillation in attitude, preventing the satellite from stabilizing at the operating point.

Table 5. Results of the Monte Carlo simulation with the spinning Sun-Pointing controller using RS approach.

Behavior Occurrence

Nominal behavior 49%
Slow convergence 20%
Oscillation 24%
Anti-pointing 7%
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3.2. Verification of the Attitude Determination Algorithms

As mentioned in Section 1, an EKF is implemented to estimate the satellite’s attitude and the
gyroscope bias. A singular value decomposition (SVD) method computes the attitude, which can
be used as a sanity check of the estimation of the EKF. It also allows to provide an initial estimate
for the EKF. Both approaches require environmental models, such as Earth’s magnetic field model,
a sun position model, Earth’s rotation, and orbit propagation. The complete attitude determination
architecture was verified using the RS, SIL, and HIL approach. As realistic sensor models are required
for functional attitude estimation, we skipped the IS approach. We developed the complete attitude
determination algorithms in Matlab code to provide a baseline implementation for the firmware code.
In the next step, the SIL approach is applied. Therefore, all the required C++ code modules for the
attitude estimation are embedded into the Simulink model. The existing C++ code of the EKF was
adapted and debugged so that the output is identical to the reference implementation.

We can show that the difference between the Matlab and the C++ estimation output is zero [24].
In addition, the estimation error of the gyroscopic bias for the Matlab and C++ code converges towards
zero. The verified firmware code was implemented on the ADCS Mainpanel for the HIL approach.
A couple of test runs are done to investigate the performance on the actual hardware. Utilizing HIL,
we could show the main functionality of the EKF, the SVD method, and all required environmental
models. The SVD method provided a sufficient initial estimate for the EKF. The environmental models
and the modified Julian date computation are verified additionally. The computed output is compared
with the environmental models in Simulink. It could be shown that numerical inaccuracies that were
expected early in the development phase do not corrupt the performance.

After the EKF initialization procedure during a running simulation, the bias estimate converges
as expected from the previous simulation with RS and SIL. The bottom plot of Figure 11 shows the
estimation error of the bias denoted by δβ̂ converges towards zero very quickly after initialization.
This event can be clearly seen as a jump at ~550 s. Before the initialization procedure, the bias error
converges very slowly.

The upper plot of Figure 11 shows the attitude estimation error denoted by δϑ̂. The component
are resolved as roll, pitch, and yaw denoted by x, y, and z, respectively.
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Figure 11. Estimation error of attitude (top) and bias (bottom) in HIL test run.
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After 2400 s we can see a deterioration of the estimation error, as the sun sensor is not available
for the EKF. The estimation errors are not only caused by modeling inaccuracies, but also by the
numerical inaccuracies of the EKF computation itself, the reference models, and the Julian date
calculation output. In addition, several delays (like network delays) within the HIL framework may
affect the estimation errors. A small time shift introduced by the compiling time of the Simulink
model, affects the estimation performance. Therefore, we are only able to assess the overall estimation
errors including the errors induced by the HIL environment. The overall functionality of the attitude
determination architecture implemented on the hardware was previously demonstrated [24].

In summary, the RS, SIL, and HIL approach provided a powerful tool to verify the attitude
determination algorithms in a very structured approach.

3.3. Verification of the EPS and Power Budget

Although the connection between the ADCS interfaces and the Mainpanel carried only
digital information, the connection between the solar cells and the EPS carries electrical power.
The introduction of Section 2 already stated that our HIL environment will cover the whole electrical
domain, so we need to provide realistic inputs and outputs to the EPS to test it in flight-like conditions
and verify the satellite’s power budget. The inputs, i.e., the solar cells, are replaced by the Solar Array
Simulator covered in Section 2.3.2. The outputs, i.e., all consumers of electrical power, are not replaced.
The HIL environment includes them as processing hardware. The actuators on the Sidepanels and
the Toppanels are one major power sink that are not part of the processing hardware. We connect
them in a read-only configuration so they will consume a realistic amount of power but do not disturb
the communication (see Section 2.3.1). This architecture ensures that the HIL environment resembles
the electrical power situation onboard the satellite at high precision. Furthermore, the verification is
simplified to starting the simulation and observing the state of charge of the battery.

From a power budget perspective, MOVE-II has three basic operational modes: Satellite switched
off, Safe Mode, and Nominal Mode. The EPS enters the mode Satellite switched off when the battery voltage
drops below 6.2 V, where it turns off all consumers and charges the battery until it reaches a fixed reset
voltage and exits this mode. As there are no consumers, and therefore no way to deplete the battery
even further, this mode does not need verification. In Safe Mode, the satellite uses as little battery power
as possible by powering only CDH, COM, and EPS, but as ADCS is turned off, there is no sun-pointing,
which results in reduced available solar power and slower battery charging. In Nominal Mode, the
satellite operates normally running CDH, COM, EPS, ADCS, and Payload. It uses more power than
in Safe Mode, but thanks to the sun-pointing action of ADCS, the illumination of the solar arrays is
optimized, resulting in a higher power income.

The power budget was verified for Safe Mode and Nominal Mode in separate HIL simulations. Both
simulations ran for four orbits (approximately 6 and a half hours). The state of charge versus time is
plotted for each case in Figure 12. Periods of sunshine (state of charge increasing) and eclipse (state of
charge decreasing) of the four orbits are distinctly recognizable in the plots.

Safe Mode (a) was shown to be power positive by the test, however only with a slight margin,
as the overall trend of state of charge is almost flat. On the contrary, the state of charge is clearly
increasing in Nominal Mode (b), which verifies a positive power budget for this mode with a safe
margin. The little margin of the Safe Mode power budget prompted the team to increase the reset
voltage of the Satellite switched off mode so the satellite recharges its batteries until the battery is at ~15%
state of charge. Later analysis showed that the satellite would have entered a reboot-loop otherwise
when trying to leave the mode Satellite switched off.

The power budget testing with HIL showed that our holistic test approach yields accurate results
and more coverage than a completely simulation-based verification. As the MOVE-II team did not
have access to the schematics of the EPS, in-depth modeling of this system would have resulted in
a poor model anyway. One aspect that our HIL environment completely ignores is the temperature
dependency of the battery. With decreasing temperature, the battery efficiency decreases too, thereby



Aerospace 2019, 6, 130 17 of 25

reducing the available energy [25]. The operating temperature of the battery was 25 ◦C during the
power budget tests compared to ~5 ◦C in orbit. The reduction in efficiency causes the power budget to
become negative in Safe Mode during flight. Consequently, the battery should also be categorized as an
interface in a future iteration of the HIL environment and be replaced with a battery simulator that
receives the battery temperature from the simulation.
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Figure 12. Battery state of charge versus time in (a) Safe Mode according to HIL simulation. Battery
state of charge versus time in (b) Nominal Mode (according to HIL simulation).

3.4. Benefits during Operator Trainings

During the months preceding MOVE-II’s launch on 3 December 2018, the team organized weekly
operator trainings to learn how to analyze and solve problems during short overpasses. The training
setup is the HIL environment with the Engineering-Model of MOVE-II as the device under test. For a
test, a fault from one of the domains in Table 6 is injected. Four overpasses with a duration of 10 min
each are simulated for each test. The team of operators then tries to diagnose the problem and evaluate
a possible resolution.

Table 6. Fault domains covered in the operator trainings.

Domain Examples

Satellite hardware
set a sensor to zero, inverted sensor signal, higher noise or bias,
broken actuator or operating at half of the nominal dipole moment,
lower solar cell efficiency

Space environment
higher disturbance torques, elliptical orbit, very low orbit, high
initial tumbling rate

Satellite software
install wrong version of a program, set wrong gains, fill the file
system with log data, corrupt a system image

The operators were working in the actual mission control center, visualizing data, and
sending commands through the operations interface, that was developed specifically for MOVE-II.
The operations interface has a separate database for the engineering model and connects to the
experimental ground station in the integration room instead of the roof-mounted ground station.
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The experimental ground station talked to the satellite transceiver over omnidirectional antennas.
The Engineering-Model embedded in the HIL environment as shown in Figure 5 was sitting on a desk
in the integration room.

Augmenting the operator training with a real-time simulation of the spacecraft and its
environment adds realism and improves the learning effect for the operators. The most advanced
framework for mission simulation and conducting operator trainings known to the authors of this
article is the NASA Operational Simulator for Small Satellites (NOS3) [26]. Although NOS3 replaces
the actual hardware with simulated subsystems, our HIL approach covers most of the hardware and all
of the software that is used during the actual mission. It includes the stack of subsystems, the ground
station PC and SDR, the operations server, and the mission control center.

Using HIL simulations for operator trainings showed several advantages for the mission.
The mission controllers gained practical experience with different fault scenarios: they discovered
characteristics of the satellite that were not covered by the procedures so far and updated the
documentation accordingly. Additionally, knowing that they commanded an actual piece of hardware
increased their motivation to resolve the fault scenarios.

3.5. Benefits during Mission Operations

Closely after, the MOVE-II CubeSat was launched on the 3rd of December 2018 while the ADCS
was inactive; its angular velocity slowly increased reaching over 500 ◦/s. The most probable reason for
this behavior is a magnetic dipole created by the solar cell wiring [19].

The ADCS is not designed to work under high angular velocities. If the velocity rises above a
few hundred degrees per second, the delay between measurement and actuation will cause instability.
This section gives an overview on the analysis carried out to understand the ADCS behavior in orbit
and detumble the satellite successfully.

We can show that the average decrease of the angular velocity that the detumbling controller
produces is proportional to

∆t
∆t + T

· sinc
(

ω · ∆t
2

)
cos (ω · δT) , (2)

where ω is the angular velocity of the satellite, ∆t is the length of the actuation interval, T is the
time between actuations (thus, ∆t/ (∆t + T) is the controller’s duty cycle), and δT is the time elapsed
between the measurement of Ḃ (the time derivative of the magnetic field of the Earth measured in the
body frame, which is used to compute the magnetic control moment) and the center of the actuation
interval. Note that the B-dot detumbling algorithm keeps the generated magnetic control moment
constant over the whole actuation interval ∆t.

From Equation (2), we can derive the stable regions of ω. If Equation (2) is positive, the satellite’s
angular velocity decreases. The function’s first root is given by

ωmax = min
{

2π

∆t
,

π

2δT

}
= min

{
360◦

∆t
,

90◦

δT

}
. (3)

For ω < ωmax the controller is able to reduce the angular velocity. Therefore, ωmax represents the
boundary angular velocity of the stable range. For the computation of δT, the processing delays given
in Table 7 must be taken into account.

The B-dot detumbling algorithm derives Ḃ from a linear fit over the last five B measurements,
which are obtained every 50 ms. Therefore, the estimated value is valid at the center of this
measurement interval, and this method for computing Ḃ results in a 125 ms measurement delay
is added to δT. The calculation and the command transfer to the actuators take 35 ms. Furthermore, as
the commanded current stays constant over the whole actuation period, an extra ∆t/2 delay must be
added to δT.

The spinning sun-pointing controller behaves like a detumbling controller for high angular
velocities. Therefore, its stability was analyzed since it could also be used for detumbling the satellite.
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In contrast to the detumbling controller, it does not use a buffer for measurements, thus the 125 ms
delay is not present in this controller. However, the processing delay and the actuation period are
significantly longer, so its δT is longer than the B-dot’s overall delay.

Table 7. Timing values of B-dot (detumbling) and sun-pointing algorithms and theoretical maximum
stable angular velocities. Processing delays are estimated values.

∆t (ms) T (ms) Process. Delay (ms) Meas. Delay (ms) δT (ms) ωMax (◦/s)

B-dot 300 700 35 125 310 290
Sun-Pointing 500 500 160 0 410 219

Using the SIL approach, it is possible to characterize the behavior of the controllers for various
initial angular velocities. Therefore, several Monte Carlo simulation runs were conducted. The initial
angular velocity was randomly initialized for each test run. The average difference in the norm of the
angular velocity that the controllers achieved after a fixed amount of simulation time, denoted by ∆ω,
was computed. Figure 13 shows the different stability and instability ranges of both the detumbling
controller and the sun-pointing controller. The controller is able to reduce the angular velocity after
simulation run time within the stability region with ∆ω < 0. We can show that the curves obtained by
the theoretical considerations using Equation (2) can be verified by the simulation test runs.
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Figure 13. Stability regions for detumbling and sun-pointing controllers.

As the controllers’ gains can be changed from ground, it is possible to invert their signs in order to
make the unstable ranges stable (but also the stable ranges unstable). Thus, considering the satellite’s
current angular velocity, we can choose between sun-pointing and detumbling controllers, with or
without inverted gain, to make the algorithm stable for a given angular velocity. Through iterations
of this process over several months, we have been able to detumble MOVE-II from an initial angular
velocity value beyond the algorithms’ maximum stable angular velocities. The SIL approach proved to
be useful for troubleshooting this situation and for verifying the theoretical models.

3.6. Verification of New Software

The HIL environment provides the possibility to test new algorithms that can be uploaded to
the satellite later on. This section presents new attitude control algorithms that have been designed
and tested in the HIL environment. We apply different simulation approaches as summarized in
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Table 4. The IS and RS approaches are used to design the controllers, whereas the SIL approach helps
to implement and verify the C++ code. Finally, the HIL approach verifies the code implemented in
hardware. After verification, the presented controllers were included in MOVE-IIb’s flight software.

3.6.1. Evaluating New Control Strategies for Sun-Pointing

The evaluation of the spinning sun-pointing controller in Section 3.1 makes confirms that there
is still potential for more accurate and more reliable controllers. The following sections present
the verification of one state-feedback controller, namely, the extended LQR controller, and one
Lyapunov-based controller, namely, the Delta-H controller.

During development, the controller of the JC2Sat mission [27] and the modularly constructed
controller proposed in [28] were considered and analyzed, too. However, they did not show promising
result in the RS setup for MOVE-II. Detailed analysis of these controllers can be found in [23].

Extended LQR Controller: With the HIL simulation, we could identify the shortcomings of the
spinning sun-pointing controller stated in Section 3.1. After analyzing the spinning sun-pointing
controller’s shortcomings, a new controller was developed to improve the pointing performance. The
gain is calculated using the LQR algorithm [29], especially penalizing a deviation in the pointing error.
This leads to a faster convergence of the pointing error. The detailed description of this controller can
be found in [23] (pp. 39–49). Figure 14 compares the results of a Monte Carlo simulation in SIL with
the spinning sun-pointing controller (a) and the extended LQR controller (b). In total, 100 runs are
performed for every controller. Five successful runs are shown in the figure. A Monte Carlo run is
considered a success if the pointing error converges below a threshold of 20◦ within 0.26 orbits. It is
obvious that, on average, the extended LQR controller converges faster than the spinning sun-pointing
controller. When analyzing all runs of the Monte Carlo simulation, 49% of the spinning sun-pointing
controller are successful and 76% of the extended LQR controller are successful. The final pointing
errors are 3.0◦ and 2.3◦, respectively. Thus, SIL helps to compare these two controllers and make an
estimate, which of them performs better in space.
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Figure 14. Five successful runs of the Monte Carlo simulation for (a) the spinning sun-pointing
controller and (b) the extended LQR controller in software-in-the-loop (SIL).

Delta-H Controller: As Section 3.1 shows, the spinning sun-pointing controller only shows
nominal behavior in 49% of the cases. The issue of limited convergence towards the operation point is
a possible characteristic of linearized controllers if the system equations are nonlinear. To overcome
this issue, we implemented and tested the Delta-H controller, whose nonlinear control law is based on
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a Lyapunov function. The basic idea of this controller is first proposed in [30] and then extended for
global convergence in [31].

The nonlinear control law ensures global convergence to the desired attitude from any initial
attitude and angular velocity. Consequently, the success rate of the Delta-H controller in a SIL Monte
Carlo simulation is 100%, as Figure 15 demonstrates. In a HIL simulation, the implementation of the
Delta-H controller could be verified successfully on the flight hardware. As the Delta-H controller
achieves a similar pointing accuracy as the spinning sun-pointing controller [23], it was included in
MOVE-IIb’s flight software.
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Figure 15. Results of the Monte Carlo simulation with the Delta-H controller with 100 individual runs.

3.6.2. Fast-Detumbling Algorithm

Based on the stability analysis performed in Section 3.5, a modified version of the detumbling
algorithm was implemented (fast-B-dot algorithm), which in theory would have a considerably larger
stable ω range.

This control algorithm was developed based on the experience with MOVE-II and implemented
in time for adding it into the MOVE-IIb firmware before the launch. This provides an additional
option for detumbling the satellite in situations similar to those experienced with MOVE-II, and
allows detumbling without having to switch between the inverted or non-inverted sun-pointing and
detumbling control algorithms.

The main idea behind the fast-B-dot algorithm is to measure the satellite’s angular velocity
and use it to extrapolate the value of the measured magnetic field of the Earth to the center of the
actuation interval, so as to decrease the value of δT (see Equation (2)). Afterwards, the angular velocity
is used once again to estimate the value of the time derivative of the magnetic field based on the
previous extrapolation, instead of using a buffer as in the original detumbling algorithm. These
modifications, which are implemented with a single formula, eliminate both the measurement delay
and the extra ∆t/2 that needed to be considered before. The estimated value of the processing delay is
also considered for the extrapolation. As the timing of the algorithm defines the stability ranges, it was
implemented in a way that its timing values (∆t, T, and the extrapolation time) can be reconfigured
from ground.

Without extrapolation, it will always be the case that δT ≥ ∆t/2, and then, based on Equation (3),

π

2δT
≤ π

∆t
<

2π

∆t
⇒ ωMax =

π

2δT
=

90◦

δT
.

With the extrapolation, a value of δT ≈ 0 is achieved and, as π/(2δT)→ ∞, then
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ωMax =
2π

∆t
.

Note that the value of π/(2δT) is highly sensitive to the value of δT when δT ≈ 0, but as long as
the value of δT is decreased with respect to the value of δT of the unmodified detumbling algorithm,
the stable range will be extended, and if δT < ∆t/4 is achieved, then the value of ωMax will only
depend on the length of the actuation interval ∆t.

As the delays of the HIL setup would affect the behavior of the fast-B-dot algorithm, a SIL
simulation was performed to verify that the algorithm implementation was working properly and
as expected. The same simulations that were performed for the stability analysis were performed
once again but with the addition of the implementation of the fast-B-dot algorithm. The fast-B-dot
controller’s timing values are given in Table 8. Figure 16 shows the stability regions of the fast-B-dot
controller compared to the default B-dot detumbling and spinning sun-pointing controller. These
curves have been verified by Monte Carlo simulations utilizing the SIL approach. The timing values of
the detumbling and sun-pointing controllers can be found in Table 7 for reference.

Table 8. Timing values of fast-B-dot and theoretical maximum stable angular velocity. Processing delay
is an estimated value.

∆t (ms) T (ms) Process. Delay (ms) Meas. Delay (ms) Extrapolation (ms) δT (ms) ωMax (◦/s)

300 300 75 0 225 0 1200

0 250 500 750 1000 1250 1500
−5

−3

−1

1

3

5

Initial spin rate [◦/s]

∆
ω
[◦

/
s]

Detumbling
Sun-Pointing
Fast-Detumbling

Figure 16. Stability Regions for B-dot and sun-pointing controllers, compared with fast-B-dot controller.

The SIL approach allowed us to verify that the implementation of the algorithm was working
properly and, combined with other testing methods we used, it allowed us to develop and verify the
modified ADCS firmware in time for uploading it onto MOVE-IIb.

4. Conclusions

The simulation environment presented in this article helped us to verify MOVE-II’s flight software
with a strong focus on ADCS. The verification of the attitude control algorithms mentioned in
Section 3.1 showed how our simulation approach helped the developers to discover and resolve
instabilities efficiently. The verification of the power budget presented in Section 3.3 included the
maximum power point trackers, all voltage regulators, the battery, and all power consumers in



Aerospace 2019, 6, 130 23 of 25

hardware. Thus, we avoided the effort of modeling these nonlinear systems. The inclusion of the
electric domain in the design of the HIL environment resulted in accurate measurements of the
satellite’s power budget in the most important mission phases. Also, without the adjustments to
the EPS’s reset voltage prompted by the power budget verification, MOVE-II would have ended up
in a reboot loop leading to a failed mission. The simulation environment was easy to extend and
combine with the MOVE-II ground station enabling the realistic operator trainings mentioned in
Section 3.4, and it helped to analyze the high spin rate of MOVE-II and select the best strategy to
detumble the satellite as discussed in Section 3.5. After the MOVE-II launch, algorithms that could
be successfully verified in the HIL environment were implemented on the next satellite MOVE-IIb,
as mentioned in Section 3.6. We see HIL verification as an efficient way for new developers to prove
correct functionality of the software in short time.

In summary, the work with this testing environment shows how we can enhance the reliability
of CubeSats through system-level tests. Future work on the HIL environment and its application to
earlier stages of satellite development will help to have a more holistic approach to CubeSat testing
on-ground. Despite the current limitations of the simulation environment, the test approach carried
out on MOVE-II had clear benefits for the mission and helped to ensure a reliable satellite operating
in space.

Future work will include reworking the current implementation of the hardware interfaces.
The universal interface node (UIN) mentioned in Section 2.3.4 is both faster and more flexible than the
previous hardware interfaces. It shall be primarily used in future missions. Despite the development
of MOVE-II and MOVE-IIb being finished, work on the HIL environment is ongoing to improve the
thermal model and the channel simulator, so as to improve the operator trainings. As all tests can
be fully automated, the environment is suitable for inclusion in a continuous deployment workflow
where code changes trigger automatic tests on the hardware.

We think that a HIL environment containing the processing hardware of all subsystems and
covering the domains of digital sensor signals and electric power is a good testing solution for every
CubeSat mission, especially if the power income depends on the satellite’s attitude. We see it as a
scalable and expandable test approach with relatively little development effort, low cost, and high
hardware coverage.
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