
aerospace

Article

Image Interpretability of nSight-1 Nanosatellite
Imagery for Remote Sensing Applications

Paidamwoyo Mhangara 1,2,*, Willard Mapurisa 1 and Naledzani Mudau 1

1 South African National Space Agency, Innovation Hub, Pretoria 0087, South Africa;
wmapurisa@sansa.org.za (W.M.); nmudau@sansa.org.za (N.M.)

2 School of Geography, Archeology and Environmental Studies, University of Witwatersrand, 1 Jan Smuts
Avenue, Braamfontein 2000, Johannesburg, South Africa

* Correspondence: paidamwoyom@yahoo.com

Received: 24 December 2019; Accepted: 18 February 2020; Published: 25 February 2020
����������
�������

Abstract: Nanosatellites are increasingly being used in space-related applications to demonstrate and
test scientific capability and engineering ingenuity of space-borne instruments and for educational
purposes due to their favourable low manufacturing costs, cheaper launch costs, and short
development time. The use of CubeSat to demonstrate earth imaging capability has also grown in the
last two decades. In 2017, a South African company known as Space Commercial Services launched a
low-orbit nanosatellite named nSight-1. The demonstration nanosatellite has three payloads that
include a modular designed SCS Gecko imaging payload, FIPEX atmospheric science instrument
developed by the University of Dresden and a Radiation mitigation VHDL coding experiment
supplied by Nelson Mandela University. The Gecko imager has a swath width of 64 km and captures
30 m spatial resolution images using the red, green, and blue (RGB) spectral bands. The objective of
this study was to assess the interpretability of nSight-1 in the spatial dimension using Landsat 8 as a
reference and to recommend potential earth observation applications for the mission. A blind image
spatial quality evaluator known as Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)
was used to compute the image quality for nSight-1 and Landsat 8 imagery in the spatial domain and
the National Imagery Interpretability Rating Scale (NIIRS) method to quantify the interpretability of
the images. A visual interpretation was used to propose some potential applications for the nSight1
images. The results indicate that Landsat 8 OLI images had significantly higher image quality scores
and NIIRS results compared to nSight-1. Landsat 8 has a mean of 19.299 for the image quality score
while nSight-1 achieved a mean of 25.873. Landsat 8 had NIIRS mean of 2.345 while nSight-1 had a
mean of 1.622. The superior image quality and image interpretability of Landsat could be attributed
for the mature optical design on the Landsat 8 satellite that is aimed for operational purposes. Landsat
8 has a GDS of 30-m compared to 32-m on nSight-1. The image degradation resulting from the
lossy compression implemented on nSight-1 from 12-bit to 8-bit also has a negative impact on image
visual quality and interpretability. Whereas it is evident that Landsat 8 has the better visual quality
and NIIRS scores, the results also showed that nSight-1 are still very good if one considers that
the categorical ratings consider that images to be of good to excellent quality and a NIIRS mean of
1.6 indicates that the images are interpretable. Our interpretation of the imagery shows that the data
has considerable potential for use in geo-visualization and cartographic land use and land cover
mapping applications. The image analysis also showed the capability of the nSight-1 sensor to capture
features related to structural geology, geomorphology and topography quite prominently.

Keywords: nanosatellites; remote sensing; image quality; image interpretability; land use and land
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1. Introduction

The use of miniaturized satellite platforms such as microsatellite and nanosatellites for earth
imaging has been gaining momentum globally over the last decade [1–6]. Trends in miniaturization
of low earth orbit earth observation satellites witnessed over the last few decades have been driven
by universities, commercial satellite operators and space agencies that aim to reduce development
cost, reduce launch overheads and scale down development time associated with large satellites such
as Landsat, ENVISAT, and Sentinel missions. Traditional large earth observation satellites such as
ENVISAT weighed as much as 7.9 megatonnes and NASA’s TERRA mission weighed 5.2 megatonnes.
Mass is a key determinant in the classification of satellites according to size. Konecny [7] outlines that
satellites are usually classified as follows: large satellites (> 1000 kg), medium satellites (500–1000 kg),
minisatellites (100–500 kg), microsatellites (10–100 kg), nanosatellites (1–10 kg), picosatellite (0.1–1 kg),
and finito satellites (< 100 g). Small satellite missions are shifting the paradigm in earth observation
because of their low development cost and short development time makes the development of imaging
constellation feasible and mitigates the risk of single-point failures. Small satellite constellations
enable more frequent revisit times for time-sensitive applications such as disaster management, crop
monitoring, and other time series applications that require high temporal resolution [3,6]. The concept
of small satellites has also proven to be attractive due to the opportunities it provides for human
capital development in the field of space science and technology and the partnerships forged between
high-tech manufacturing small and medium enterprises, universities, and space agencies.

Low cost miniaturized satellite architectures are increasingly proving to be ideal for technology
demonstration and scientific experimentation. A trend analysis on civilian earth observation satellites
reveals that earth observation spaceborne systems are increasingly moving towards the usage of
cheaper miniaturized platforms that use commercial-off-the-shelf (COTS) components [8]. The study
further alludes to the growing need for ownership of spaceborne systems by governments and satellite
operators to enable greater control of technology and data flows, innovation, and education. The
growth is small satellite development is driven by advancements in electronic and computer systems
engineering, particularly miniaturization and quantum leaps in performance capability. The emergence
of small launch providers on the market has increased low-cost launch opportunities [8–10]. The growth
in small satellites has also been supported by the development of smaller and low-cost ground stations
with rapid data dissemination mechanisms. Planet Labs have successfully demonstrated the feasibility
of using smaller and cheaper satellites for operational and commercial earth observation applications.

The synoptic view provided by satellite images at varying spatial, spectral, and temporal
resolutions has optimized the usage of satellite-based earth observations for a range of socio-economic
applications such as crop monitoring, human settlements mapping, urban growth assessment, surface
water monitoring, vegetation mapping, and post-disaster assessment. In recent years, CubeSats have
become the main platform for demonstrating and testing imaging payloads and have been utilized for
measuring various land, atmospheric, and ocean parameters. At least 300 CubeSats have been launched
since 2000 and it is anticipated that the number of nano and microsatellites will grow exponentially by
2020. While capability demonstration and education has been the main objective of CubeSat programs,
the scientific quality of the data produced by CubeSat constellations are frequently exceeding initial
expectations. Sarda [11] note that CanX-2 effectively acquired total column measurements of carbon
dioxide and GNSS radio occultation measurements.

Since the turn of this decade, the development of nanosatellites commonly known as CubeSats has
been gaining traction in South Africa [12]. Cape Peninsula University of Technology’s (CPUT) French
South African Institute of Technology (F’SATI) pioneered the development and launch of South Africa’s
first CubeSat known as ZACUBE-1 (codenamed TshepisoSAT) that was launched on 21 November
2013. While ZACUBE-1 was primarily aimed at ionospheric studies and carries an HF beacon as its
primary instrument, it has onboard a low-resolution wide swath imager as a secondary payload. As a
follow-on mission, CPUT developed a second CubeSat known as ZACUBE-2 that carries onboard a
medium resolution matrix imager and a number of communication subsystems aimed at providing AIS
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(Automated Information Service) and VDES (VHF Data Exchange Service) data to support maritime
domain awareness services [12,13]. In 2017, another South African company developed a nanosatellite
known as nSight-1 that was launched as part of the European Commission-funded international QB50
constellation [14]. The nanosatellite was developed over 6 months by the Space Commercial Services
(SCS) Aerospace Group in partnership with South African space industry partners [15]. nSight-1
weighs 2.5 kg and has a volume of 10 × 10 × 20 cm3 [14,15]. It has three onboard payloads that include
a modular designed SCS Gecko imaging payload, FIPEX atmospheric science instrument supplied
by University of Dresden and a Radiation mitigation VHDL coding experiment supplied by Nelson
Mandela University [16]. Gecko imaging payload consists of a 30-meter resolution colour red, green,
and blue (RGB) ‘snapshot’ camera with an integrated data storage and image processing system. The
imaging payload uses a matrix sensor in snapshot mode that captures RGB images at 5 frames per
second. nSight-1 nanosatellite orbits the earth at an altitude of 400 km with a 50-degree inclination.
The imaging payload produces RGB images with Bayer patterns that are downlinked through low
bandwidth telemetry radio subsystem.

Whereas CubeSats have demonstrated their capability to capture satellite data at a variety of
spatial, spectral, radiometric, and temporal resolutions, little is known about their image quality and
usability for key land use and land cover mapping applications. Image quality is a major parameter
driving the utilization of satellite data. Many studies emphasize the significance of spatial data quality
indicators. The growing interest in data quality is partly due to the proliferation of digital services that
utilize remote sensing data [17,18]. The Quality Assurance for Earth Observation (QA4EO) initiative
points out that all data and derived products must have a Quality Indicator based on a statistically
derived value that must be unequivocal and universal in terms of its definition and derivation [18].
Quality indicators could be objectively derived from measurement and calculations or subjectively
from expert judgement. Many global missions such as NASA and USGS’s Landsat series missions,
ESA’s Sentinel mission, and NASA’s MODIS Aqua and Terra satellite missions are well radiometrically
calibrated and their image quality parameters are well documented. In sharp contrast, the image
quality parameters for many small satellites are unknown or at least are not in the public domain. In
many instances, satellite imagery from most CubeSats is not radiometrically calibrated, limiting the
usage of such data in mainstream remote sensing applications.

A variety of image quality assessment methods have been developed to assess satellite image
quality in terms of spatial and spectral consistency of data. Satellite image quality is a subject of
considerable scientific interest because of its multifaceted nature and has been expressed using several
technical parameters such as ground sampling distance (GSD), relative edge response (RER), edge
extent (EE), line spread function (LSF), modulation transfer function (MTF) or point spread function
(PSF), and signal to noise ratio (SNR) are used to quantitatively characterize the images in terms
of sharpness, noise, nonlinearities, and artefacts [19,20]. The National Image Interpretation Rating
Scale (NIIRS) is another well-established image quality metric that is used for evaluating image
interpretability and defines objects that are discernible in an image using a rating scale of 0 to 9 [21].
Markedly, the most influential parameters that affect image quality are GSD, MTF, and SNR [22,23].

It is estimated that GSD contributes considerably (more than 70%) to visual image interpretability
using the National Image Interpretation Rating Scale (NIIRS). The fifth version of the General Image
Quality Equation (GIQE) shown below predicts the NIIRS is largely based on SNR, RER and GSD [22].

NIIRS = A0 + A1∗Log10(GSD) + A2 ∗

[
1− exp

( A3

SNR

)]
∗Log10(RER) + A4∗Log10(RER)4 +

A5

SNR
(1)

where:

RER = Relative Edge Response
GSD = Ground Sampled Distance
SNR = Signal-to-Noise Ratio
A0 to A5 = General Image Quality Coefficients 9.57, −3.32, 3.32, −1.9, −2, −1.8 respectively.
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Many attempts have been explored to predict NIIRS ratings from the images and their associated
metadata [24]. The researchers point out that while the GIQE provides a good estimation of NIIRS, it
does not account for atmospheric effects that affect image quality. Leachtenauer [25] evaluated the
image quality metric (IQM), just-noticeable-difference (JND) metric, peak signal-to-noise ratio (PSNR),
root-mean-square error (RMSE), and maximum absolute difference (MAD) objective quality metrics to
assess their predictive perceptual quality difference ratings. The assessment indicated that the IQM
developed by Nill et al. (1992) was highly correlated with NIIRS ratings and could be used as an
indicator to predict the labor-intensive NIIRS ratings. Similarily, Irvine and Nelson [24] highlight
that the IQM based method that predicts NIIRS ratings is reliable and performs well under a variety
of conditions. The image quality measure (IQM) developed by Nill [26] provides an objective and
automated means of measuring that is highly correlated to NIIRS. The NIIRS ratings are obtained by
applying the gradient and intercept values derived from the IQ-NIIRS regression equation [27]. A scale
factor translates the power spectrum’s inherent scale-independence to scale-dependence to convert
the Image Quality to NIIRS ratings. A comparison of visual NIIRS and IQM yielded a correlation
coefficient of 0.93.

The spatial frequency power spectrum of digital images holds critical image quality information
such as sharpness, contrast, and detailed rendition of the images [26]. Image quality assessments have
the potential to provide a quality indicator of data captured by nanosatellites in the absence of metadata
containing absolute or relative radiometric calibration information. In general terms, image quality
approaches can also be classified to reference-based image quality assessment methods and blind or
no-reference based algorithms [28]. While reference-based methods are dependent on pristine imagery
as a reference source, blind, or automatic image quality assessment is feasible without the need for
reference image through the application of objective blind algorithms that predict quality metrics in the
distorted image by computing the deviations from the regularity of natural statistics [29,30]. In most
cases, natural images are characterized by particular regular statistical properties that are quantifiably
modified by the occurrence of distortions. The luminance parameters of natural images are generally
locally normalized and conform to the Gaussian-like distribution. The no-reference image quality
assessment is purely spatial and is dependent on a spatial NSS model that does not require co-ordinate
domain transformation. The model is highly efficient and is valuable for optimizing image processing
techniques such as denoising. Image quality assessment is usually constrained by the absence of
reference images. Mittal [29] argues that the quality indicators generated by full reference models are
not quality measures in the absolute sense given that these approaches assess fidelity relative to a
reference image whose pristine nature is uncertain since all images are inherently prone to distortions.
It is therefore argued that the performance of image quality assessment models should ideally be
predicated on the correlation with the subjective judgements of quality.

The BRISQUE algorithm is one of the most widely used blind reference methods to assess image
quality. BRISQUE was used in the quality assessment of satellite stereo images by Xiong [31] and
yielded favorable results compared to the Distortion Identification based Image Verity and INtegrity
Assessment Evaluation (DIIVINE), BLind Image Integrity Notator using DCT Statistics-II (BLIINDS-II),
Spatial-Spectral Entropy-based Quality (SSEQ), and Blind Image Quality Indices (BIQI). Zhang [32]
modified the BRISQUE model to assess ZY3 satellite image degradation caused by atmospheric blurring,
clouds, reflectance, sampling, and quantization in urban areas. The method is based on support vector
machines and natural scene statistics model derived from the BRISQUE algorithm. The results revealed
a correlation between predicted scores and human subjective perception. Jaffe [33] evaluated the image
scores generated by the BRISQUE model on GeoEye1, QuickBird2, WorldView2, and WorldView3
satellite images and noted a monotonic decrease with increasing image quality and focal length of the
remote sensing system. The BRISQUE model also produced superior results when compared to the
no-reference image assessment model based on spatial and spectral entropies developed by Liu [34].
Li [35] used BRISQUE to assess the performance of image dehazing algorithm. In contrast to most
blind image quality models, BRISQUE evades the characterization of distortion-specific features such
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as ringing, blur, or blocking by measuring the loss of naturalness in the image by computing scene
statistics of locally normalized luminance values.

The proliferation of nanosatellites with imaging payloads ushers in new opportunities for remote
sensing. The satellite data provided by CubeSats have huge potential to benefit earth observation
users involved in cartographic land use and land cover mapping applications and in bridging the data
gaps in a time-sensitive application such as disaster management. One of the mission objectives for
the nSight-1 CubeSat was to provide the first space flight heritage for the Gecko imager. While this
mission objective is sufficient to ascertain the innovative engineering capability of the imager as a
demonstrator mission, the mission objectives are silent of the primary earth observation applications
the nSight-1 mission seeks to achieve and the expected data quality standards. The selection of the
most appropriate image quality parameter to use is largely driven by remote sensing applications.
Visual interpretation plays a critical role in cartographic applications and the most meaningful image
quality measures are considered to be based on the visual assessments by human observers [26].

Visual analysis of images from nanosatellites is compromised by a range of radiometric and
geometric distortions such as random noise, signal-to-noise artefacts, motion blurring, stripping,
streaking, banding, blocking, haze, illumination effects, and panoramic defects. Radiometric effects
that degrade image interpretability arise from poor sensor performance and atmospheric degradation.
Sensor orbital dynamics such as roll, pitch and yaw cause geometric distortions. While these issues are
present in large satellites such as Landsat 8 and Sentinel-2 they are exacerbated in small high-velocity
low- earth orbit nanosatellites. The interpretability of the images from low-earth orbit CubeSats for
application purposes is particularly compromised by motion blur due to the high speeds, wide pointing
accuracies, non-fixed orbital path of the imaging system with the earth [36]. Relative motion between
the nanosatellite and the scene affects the averaging of image intensities during exposure time causing
image blurring. The quality of images from CubeSats is further compromised by data compression
techniques used to transmit telemetry to the ground receiving station [37].

The objective of this study is therefore to assess the visual interpretability of images captured
by the nSight-1 nanosatellite and to recommend potential earth observation applications for the
mission. To achieve this, we used a blind image spatial quality evaluator to compute the visual image
interpretability of the imagery and the NIIRS method to quantify the interpretability of the images.
Landsat 8 Optical Land Imager (OLI) visible bands as a reference to benchmark the performance of
the experimental nSight-1 nanosatellite imagery. Landsat-8 was selected because it is known for its
reputable radiometric performance. Its image quality is significantly higher compared to previous
Landsat missions due to significantly better signal-to-noise ratios and radiometric uniformity [38,39].
Landsat 8 images show very few image artefacts due to residual banding, striping and nonlinearity [39].

2. Datasets and Study Sites

The nSight-1 images used in this study are comprised of the red, blue, and green spectral bands.
With a 64 km swath, nSight-1 images are captured at a ground sampling distance of 32 m [14].
The sensor features a Bayer-pattern filter, which captures colour images in the visible region of the
electromagnetic spectrum. Real-time onboard computer processing as shown in Figure 1 includes
Bayer pattern demosaicing, RGB colour space conversion, and chroma subsampling and thumbnail
downsampling [16]. Further colour optimization is applied to the images. The spectral response for
the red, blue, and green bands are shown in Figure 2. Wavelengths longer than 720 nm are not taken
due to the NIR-blocking filter onboard the nSight-1 imager.

The compression imaging workflow for nSight-1 is shown below.
The following procedures are done using real-time onboard processing: Bayer pattern demosaicing,

RGB colour space conversion, chroma subsampling, and thumbnail downsampling while the JPEG
compression process is done on the onboard computer [15]. One of the advantages of nSight-1
nanosatellite is that it uses a tasking image acquisition strategy. This entails that the nanosatellite
only captures images over targeted areas that have been pre-programmed and does not have a fixed
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temporal resolution. Unlike Landsat 8 that mainly operates in systematic acquisition mode, tasking
allows frequent revisits over programmed areas of interest.Aerospace 2020, 7, 19 6 of 20 

 

 
Figure 1. JPEG compression imaging workflow (image credit: SCSAG). 
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Landsat 8 images acquired over the study area were used for comparing the image quality score,
using the red, blue, and green spectral bands. The Landsat 8 images were selected because nSight-1
and Landsat 8 multispectral bands share the same spatial resolution of 30 m. nSight-1 CubeSat images
were acquired from Space Commercial Services and Landsat 8 OLI images from South African National
Space Agency. Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images
are received through direct reception at SANSA from NASA and USGS owned Landsat 8 satellite.
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Landsat 8 OLI images consist of nine VNIR and SWIR spectral bands at 30 m spatial resolution.
The Landsat 8 OLI blue, green, and red spectral bands are strategically designated at 0.452–0.512,
0.533–0.590, and 0.636–0.673 micrometres of the electromagnetic spectrum respectively to capture land
cover features such as water, vegetation, soil, and geology. Images used in this study are collected over
sites in South Africa, USA, Canada, Botswana, Egypt, Bolivia, and Saudi Arabia. The study sites are
characterized by diverse land use and land cover types discernible from nSight-1 nanosatellite images.

3. Method

3.1. Estimation of NIIRS Score Using the Image Quality Measure (IMQ) Algorithm

In this study, we applied the MITRE Image Quality Measure Computer Program© (IQM–v7.3) to
automatically compute NIIRS ratings for the images. To establish the NIIRS values for the nSight-1 and
reference Landsat 8 images we used the Image Quality Measure (IQM) algorithm. IQM is an objective,
quantitative image quality indicator that uses the spatial frequency power spectrum of digital imagery
and the modulation transfer function of the human visual system [26]. The power spectrum carries
critical spatial quality information inherent in digital images such as sharpness, contrast and detail
rendition [40]. IQM is highly correlated with the NIIRS to the extent that IQM valued can easily be
converted to NIIRS values using a regression equation. NIIRS is a standard visual quality scale utilized
in image interpretation that has been used widely for the detection, recognition and identification of
man-made objects discernible from digital satellite imagery and aerial photography. In this study,
we used the MITRE Image Quality Measure Computer Program© (IQM–v7.3) to compute the NIIRS
values for the images. The mathematical formulae for IQM is shown in Equation (2) below.

IQM =
1

M2

∑
θ

∑
ρ

S(θ1)W(ρ)A2(Tρ)P(ρ, θ) (2)

where:

M2 = digital image size in pixels
S(θ1) = directional image scale parameter
W (ρ) = modified Wiener noise filter
A2(Tρ) = MTF of the human visual system (T= constant)
P(ρ, θ)= brightness normalized image power spectrum
(ρ, θ) = spatial frequency in polar coordinates

The program is capable of computing NIIRS for general aerial images, space digital sensors, space
oblique digital sensor, and digitized film imagery.

3.2. Blind/Referenceless Image Spatial Quality Assessment

In this study, we use the Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) to assess
the visual-spatial image quality of nSight-1 imagery. The BRISQUE model uses scene statistics of locally
normalized luminance coefficients to characterize possible losses of naturalness in the image as a result
of distortions [29]. We selected BRISQUE due to its computational simplicity and superior performance
over other complex methods. Mittal [29] reported that BRISQUE produced better results compared
traditional methods involving full-reference peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM). BRISQUE uses a Natural Scene Statistics model framework of pair-wise products locally
normalized luminance values to compute an automatic measure of perceptual quality in the spatial
domain without the use of a reference image [29,30]. The algorithm does not use distortions specific
features such as blur to calculate image quality losses. The results of the image considered to be highly
correlated. BRISQUE is increasingly being used in a variety of satellite image quality assessments. The
image quality scores computed by the BRISQUE Model are expressed in a grading scale of 0 to 100
where a score of 0 is indicative of the best quality and 100 is considered the worst. Translating this
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to the equivalent categorical five-level scales (excellent, good, fair, poor, bad) implies 0 is excellent
and 100 is poor. This approach is beneficial since other blind image quality assessment methods are
distortion specific and are only able to perform that assessment when there is prior knowledge to the
distortion affecting the image such as blur, compression, and noise.

3.3. Statistical Analysis

To compare the image quality scores and NIIRS values for nSight-1 and Landsat 8 images we
performed a statistical analysis in GraphPad Prism8® software. The Shapiro–Wilk test was first used
to test the normal distribution of the visual scores from the blind assessment image quality scores and
NIIRS scores while a Student’s t-test was used to compare the score from the two datasets using a
significance level of 0.05.

3.4. Assessment of Potential Applications Using Visual Image Interpretation

Visual image interpretation was used to discern land use and land cover features distinguishable
from the images to recommend potential remote sensing applications for nSight-1 CubeSat images.
McGlone [41] defines image interpretation as the process of examining images by identifying objects
and judging their significance. Image interpretation is a fundamental step in most image analysis and
classification procedures and has been taking place since the advent of aerial photography and persists
to present-day remote sensing [41–43]. Elements of image interpretation such as tone, colour, size, shape,
texture, pattern, shadow height, depth, volume, slope, aspect and higher-order elements of the site,
situation, and associations were used to perform accurate image interpretation. Recently, Kuffer [44]
used the primitive elements of image interpretation to describe the physical characteristics of slums. The
scholars subsequently used the observed image characteristics as a precursor in developing advanced
image classification algorithms. In our current study, we used collateral information such as global
land use and land cover maps, Google Earth, geological maps, and street maps as the search method to
correlate our image interpretation. Image interpretation keys were also used to aid the analysis.

4. Results and Discussion

The results for the blind image spatial quality assessment and the NIIRS evaluation are shown
in Tables 1 and 2 for nSight-1 and Landsat 8 respectively. The Shapiro–Wilk test results confirmed a
normal distribution for the image quality score and NIIRS variables for both nSight-1 and Landsat
8. The normality test for the NIIRS values using an alpha value of 0.05 was positive as shown by a
p-value of 0.8651 and 0.7949 for nSight-1 and Landsat 8 respectively. The Shapiro–Wilk test p-values
for the visual scores were 0.3314 and 0.3469 for the nSight-1 and Landsat 8 respectively. The two-tailed
t-test results indicate that Landsat 8 OLI images yielded significantly higher visual quality scores and
NIIRS results compared to Landsat 8 OLI, indicative of Landsat 8’s superior image quality and better
image interpretation compared to nSight-1. The mean for Landsat 8 is 19.299 and nSight-1 it is 25.873
for the image quality score. Landsat 8 had NIIRS mean of 2.345 while nSight-1 had a mean of 1.622.
The statistical significance of between the image quality scores is reflected by a p-value of 0.0373 and
NIIRS for NIIRS assuming a 95% confidence interval.

Table 1. nSight-1 image quality and interpretability assessment

Image Location Image Quality Score Categorical 5 Level Scale NIIRS

Bolivia, Salar de Uyuni 36.3078 Good

Botswana, Okavango 36.831 Good 1.77501

Canada 14.4916 Excellent 2.08289

Egypt 37.5298 Good

Greece 20.5761 Good 1.8977

Saudi Arabia, Mecca 10.4605 Excellent 0.616793
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Table 1. Cont.

Image Location Image Quality Score Categorical 5 Level Scale NIIRS

USA, Bear Lake Utah 33.3418 Good

USA, Delano California 23.6812 Good 1.75470

USA, Houston 15.8594 Excellent 2.64145

South Africa Brandvlei 37.5934 Good 2.40621

South Africa Garapie 19.113 Excellent 1.06132

South Africa Hermanus 19.9483 Excellent 2.47380

South Africa Klipplaat 46.5608 Fair 1.49862

South Africa Loskop 18.162 Excellent 1.65338

South Africa Vredefort 17.7154 Excellent 1.26504

South Africa Wild coast 7.1196 Excellent

Table 2. Landsat 8 image quality and interpretability assessment

Image Location Image Quality Score Categorical 5 Level Scale NIIRS

Bolivia, Salar de Uyuni 17.4271 Excellent 1.93204

Botswana, Okavango 24.9815 Good 2.64529

Canada

Egypt 14.2259 Excellent 1.68207

Greece 25.4605 Good 3.51831

Saudi Arabia, Mecca 16.2534 Excellent 1.76295

USA, Bear Lake Utah 19.013 Excellent 2.71126

USA, Delano California 19.7489 Excellent 2.75540

USA, Houston

South Africa Brandvlei 21.8291 Good 2.80659

South Africa Garapie 17.6915 Excellent 0.98958

South Africa Hermanus 2.77804 Excellent 3.36128

South Africa Klipplaat 31.0834 Good 1.82553

South Africa Loskop 17.6015 Excellent 2.15515

South Africa Vredefort 15.5129 Excellent 1.87964

South Africa Wild Coast 22.9926 Excellent 2.63885

A summary of the statistical test for the referenceless image spatial assessment and NIIRS
evaluation is shown in Tables 3 and 4 respectively and are graphically depicted by the box and whisker
plots in Figures 3 and 4.

Table 3. Image quality score t-test statistical summary

Image Quality Score nSight-1 Landsat 8

Mean 26.06719 19.04281

Standard deviation 11.81379 6.5620978

Standard error of mean 3.157369 1.7537944

N 14 14

Confidence interval: 95%

P-value 0.0373

The superior image quality and image interpretability of Landsat 8 could be attributed for the
mature optical design on the Landsat 8 that has been designed for operational purposes. Landsat 8 has
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a GDS of 30-m compared to 32-m on nSight-1. GSD is considered to be one of the most influential
factors affecting NIIRS. The image degradation that occurs due to the lossy compression implemented
on nSight-1 from 12-bit to 8-bit can be considered to lower its image visual quality and interpretability.
Whereas it is evident that Landsat 8 has better visual quality and NIIRS scores, the results reveal that
when considered independently nSight-1 images are easily interpretable at a NIIRS rating of 1.6 and of
good spatial image quality as attested by its mean score of 26 obtained in the referenceless evaluation.
Moreover, at the categorical level, the nSight-1 images were largely rated as good to excellent.

Table 4. NIIRS t-test statistical summary

NIIRS nSight-1 Landsat 8

Mean 1.640257 2.369972

Standard deviation 0.569861 0.78692867

Standard error of mean 0.180206 0.2488487

N 10 10

Confidence interval: 95%

P-value 0.0009
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The visual-spatial quality of nSight-1 imagery could be attributed to the spatial, spectral, and
radiometric characteristics of the data. Clarity and identification of objects are substantially influenced
by salient image quality parameters such as GSD, MTF, SNR, RER, LSF, and EE. Variations in the
NIIRS values obtained in this study could be attributed to factors such as atmospheric haze, contract,
angle of obliquity and noise that influence image interpretability. Our visual interpretation results
are consistent with NIIRS ratings between 1 and 2.5 computed in this study. At NIIRS 1, we were
able to distinguish between key land covers and land use classes such as agriculture, forests, urban
and rural areas, geological structures, and drainage morphology; and at NIIRS 2, we identified road
networks, large ships, large centre-pivot irrigated fields. It is evident from this study that a medium
spatial resolution of 30 m is suitable for discriminating land cover features such as agricultural fields,
water bodies, forest patches, settlements, coastline, and roads.

Equally important, the spectral resolution of the imagery in the visible range was fundamental
in differentiating the subtle colour variability that reflects the composition within various land cover
types. In this case, the location of the imager’s spectral bands in the principal (blue, green, and red)
wavelengths regions of the visible electromagnetic spectrum proved sufficient for visual analysis. The
blue, green and red spectral bands on the nSight-1 imager are valuable for a range of remote sensing
applications. While the blue spectral band is prone to substantial atmospheric scattering and absorption,
it is useful for mapping land use, water bodies and vegetation characteristics. The green band reacts to
the green reflectance of healthy vegetation and accentuates peak vegetation, is therefore quite valuable
for assessing plant vigour. nSight-1’s red band is located in the red chlorophyll absorption region and is
valuable for vegetation discrimination and delineation of geological and soil boundaries.

Radiometric resolution is a major factor that influences the visual quality of satellite imagery.
Huete [45] highlights that the radiometric resolution of a sensor is indicative of the fidelity with
which the imager can distinguish subtle differences in reflectance and is a function of the sensor
signal-to-noise ratio. The optical design of the nSight-1 Gecko imager includes a 2 Mega Pixel RGB
sensor unit and the Bayer-pattern filter that positively influences the quality of images captured
by the nanosatellite. While the raw images for nSight-1 are captured at 12 bits, the images are
downsampled to 8-bit colour images by standard discrete cosine transform lossy 8-bit RGB JPEG
compression techniques due to capacity constraints imposed by the onboard computer and satellite
power. A radiometric resolution of 8 bits impacts on the visual image quality of nSight-1 nanosatellite
data as it controls the actual information contained in the images and shows the sensitivity of the
sensor due to small differences in reflected energy. Modern earth observation satellites such as Landsat
8 and Sentinel-2 have radiometric resolutions of 16 bits and older sensors such as Landsat 7 are scaled
to 8-bit. Radiometric calibration as not been done to make the data analysis-ready for quantitative time
series based remote sensing applications that require accurate Top of the Atmosphere Reflectance or
Surface Reflectance values such as trend analysis of vegetation vigour using vegetation indices. Lack
of radiometrically calibrated images could be addressed in future nSight missions by installing an
onboard radiometric calibration device on the imager. Calibration and validation of the imagery could
also be achieved through alternative methods such as vicarious calibration and image cross-calibration.
Improving the radiometric data quality will ensure the interoperability of the imagery with different
data sources. The potential for radiometric calibration of CubeSat data has been demonstrated by
Houborg [46]. Using calibrated CubeSat data from Planetlabs, Houborg [47,48] showed the feasibility
of cross-calibration and interoperability of CubeSat data with data from prominent missions such as
Landsat 8, Sentinel-2, and MODIS for deriving vegetation parameters such as normalized vegetation
index (NDVI) and leaf area index (LAI).

Practical uses for nSight-1 imagery shown in the study include urban demarcation, forestry
delineation, mapping of structural geology features, agriculture field boundary extraction, water body
mapping, and coastline mapping and assessment, land degradation and soil erosion assessments,
drainage morphometric analysis of fluvial systems, wetlands monitoring, maritime ship surveillance,
mapping of major roads, general land use, and land cover mapping. A range of nSight-1 applications
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has been identified in this study. Visual analysis of nSight-1 images over croplands shows that the
images are valuable in supporting food security through the generation crop maps. The images could
also be used as a base data source for the extraction of agricultural field boundaries. Images of Delano,
USA and Loskop, South Africa reveal rectangular and concentric cropped and fallow agricultural
fields. Field boundary information is critical in agricultural field inventories and crop yield estimations.
Water is a scarce resource and the frequent monitoring of water body surfaces is important to support
effective water resources management. Images of Bear Lake, USA and Brandvlei, South Africa show
that nSight-1 image could be applied to monitor dam locations and their surface areal extends, dam
inventory and water licencing. Regular monitoring of the surface areal extends of dams is vital in
analysing the receding water levels in drought situations and expanded water extends during flood
situations. The image for Bolivia Salar de Uyuni vividly shows evidence of soil erosion. Soil erosion
degrades farmlands and negatively impacts agricultural productivity. The strong geological expressions
depicted in some of the nSight-1 images suggest that the nanosatellite can be used for mapping of
structural geology features to support mineral exploration, groundwater studies, and general geological
mapping. The image for the Okavango Delta clearly outlines the swampy delta. Swamps perform
an important ecological function and their preservation is therefore critical. Data from satellites such
as nSight-1 is therefore vital in supporting the frequent monitoring of swamps. Using the image for
Mecca in Saudi Arabia we also deduced that nSight-1 can be used to demarcate urbanized areas and
subsequently assess urban growth rates. Vegetation cover was identified in most of the images. This
entails that nSight-1 has some potential value in the classification of vegetation cover. As shown by
the image for the Kithnos island in Greece, nSight-1 images could be used for monitoring ships along
coastlines, a function often performed by high spatial resolution optical and radar satellites.

While our visual analysis demonstrates that nSight-1 imagery has a wide range of potential
cartographic and land cover applications, the images analyzed exhibited a strong expression of
geological structures, geomorphological features, and topography. This finding suggests that the
nSight-1 imagery has the potential to contribute substantially to mapping studies linked to structural
geology and associated mineralization, geomorphology, and photoclinometry. Given that geological
and geomorphological mapping applications are not very time-sensitive, preservations of the captured
satellite imagery are required to support future studies. The features discernible from nSight-1 imagery
are consistent with level 1 rating described in the National Imagery Interpretability Rating Scale
(NIIRS). Table 5 illustrates the nSight-1 images examined in this study and some potential applications
for the data.

Table 5. Interpretation of nSight-1 images and some potential applications

nSight-1 Image Location Discernible Features Application
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The good visual quality of the nSight-1 images in the spatial dimension suggest that the image 
is potentially valuable in producing accurate land use and land cover maps using on-screen digitizing 
and other advanced classification approaches such as object-based classification and morphological 
profiles that exploit spatial information and image characteristics such as shape, size, colour, 
compactness, and texture. 

The variability in the NIIRS could be a result of several factors. While NIIRS values are largely 
influenced by ground sampling distance and relative edge response, other variables such as the signal 
to noise ratio, noise gain due to edge sharpening, and geometric mean height of overshoot due to 
edge sharpening plays a role. The impact of variable factors, such as atmospheric effects on the 
images due to haze has the potential to affect the results. The results, however, seem to show overall 
consistency in terms of the NIIRS variability trends between nSight-1 and the reference Landsat 8 
data. This may suggest that environmental conditions such as structural landscape features, terrain, 
build-up features, atmospheric conditions, and illumination conditions affect the assessment of 
NIIRS values. This was particularly evident in the Okavango Delta, where high values were obtained 
and the Saudi Arabia Desert where low NIIRS values were derived from both n-Sight-1 and Landsat 
8 data. This result was line with our visual observation, that is, in cases where large landscape features 
are conspicuously defined with a good contract the NIIRS values were high. This was also true in 
desert environments with little contrast, we observed low NIIRS values. This suggests contracting 
grey-level values driven by tonal variations resulting from background effects might have a bearing 
on NIIRS. 

Considering the small size of the nanosatellite, the analyses of the nSight-1 images undertaken 
in this study clearly indicates that the RGB images captured by the Gecko Imager are of high quality 
and are useful for a variety of cartographic and geo-visualization applications. Success could be 
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open grasslands;

roads
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classification;
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The good visual quality of the nSight-1 images in the spatial dimension suggest that the image is
potentially valuable in producing accurate land use and land cover maps using on-screen digitizing and
other advanced classification approaches such as object-based classification and morphological profiles
that exploit spatial information and image characteristics such as shape, size, colour, compactness,
and texture.

The variability in the NIIRS could be a result of several factors. While NIIRS values are largely
influenced by ground sampling distance and relative edge response, other variables such as the signal
to noise ratio, noise gain due to edge sharpening, and geometric mean height of overshoot due to edge
sharpening plays a role. The impact of variable factors, such as atmospheric effects on the images due
to haze has the potential to affect the results. The results, however, seem to show overall consistency in
terms of the NIIRS variability trends between nSight-1 and the reference Landsat 8 data. This may
suggest that environmental conditions such as structural landscape features, terrain, build-up features,
atmospheric conditions, and illumination conditions affect the assessment of NIIRS values. This was
particularly evident in the Okavango Delta, where high values were obtained and the Saudi Arabia
Desert where low NIIRS values were derived from both n-Sight-1 and Landsat 8 data. This result was
line with our visual observation, that is, in cases where large landscape features are conspicuously
defined with a good contract the NIIRS values were high. This was also true in desert environments
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with little contrast, we observed low NIIRS values. This suggests contracting grey-level values driven
by tonal variations resulting from background effects might have a bearing on NIIRS.

Considering the small size of the nanosatellite, the analyses of the nSight-1 images undertaken
in this study clearly indicates that the RGB images captured by the Gecko Imager are of high quality
and are useful for a variety of cartographic and geo-visualization applications. Success could be
attributed the innovative matrix design of the Gecko Imager that uses a Bayer-pattern filter to capture
colour images at medium spatial resolution of 30 m, high native radiometric resolution 12 bits
that are downsampled to 8-bits and nanosatellite’s robust real-time onboard computer processing
capabilities. The spatial resolution of the images captured by the Gecko matrix imager could be
increased through super-resolution (SR) image reconstruction as demonstrated by Li [28] using the
ZY-3 TLC images. Super-resolution image reconstruction will not only transform the low-resolution
images into higher-resolution images but will also improve image interpretability. SPOT 5 is a good
example of where SR techniques have used successfully to achieve a 2.5 m resolution image from a 5 m
resolution sensor. A detailed overview of single-frame and multi-frame SR methods is provided by in
many papers [49–51]. Notwithstanding the data downlink challenges imposed by a low bandwidth
telemetry radio subsystem, a lossless compression was going to be more advantageous than the
lossy compression implemented for nSight in terms of content retention and maintenance of image
quality. Furthermore, while acknowledging the capacity constraints imposed by CubeSats in terms of
size, weight and data downlinking, an additional near-red spectral band would have widened the
applications offered by the satellite. A 64 km swath width available on nSight-1 gives it a competitive
advantage over aerial photography due to its ability to cover vast tracks of land in one acquisition.
The on-board image processing capability implemented on nSight-1 differentiates this mission from
a range of operational satellites and future missions should inherit this novel capability. Whereas
our study confirms the value of nSight-1 imagery, follow-up nSight missions will need to consider
a wide range of operational remote sensing requirements such as data calibration and data policies.
Ground segment operations such as data acquisition, archiving, cataloguing, curatorship, access, and
distribution are also critical in ensuring the success of follow-up nSight missions. Potential benefits of
developing a constellation of CubeSats whose primary mission objective is dedicated towards remote
sensing of land cover parameters should be considered. As shown already by Planet Labs with more
than 150 satellite in orbit, a constellation of nSight earth imaging CubeSats could also be used to
shorten the revisit times and improve the temporal resolution of the nanosatellites. Such a constellation
could leverage technological advancements in cloud computing, big data analytics, and future data
architectures such as datacubes to maximize data usage.

5. Conclusions

The upsurge in the number low cost nanosatellites with earth imaging capabilities offers new
prospects for earth observation. Although most of the nanosatellites have been used as platforms for
education, capability demonstration and testing scientific space-borne instruments, the potential for the
usage of CubeSat data for practical remote sensing applications are increasingly being realized. In this
study, we assessed the image quality of the satellite images captured by the nSight-1 CubeSat and
examined the images to consider the potential remote sensing applications for the mission. Results of
this study indicated that Landsat 8 OLI images produced significantly higher image quality scores and
NIIRS results compared to nSight-1, revealing Landsat 8 has superior image quality and better image
interpretation characteristics. Nonetheless, when considered independently, it can be concluded that
nSight-1 images are of high quality as shown by an average NIIRS value of 1.6 and the spatial image
quality scores that ranged in the good to excellent image quality categories. The quality of nSight-1
imagery in the spatial dimension is attributable to the inherent spatial, spectral, and radiometric
resolution of the data.

Our interpretation of the imagery indicates that the data has considerable potential for use in
geo-visualization and cartographic land use and land cover mapping applications. The features
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discernible from nSight-1 imagery are consistent with those described at level 1 and 2 of the National
Image Interpretability Rating Scales (NIIRS). We observed that inSight-1 imagery could be used for
a range of earth observation application that include urban demarcation, forest patch delineation,
mapping of structural geology features, agriculture field boundary extraction, water body mapping,
and coastline mapping and assessment, land degradation and soil erosion assessments, drainage
morphometric analysis of fluvial systems, wetlands monitoring, maritime ship surveillance, mapping
of major roads, general land use, and land cover mapping. The nSight-1 images analyzed in the
study depicted strong expressions of geological structures, geomorphological patterns, and surface
topography. Imagery from the nSight-1 nanosatellite could also be used for filling data gaps in rapid
response applications such as disaster management and other time-sensitive applications. To widen
its applications, increase data usage, and improve temporal resolution, we recommend in the future
that nSight-1 missions investigate developing a constellation of CubeSats with an increased number
strategically placed spectral bands in the visible and near-infrared (VNIR) region. The inclusion
of the near-infrared band could be prioritized. We also recommend future missions to focus on
radiometric calibration to improve the radiometric quality of the data and potentially get the data to
an analysis-ready state.
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