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Abstract: This paper proposes a new shape-based method in spherical coordinates to solve three-
dimensional rendezvous problems. Compared with the existing shape-based methods, the proposed
method does not need parameter optimization. Moreover, it improves the flexibility of orbit fitting,
greatly reduces the velocity increment and maximum thrust acceleration, and ensures the orbit
safety to a certain extent. The shaping function can provide the initial estimate for numerical
trajectory optimization and improve the convergence rate in a certain range when combined with
the normalization method. The superiority of the proposed method over the existing methods is
demonstrated by two numerical examples. Its effectiveness at initial estimation generation in the
indirect optimization of a low-thrust trajectory is demonstrated by the third example.

Keywords: low-thrust trajectory; shape-based method; indirect method; adjoint variables; orbital
rendezvous

1. Introduction

The continuous low-thrust propulsion system has attracted great attention because
of its higher specific impulse and consequently less fuel consumption compared with
impulsive propulsion systems. There are three main categories of optimization methods
to optimize the low-thrust trajectory: the direct methods [1–3], indirect methods [3–6],
and hybrid methods [7–9]. For the gradient-based versions of these methods, a good
initial value estimate is key to improving the convergence of optimization. To provide
the initial guesses, especially for a general three-dimensional (3D) rendezvous problem,
the shape-based method can be used to approximate the near-optimal trajectory through
shaping function design. In particular, when the shape is used as a nominal trajectory
and then combined with the indirect method, it can greatly improve the computational
efficiency [10].

At present, the shape-based methods can be divided into two categories according
to whether their shape functions consist of free optimization parameters: one has no
parameter optimization, and the other has to resort to the help from parameter optimiza-
tion. The former has obvious advantages in terms of computational speed and efficiency.
Petropoulos and Longuski [11] proposed the first shape-based method without optimiza-
tion, which uses an exponential sinusoid to describe a coplanar trajectory. It is simple in
form but cannot meet the boundary conditions of position and velocity at the same time, so
it cannot solve rendezvous problems. Then, the inverse polynomial method was introduced
by Wall and Conway [12]. This has enough coefficients to satisfy the in-plane boundary
conditions. Because of its limited number of extrema, it cannot solve multirevolution
problems. Accordingly, Wall and Pols [13] used the cosine inverse polynomial (cosine
IP) to design the coplanar trajectory. In order to solve the problem of 3D transfer and
rendezvous problems, Wall [14] and Novak [15] both designed the out-of-plane component;
however, this only performs well when the elevation angle is small. Later, Xie [16,17]
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and Zeng [18] proposed methods that are suitable for transfer and rendezvous problems
with any elevation angle, respectively. The difference between these two methods is that
Xie’s method [17] designs the in-plane and out-of-plane shapes separately and selects the
polynomial as the shaping function, while Zeng’s method [18] does not design the shape
separately in three dimensions and uses a Fourier series as the shaping function. Both of
these approaches can provide solutions for transfer and rendezvous problems with large
elevation angles. However, the velocity increment ∆V and maximum thrust acceleration
Ta,max of the two methods are much larger than those of the 3D inverse polynomial method,
which makes the trajectory designed by these two methods far from the optimal trajectory.

There are two main contributions of this paper. Firstly, a new shape-based 3D
method is proposed for rendezvous problems, which considers the advantages of No-
vak’s method [15] and Zeng’s method [18] in the design and improves some deficiencies
existing in these two methods. It widens the application scope of the shape-based method
and reduces the fuel consumption. The proposed method satisfies the boundary conditions
and the equation of motion constraints and does not require parameter optimization. It
is able to effectively reduce the velocity increment ∆V and maximum thrust acceleration
Ta,max and provide good initial guesses for the local optimization of low-thrust trajectories.
Secondly, adjoint normalization [19] is added into the process of combining the shape-based
method with the indirect method, which greatly improves the convergence rate.

This paper is organized as follows. In Section 2, a new shape-based method is pro-
posed. Firstly, the dynamic model of a spacecraft and the 3D trajectory models in spherical
coordinates are given, and then the shaping functions are determined. Section 3 introduces
the method of applying adjoint normalization into the process of combining the shape-
based method with the indirect method in cylindrical coordinates. The specific examples
of rendezvous problems and the shape-based method in combination with optimization
problems are described in Section 4. Finally, the conclusion is deduced in Section 5.

2. Shape-Based Method for 3D Orbital Rendezvous

In this section, a shape-based method that approximates the low-thrust trajectory with
the shaping functions parameterized in the spherical coordinate frame is introduced for
the three-dimensional (3D) orbital rendezvous. The boundary conditions and dynamical
constraints of the rendezvous are automatically satisfied by developing a new shape-based
approach based on the cosine IP method [13] and Zeng’s method [18] empirically to reduce
fuel consumption.

2.1. Low-Thrust Dynamics and Shape Design in Spherical Coordinates

The spacecraft in an interplanetary rendezvous is subject to the central gravitational
force of the Sun and propelled by a low-thrust propulsion system. For the 3D trajectory
design, the corresponding dynamics are given [17] as follows:

r̈ = −µ
r
r3 + u (1)

where r = [r cos ϕ cos θ, r cos ϕ sin θ, r sin ϕ]T is the position vector of a spacecraft with
r = ‖r‖ in the spherical inertial frame, u is the low-thrust acceleration, and µ is the
gravitational parameter of the Sun. The spherical coordinate frame T (O; r, ϕ, θ) is defined
as Figure 1, where r is the distance from the Sun to the spacecraft, θ is the azimuthal angle,
and ϕ is the elevation angle. Equation (1) can also be written as

θ̇2r′′ + θ̈r′ = −µ
r
r3 + u (2)

where (∗)′ and (∗)′′ denote the derivative and double derivative with respect to θ, respec-
tively. The trajectory parameterized with {r(θ), ϕ(θ), t(θ)} will be given by the shaping
functions, and the low-thrust acceleration can then be obtained by Equation (2) to approxi-
mate the rendezvous.
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Figure 1. Illustration of the spherical coordinates.

The shape designed by Novak [15] empirically has a smaller ∆V and Ta,max in most
coplanar transfer and rendezvous cases compared with other methods. However, for the
cases with a large elevation angle ϕ, it may lead to t′ < 0 or |ϕ| > π/2 and thus cannot
obtain a reasonable trajectory. Inspired by the shaping functions proposed in [18], an im-
proved interpolation between the initial and target orbits is proposed here to design the
elevation angle ϕ(θ). Combined with the r(θ) designed in [15] by introducing a mid-plane,
the proposed shape can broaden the application range to the 3D rendezvous trajectory
with a large elevation angle and reduce the velocity increment and maximum low-thrust
acceleration to a certain extent empirically.

2.1.1. Shaping the Elevation Angle

The function ϕ(θ) is defined according to the direction of spacecraft position er =[
er,x, er,y, er,z

]T, viz.,

ϕ(θ) = arctan
er,z√

e2
r,x + e2

r,y

∈
[
−π

2
,

π

2

]
(3)

where the direction vector er (for the convenience of derivative calculation, er is not a unit
vector) is obtained by an interpolation between the unit vectors in the initial and target
orbital planes (i.e., er1 and er2 , respectively) in combination with a shaping function φ(θ):

er = φer1 + (1− φ)er2 (4)

This shaping function determines the elevation angle and is given empirically below.
Note that the unit vectors erj , j = 1, 2 represent the directions at θ constrained in the initial
and target orbital planes, respectively, which can be expressed as

erj = cos f j pj + sin f jqj (5)

where f j is the true anomaly at θ, pj is directed along the Laplace–Runge–Lenz vector,
and qj is along the cross product of vector of angular momentum and pj. The classic orbital
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elements of the initial and final orbits are known in advance, and the direction vectors pj
and qj are given by

pj =

 pjx
pjy
pjz

 =

 cos ωj cos Ωj − sin ωj sin Ωj cos ij
cos ωj sin Ωj + sin ωj cos Ωj cos ij

sin ωj sin ij


qj =

 qjx
qjy
qjz

 =

 − sin ωj cos Ωj − cos ωj sin Ωj cos ij
− sin ωj sin Ωj + cos ωj cos Ωj cos ij

cos ωj sin ij

 (6)

where ij is the inclination, Ωj is the right ascension of the ascending node, and ωj is the
argument of the perigee of tje corresponding orbital plane. There is a projection relationship
between f j and the variable θ in the spherical coordinate system; i.e., tan θ = er,y/er,x. Thus,
f j can be expressed as a function of θ:

f j = atan2
(

pj,x sin θ − pj,y cos θ, qj,y cos θ − qj,x sin θ
)
∈ [−π, π] (7)

2.1.2. Shaping the Radius

The cosine IP method [13] is used to design the two-dimensional (2D) trajectory due
to its advantages of reduced fuel consumption and a simple form in practical experi-
ence. Therefore, the radius of the spacecraft in the spherical coordinates is shaped by the
following function:

r=
1

k0 + k1θ + k2θ2 + (k3 + k4θ) cos θ + (k5 + k6θ) sin θ
(8)

where the coefficients k j and j = 0, 1, . . . , 6 are unknown free parameters used to satisfy the
boundary conditions and the constraint on the time of flight.

Equation (8) is firstly proposed for the case of a rev2D trajectory, where θ is the param-
eter in polar coordinates. For the 3D case with a large elevation angle, the corresponding
true anomaly shown in Figure 2 changes sharply with respect to the azimuthal angle θ
around the descending/ascending nodes. In this case, the radius obtained by Equation (8),
which is intentionally designed for the 2D case, is unreasonable around these nodes. Thus,
the trajectory is preferred to be parametrized in terms of the true anomaly in the transfer or-
bital plane compared with the azimuthal angle in the xoy plane. However, considering the
difficulty in determining the relationship between the true anomaly of the spacecraft and
the azimuthal angle, a compromise strategy is proposed here. Instead of the time-varying
transfer orbital plane, a fixed middle orbital plane between the initial and target orbits is
used as a reference plane, which can ensure that the angle between the reference plane and
the xoy plane is within 45◦ and avoid the change of the curvature direction of the shape as
much as possible when the elevation angle is large. The corresponding true anomaly is
given by

f = atan2
(

px sin θ − py cos θ, qy cos θ − qx sin θ
)

(9)

As shown in Figure 2, the unit vectors p and q point to the semi-major and semi-minor
axes of the middle orbital plane, respectively, which are obtained by

p =

 px
py
pz

 =

 cos ω1+ω2
2 cos Ω1+Ω2

2 − sin ω1+ω2
2 sin Ω1+Ω2

2 cos i1+i2
2

cos ω1+ω2
2 sin Ω1+Ω2

2 + sin ω1+ω2
2 cos Ω1+Ω2

2 cos i1+i2
2

sin ω1+ω2
2 sin i1+i2

2


q =

 qx
qy
qz

 =

 − sin ω1+ω2
2 cos Ω1+Ω2

2 − cos ω1+ω2
2 sin Ω1+Ω2

2 cos i1+i2
2

− sin ω1+ω2
2 sin Ω1+Ω2

2 + cos ω1+ω2
2 cos Ω1+Ω2

2 cos i1+i2
2

cos ω1+ω2
2 sin i1+i2

2


(10)
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Figure 2. Diagram of the relationship between f and θ.

Accordingly, Equation (8) becomes

r=
1

k0 + k1 f + k2 f 2 + (k3 + k4 f ) cos f + (k5 + k6 f ) sin f
(11)

By substituting Equation (9) into Equation (11), the shaping function r(θ) is finally
formulated for the 3D rendezvous trajectory.

2.1.3. Shaping the Time

The unit vectors (er, eo, eh) define the radial–orthoradial–out-of-plane coordinate sys-
tem [15]. We project the dynamic equations to the tangential–normal–out-of-plane reference
frame, which is defined by the unit vectors (et, en, eh), and then Equation (2) becomes

u =

∣∣∣∣∣∣
ut
un
uh

=

∣∣∣∣∣∣
µ

r2 er · et + θ̈ṽ · et + θ̇2ã · et
µ

r2 er · en + θ̇2ã · en
θ̇2ã · eh

(12)

where ṽ and ã are the velocity and acceleration vectors in the Cartesian coordinates,
respectively, and can be written as

ṽ =
dr
dθ

= P(S)→(C)ṽ(S), ã =
d2r
dθ2 = P(S)→(C) ã(S) (13)

ṽ(S) =

 r′

r cos ϕ
rϕ′

, ã(S) =

 r′′ − r
(

ϕ′2 + cos2 ϕ
)

2r′ cos ϕ− 2rϕ′ sin ϕ
2r′φ′ + r(ϕ′′ + sin ϕ cos ϕ)

 (14)

P(S)→(C) =

 cos θ cos ϕ − sin θ − cos θ sin ϕ
sin θ cos ϕ cos θ − sin θ sin ϕ

sin ϕ 0 cos ϕ

 (15)

where P(S)→(C) is the coordinate transformation matrix from the spherical coordinates to
the Cartesian coordinates, and ṽ(S) and ã(S) denote the velocity and acceleration vectors in
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spherical coordinates, respectively. The expressions of r′, r′′, ϕ′, and ϕ′′ are obtained by
the chain rule:

r′ =
d r
d f

f ′ (16)

r′′ =
d2 r
d f 2 f ′2 +

d r
d f

f ′′ (17)

ϕ′ =
∂ϕ

∂φ
φ′ +

∂ϕ

∂ f1
f ′1 +

∂ϕ

∂ f2
f ′2 (18)

ϕ′′ =
∂2 ϕ

∂φ2 φ′2 +
∂2 ϕ

∂ f 2
1

f ′21 +
∂2 ϕ

∂ f 2
2

f ′22 + 2
(

∂2 ϕ

∂ f1∂ f2
f ′1 f ′2 +

∂2 ϕ

∂ f2∂φ
f ′2φ′ +

∂2 ϕ

∂ f1∂φ
f ′1φ′

)
+

∂ϕ

∂φ
φ′′ +

∂ϕ

∂ f1
f ′′1 +

∂ϕ

∂ f2
f ′′2

(19)

The detailed formulation of this is given in the Appendix.
Continuous tangent thrust has the advantages of reducing energy consumption in

orbit transfer and avoiding the need to change the thrust direction in the orbit plane. It is
also convenient for time shaping.Therefore, assuming that there is no normal component
of u, which is equivalent to un = 0, from Equation (12), one can obtain

t′ =
1
θ̇
=

√
Dr2

µ
(20)

the expression of D is

D = −r′′ + 2
r′2

r
+ r′ϕ′

ϕ′′ − sin ϕ cos ϕ

ϕ′2 + cos2 ϕ
+ r
(

ϕ′
2
+ cos2 ϕ

)
(21)

The sign of D can represent the curvature direction of the trajectory. Equation. (20)
requires that D must be positive, which means that the trajectory must bend towards the
central celestial body.

Combining Equation (12) and Equation (20), the velocity increment during the orbit
transfer can be obtained as

∆V =
∫ θ2

θ1

‖u(θ)‖
θ̇

dθ (22)

The angular acceleration θ̈ is contained in u(θ), which can be calculated as

θ̈=− θ̇3 D′r2 + 2Drr′

2
√

µDr2
(23)

where

D′ = −r′′′ + 4r′r′′
r −

2r′3

r2 + (r′′ϕ′ + r′ϕ′′) ϕ′′−sin ϕ cos ϕ

ϕ′2+cos2 ϕ
+ r′ϕ′ ϕ′′′−ϕ′cos2 ϕ+ϕ′sin2 ϕ

ϕ′2+cos2 ϕ

+(2ϕ′ϕ′′ − 2ϕ′ cos ϕ sin ϕ)

[
r− r′ϕ′ (ϕ′′−sin ϕ cos ϕ)

(ϕ′2+cos2 ϕ)
2

]
+ r′

(
ϕ′2 + cos2 ϕ

) (24)

r′′′ and ϕ′′′ are also obtained by the chain rule, the details of which are shown in Appendix A.

2.2. Determination of Shaping Functions

To determine the interpolation function φ and the seven unknown coefficients for
the radius shape, the trajectory boundary constraints and non-intersect constraint are
analyzed in this subsection. The boundary constraints on the rendezvous trajectory consist
of 11 shape boundary constraints (including the initial states

[
r1, ϕ1, r′1, ϕ′1, t′1

]T, the final
states [r2, ϕ2, r′2, ϕ′2, t′2]

T, and the transfer time ∆t = (t2 − t1) and the fixed initial and final
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independent variables {θ1, θ2}. Meanwhile, the unknown coefficients for the radius shape
are designed to satisfy the constraints on

{
r1, r′1, t′1, r2, r′2, t′2, ∆t

}
, whereas the constraints

on
{

ϕ1, ϕ′1, ϕ2, ϕ′2
}

will be satisfied by the interpolation function in combination with
another four free parameters.

2.2.1. Determination of Interpolation Function

The constraints on the elevation angle are satisfied by

φ(θ1) = 1, φ(θ2) = 0,
∂φ

∂θ

∣∣∣∣
θ=θ1

= 0,
∂φ

∂θ

∣∣∣∣
θ=θ2

= 0 (25)

The interpolation function takes the value of 1 when θ = θ1 and 0 when θ = θ2. Since
the initial and final velocities of the spacecraft out of orbital planes are zeros, the derivatives
φ′ are zeros at θ1 and θ2.

Suppose that the initial and target orbits do not intersect for any θ ∈ [θ1, θ2]; the φ
angle of the transfer orbits is designed between that of the initial and target orbits (viz.
trajectory safety in [18]), which can avoid collision and save energy to a certain extent.
Therefore, a monotonic decreasing function (φ′ < 0 when θ ∈ (θ1, θ2)) is designed, and its
evolution direction is from the initial plane to the target plane.

There are many forms of φ that can satisfy the above constraints. Considering a reduc-
tion of the total velocity increment as much as possible, the transfer orbits have to raise the
elevation angle as much as possible at the place with the largest radius and not change the
elevation angle as far as possible in the place with a small radius. Therefore, the interpola-
tion functions are given empirically for the cases r1 < r2 and r1 > r2, respectively:

If r1 < r2,
φ = a + bβ + cβn1 + dβn2

n1 6= n2
n1, n2 > 1;

(26)

else if r1 > r2,
φ = a + bβ + c(β + 1)n3 + d(β + 1)n4

n3 6= n4
n3, n4 < −1

(27)

where β= θ−θ0
θ f−θ0

∈ [0, 1] is the normalized parameter, and r1 and r2 are the radial distances
of the departure and arrival positions, respectively.

Since the coefficient matrix of a, b, c, and d is linear, they can be obtained analytically
by satisfying the boundary conditions:

if r1 < r2
d = n1

n2−n1

c = −n2
n2−n1

b = 0
a = 1

(28)

Similarly, if r1 > r2, substituting Equation (25) into Equation (27) gives

d = 1

1−2n4+n4+
(−2+2n4 )(−1+2n3−n3)n4

n3(−2+2n3 )

c = − (2n4−1−1)n4

(2n3−1−1)n3
d

b = −n3c− n4d
a = 1− c− d

(29)

where n1, n2, n3, and n4 are the shaping parameters that shape the trajectory. If the
semimajor axes, eccentricities, and inclinations of the initial and final orbits are similar,
then the absolute values of n1, n2, n3, and n4 can take small values; for example, from 1
to 10. If the difference is large, then the absolute values of the shaping parameters can
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take larger values, such as from 10 to 30. Figure 3 shows the evolution of φ for these
different shaping parameters. In practical problems, the shaping parameters are selected
by experience, and usually the transfer orbit is designed to raise the elevation angle as
much as possible at the place with the largest radius (apogee) in order to reduce fuel
consumption. The values of the coefficients selected by experience already have a good
effect in the examples, and the results are not sensitive to these coefficients, so there is no
further optimization in this paper.
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1

φ n1=1.5,n2=2 
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(a) r1 < r2
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Figure 3. Effect of the shaping parameters on φ.

2.2.2. Determination of Coefficients in Radius

It is mentioned in Section 2.1 that the seven coefficients of Equation (11) are used to
satisfy seven constraints.

At the initial point, from Equation (11), it follows that

r(θ1) = r1(θ1) (30)

r′(θ1) =
1

ṙ1(t1)
(31)

t′(θ1) =
1

θ̇1(t1)
(32)

Similarly, at the departure point, it yields

r(θ2) = r2(θ2) (33)

r′(θ2)=
1

ṙ2(t2)
(34)

t′(θ2) =
1

θ̇2(t2)
(35)

The last constraint is on the time of flight:

∫ θ2

θ1

√
Dr2

µ
= t2 − t1 (36)

Using Equations (30)–(36), the coefficients k j , j = 0, 1, . . . , 6 can be obtained.
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All these seven coefficients are required to be solved numerically. The direct estimation
of the initial value of the coefficients will lead to a large amount of calculation and difficult
convergence. However, if one adjusts the range of the independent variables from [θ1, θ2]
to [0, θ2 − θ1], the analytic solutions of some coefficients can be given according to some
boundary conditions. Solving Equations (30) and (31) yields

k0 = 1
r1(θ0)

− k3

k1 = − ṙ1(θ0)

r1(θ0)
2 − k4 − k5

(37)

Then, the number of unknown coefficients will be reduced to 5, which can greatly
reduce the computational burden. However, five unknowns and five nonlinear equations
correspond to multiple sets of solutions. In this paper, one set of reasonable solutions is
sufficient. The fsolve function in Matlab is used to solve k j , j = 2, 3, . . . , 6 numerically. We
set the initial values of all coefficients to 0, then solve the nonlinear equations, and finally
obtain a set of reasonable solutions.

3. Application in Indirect Trajectory Optimization

The combination of the indirect method and parameter continuation method [20] can
avoid the estimation of the initial value and ensure the convergence of the optimal control
problems, but it is necessary to sacrifice the computational efficiency. Directly estimating
the initial value of the adjoint variables can improve the computational efficiency, but it is
difficult to realize because the indirect method for the trajectory optimization is sensitive
to the initial values of the adjoint variables. An adjoint estimation method is proposed
in [21] by linearization around a shape-based path. The estimation method improves the
convergence rate of the indirect method for coplanar rendezvous trajectory optimization,
where the maximum inclination is only 13.54◦. For a general 3D rendezvous with large out-
of-plane motion, the estimation performance needs further improvement. In this section,
the proposed shape-based method is employed to estimate the initial value of the adjoint
variables in combination with the estimation method, of which the convergence rate greatly
depends on the shaping approximation. The adjoint normalization is also used to improve
the convergence rate. Note that there are two essential evaluation indexes for the shape
designed: Ta,max and ∆V. Generally, the smaller the values of Ta,max and ∆V, the closer the
trajectory designed by the shape-based method is to that optimized by the indirect method.
The low-thrust trajectory optimization model is first introduced, and then the estimation
using the proposed shape in the spherical coordinate system is briefly described.

3.1. Optimization Model

The nonlinear optimal control problem with a fixed flight time is given as follows:
Minimize

J = Tmax
Ispg0

∫ t f
t0

udt (38)

Subject to
ẋ(t) = A(x, t) + Tmaxu

m Bα

ṁ(t) = − Tmaxu
Ispg0

x(t0) = x0, m(t0) = m0

(39)

where x ∈ R6 is the state vector of the spacecraft, m is the mass of the spacecraft, A(x, t) ∈
R6 and B(x, t) ∈ R6×3 depend on the coordinate system used, u = T/Tmax ∈ [0, 1] is the
engine thrust ratio, α is the unit vector of thrust direction, g0 is the standard acceleration of
gravity at sea level, and Isp is the thruster-specific impulse. The physical meaning of J in
Equation (38) is the total fuel consumption. It is difficult to solve the fuel-optimal problem
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directly because of the bang-bang structure. The homotopy method provides an idea by
adding a homotopic parameter ε to the index [19,22]. The new performance index is

J =
Tmax

Ispg0

∫ t f

t0

[u− εu(1− u)]dt (40)

By reducing ε from 1 to 0, the energy-optimal problem can be connected with the
fuel-optimal problem, which is called the continuation technique for homotopic problems.
In the process of reducing ε, the solution of the previous step is always taken as the initial
estimated value of the current step. Only when ε = 0 will the difficult bang-bang control
appear. In other cases, the optimal control law is continuous.

In the homotopic process, when the parameter ε is close to 0, the right hand sides
of the ODEs vary rapidly around the switching points. The numerical integrator should
be carefully performed when crossing these points. Here, for simplicity of operation,
a fixed step integrator with switching function detection rather than an adaptive step size
integrator is used [19].

Obviously, when ε = 1, Equation (40) becomes the energy-optimal index:

J =
Tmax

Ispg0

∫ t f

t0

u2dt (41)

In the next subsection, based on the problem of energy-optimal problem, the combina-
tion of the indirect method and shape-based method is discussed.

3.2. Adjoint Estimation Based on Shape-Based Method

This subsection is similar to the problem formulation in [21], which is established
accordingly in the cylindrical coordinates [23] and then combined with the indirect method
of the optimization problem to obtain the corresponding solution.

The cylindrical coordinates are selected because experience shows that solving the
optimization problem in the cylindrical coordinates results in a higher convergence rate
than that in the spherical coordinates. Therefore, in practice, it is necessary to convert the
shape (nominal trajectory) from the spherical coordinates to the cylindrical coordinates
through the coordinate conversion method.

We denote the combination coordinates of position and velocity expressed in the
cylindrical coordinates [r, θ, z, vr, vθ , vz]

T by x, and their corresponding adjoint variables
[λr, λθ , λz, λvr , λvθ

, λvz ]
T by λx. After linearizing the motion equation near the nominal

trajectory which is designed in Section 2 and taking the energy-optimal problem as the one
that needs to be solved, the motion equations and Euler–Lagrange equations with θ as the
independent variable are derived:[

dδx
dθ

dλx
dθ

]
= F(θ)

[
δx
λx

]
− H(θ) (42)

where

F(θ) =

 M(xnom)

[
03×3 03×3

03×3 − Ispg0Tmax
2m2 I3×3

]
06×6 −MT(xnom)

1
θ̇

, H(θ) =

 03×1
anom
06×1

1
θ̇

(43)
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where xnom and anom represent the state and acceleration of the nominal trajectory, respec-
tively. M(xnom) is the Jacobian matrix of the central gravitational acceleration:

M(xnom) =



0 0 0 1 0 0
−vθ/r2 0 0 0 1/r 0

0 0 0 0 0 1
−vθ/r2 + µ

(
3r2 − R2)/R5 0 3µrz/R5 0 2vθ/r 0

vrvθ/r2 0 0 −vθ/r −vr/r 0
3µrz/R5 0 µ

(
3z2 − R2)/R5 0 0 0


(44)

where R =
√

r2 + z2 represents the distance between the central celestial body and
the spacecraft.

The solution of Equation (42) is[
δx(θ f )
λx(θ f )

]
= Φ(θ f , θ0)

[
δx(θ0)
λx(θ0)

]
−
∫ θ f

θ0

Φ(θ f , τ)H(τ)dτ (45)

where Φ(θ f , θ0) can be derived by integrating the differential equation:

dΦ(θ, θ0)

dθ
= F(θ)Φ(θ, θ0), Φ(θ0, θ0) = I12×12 (46)

We denote Φ(θ f , θ0) as

Φ(θ f , θ0) =

[
Φ1,1 Φ1,2
Φ2,1 Φ2,2

]
(47)

Let [z1, z2]
T =

∫ θ f
θ0

Φ(θ f , τ)H(τ)dτ. Then, the initial adjoint variables can be expressed as

λx(θ0) = Φ−1
1,2 (δx(θ f )−Φ1,1δx(θ0) + z1) (48)

The nominal trajectory designed in Section 2 has already met the boundary conditions,
which means δx(θ0) = 0 and δx(θ f ) = 0, so Equation (48) can be simplified as

λx(θ0) = Φ−1
1,2 z1 (49)

The mass adjoint variable λm(t0) is given by integrating the following equation:

λ̇m = −
Ispg0Tmax

2m3 ‖λv‖2 (50)

3.3. Adjoint Normalization

In practice, it can be found that the method in Section 3.2 cannot significantly improve
the convergence rate when the shapes of the initial and target orbits differ greatly. This
subsection introduces the normalization method [19] based on Section 3.2 to improve the
convergence rate.

Multiplying the index Equation (41) by a positive multiplier λ0 does not change the
essence of the problem. Consequently, the updated Hamiltonian function is expressed as

H = λ0
Tmax

Ispg0
u2 + λT

x_norm M(xnom)δx + λT
v_norm

(
Tmaxu

m
α− anom

)
− λm_norm

Tmaxu
Ispg0

(51)

where λv_norm is the group of the last three components of λx_norm.
Therefore, the normalized adjoint variables λx

′ and λm
′ can be expressed as

λx_norm = λ0λx (52)
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λm_norm = λ0λm (53)

where the positive multiplier λ0 is obtained according to the normalization condition:

λ0 =

√
1

‖λx(t0)‖2 + λ2
m(t0) + 1

(54)

In practice, the initial mass adjoint is randomly selected between 0 and the estimated
value λm_norm(t0) [21].

4. Numerical Examples

In this section, three orbit rendezvous examples are given to verify the feasibility and
advantages of the shape-based method proposed. The Novak method has the limitation
of the elevation angle, which means that it fails to obtain a feasible solution when the
elevation angle is large. The proposed method is not affected by the inclination of the
initial and target orbits and can generate an arbitrary 3D rendezvous trajectory. Compared
with the Zeng method, the proposed method can greatly reduce the velocity increment
and the Ta,max, which indicates that the rendezvous trajectory generated by the proposed
method is closer to the optimal trajectory. The first two examples illustrate the advantages
mentioned above. As for the third example, the trajectory generated by the proposed
method is combined with the indirect method and the adjoint normalization to prove that it
can broaden the convergence range and improve the convergence efficiency of rendezvous
problems. All the examples were performed on a personal desktop with an Intel Core
i7-7700 CPU of 3.6 GHz and 8.00 GB of RAM and with MATLAB R2018a.

Nondimensionalization was performed by setting the length unit to the astronomical
unit (AU), the time unit, denoted by TU, to 1/2π of the period of a circular orbit with radius
1 AU, and the mass unit, denoted by MU, to the initial mass of the spacecraft. Furthermore,
the new velocity unit is denoted by VU.

4.1. Rendezvous Mission A from Inner Orbit to Outer Orbit

The initial and target orbit elements of mission A are listed in Table 1. The elevation
angle is set to 60◦ to verify the feasibility and efficiency of the proposed shape for the 3D
rendezvous. The semi-major axis is set from 1 to 4, and the eccentricity is set from 0 to 0.1,
which can be used to prove the ability to perform an elliptic rendezvous. Assume that the
revolution number N is 3, the fixed flight time t f is 9 years (56.5089 TU), and the shaping
parameters are 10 and 20 for n1 and n2, respectively. The shaping parameters are chosen
according to experience in order to raise the elevation angle at the place with the largest
radius as much as possible.

Table 1. Orbit elements of two missions.

Mission A (r1 < r2) Mission B (r1 > r2)

Orbit Elements Initial Orbit Target Orbit Initial Orbit Target Orbit

Semi-major axis 1 4 4 1
Eccentricity 0.01 0.1 0.1 0.01
Inclination 5◦ 65◦ 65◦ 5◦

Right ascension 10◦ 10◦ 10◦ 10◦
Argument of periapsis 10◦ 10◦ 10◦ 10◦

True anomaly 0◦ 100◦ 0◦ 100◦

Then, the trajectories obtained by the three methods are shown by Figures 4 and 5.
The velocity increment and the maximal thrust acceleration Ta,max of each method are listed
in Table 2. Compared with Novak’s method and Zeng’s method, the proposed method
saves ∆V by 43.22% and 84.44%, respectively, which greatly reduces the fuel consumption
in rendezvous problems. The maximal thrust acceleration Ta,max is also significantly
reduced from Zeng’s method, at 3.458, and Novak’s method, at 0.2943, to the proposed
method’s result of 0.1527.
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Figure 4. Rendezvous results of three methods when r1 < r2.
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Figure 5. Thrust acceleration Ta of three methods when r1 < r2.

Table 2. Orbit rendezvous results when r1 < r2.

Method ∆V (VU) Ta,max (LU/TU2)

Proposed 1.5938 0.1527
Novak 2.8070 0.2943
Zeng 10.2439 3.4581

The longer the rendezvous time, the easier it is to solve the rendezvous trajectory,
which can test the flexibility of the rendezvous shape. By adjusting the rendezvous time
and keeping other parameters unchanged, we obtain the results listed in Table 3, where
N/A means no solution. This shows that whether the rendezvous time is long or short,
the proposed method always has the minimum ∆V and the minimum Ta,max. Zeng’s
method has no solution when the rendezvous time is short. This is because Zeng’s method
does not consider the monotonicity of φ1 and φ2 but uses safety as a reference quantity to
test the quality of the trajectories. Thus, there may be no solution when the rendezvous time
is too short. Moreover, the safety of trajectories is considered by the proposed method in
the design of the elevation angle, but it is not considered in the design of the radius. Hence,
the trajectories may intersect with each other when the rendezvous time is shortened.
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Table 3. Orbit rendezvous results with different t f when r1 < r2.

Proposed Novak Zeng

t f ∆V (VU) Ta,max (LU/TU2) ∆V (VU) Ta,max (LU/TU2) ∆V (VU) Ta,max (LU/TU2)

90 1.7764 0.2229 N/A N/A 2.4425 0.2997
80 1.7060 0.2040 N/A N/A 2.3723 0.2442
70 1.6474 0.1831 N/A N/A 2.7264 0.3755
60 1.6048 0.1607 2.7395 0.2797 6.4289 1.2344
50 1.5838 0.1378 3.0000 0.5310 N/A N/A
40 1.7249 0.2099 N/A N/A N/A N/A
30 2.3449 0.4569 N/A N/A N/A N/A

Let the rendezvous time be 9 years (56.5089 TU), N = 3, and the orbit elements
except the orbital inclination i2 are the same as the above example. Table 4 lists the
results. This shows that the proposed method is superior to the existing two methods
when the elevation angle is large. In addition, Novak’s method often fails when both
the initial and target orbital inclination, i1 and i2, are larger than 50◦. Moreover, when
i1 = i2 ≥ 50◦, the rendezvous trajectories designed by Novak’s method are not in the
same plane because the projection problem of the true anomaly and azimuthal angle is
not considered. Although Zeng’s method is feasible at all elevation-angles, ∆V and Ta,max
cannot be reduced.

Table 4. Orbit rendezvous results with different i2 when r1 < r2.

Proposed Novak Zeng

i2 ∆V (VU) Ta,max (LU/TU2) ∆V (VU) Ta,max (LU/TU2) ∆V (VU) Ta,max (LU/TU2)

75◦ 2.6785 0.7977 N/A N/A 9.4952 2.4343
65◦ 1.5938 0.1527 2.8070 0.2943 10.2439 3.4581
55◦ 1.1906 0.0651 1.8830 0.1006 10.2524 4.1412
45◦ 0.9553 0.0381 1.2862 0.0706 9.8555 4.6166
35◦ 0.7887 0.0257 0.8931 0.0548 9.2535 5.0227
25◦ 0.6539 0.0228 0.6582 0.0393 8.6234 5.7724
15◦ 0.5465 0.0212 0.5384 0.0256 8.1394 7.2918

4.2. Rendezvous Mission B from Outer Orbit to Inner Orbit

For mission B, the semi-major axes, eccentricities, and orbital inclinations of the initial
and target orbit elements are set to be the same as those for mission A, respectively, which
are also listed in Table 1. Let N = 3, t f = 9 years (56.5089 TU), n3 = −20 and n4 = −30.
The trajectories are shown in Figure 6, and the results are listed in Table 5. Obviously, in this
rendezvous problem, Novak’s method has no solution. The trajectory designed by Zeng’s
method intersects itself, and both the velocity increment and maximal thrust acceleration
are large. The proposed method is to transform the elevation angle as far as possible at the
place with the largest radius, so it can be seen from Figure 7 that there will be a relatively
large thrust acceleration level in the initial stage of rendezvous, but compared with Zeng’s
method, its Ta,max and ∆V are small.

Table 5. Orbit rendezvous results when r1 > r2.

Method ∆V (VU) Ta,max (LU/TU2)

Proposed 1.8345 0.3646
Novak N/A N/A
Zeng 14.2508 6.4255
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Figure 7. Thrust acceleration Ta of each method when r1 > r2.

4.3. Adjoint Estimation with Shape-Based Method

The velocity increment and maximal thrust acceleration of the rendezvous trajectories
designed by Zeng’s method are large and intersect themselves in many cases, so they
are not suitable to be used as the nominal trajectories. The following only compares the
performance of the nominal trajectories designed by the proposed method with Novak’s
method. Both MaxFunEvals and MaxIter options of the fsolve function in Matlab R2018a
are set to 2000.

We consider mission A and make the orbit elements the same as those of mission A
in Table 1 except i2. Let i2 be 35◦, N be 3 and t f be 7 years (43.9514TU). The spacecraft
performance parameters are listed in Table 6. Here, we use the percentage of converged
(POC) cases out of 100 samples to evaluate the nominal trajectories. The only difference
between these 100 examples is that the initial adjoint of mass is randomly selected between
0 and the estimated value λm

′(t0) [21]. Table 7 reports the POC and the initial values of
the adjoint variables λx(t0) and λm(t0) estimated by each method with different nominal
trajectories. It also shows the actual initial adjoint variables of the energy-optimal problem.
The initial adjoint variables of the fuel-optimal problem are obtained by the homotopic
approach based on the energy-optimal problem. Figure 8 shows the shape and normalized
thrust u = T/Tmax generated by each method.
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Table 6. Spacecraft performance parameters.

Isp(s) Tmax(N) m0(kg)

3000 0.8 5000

Table 7. Initial costates and POC of different methods.

Method λx λm POC

Proposed [−0.8032, 0.0005, −0.1797, −0.1241, −0.6611, −0.8892]T 0.8963 5%
Proposed (normalization) [−0.4162, 0.0003, −0.0931, −0.0643, −0.3426, −0.4608]T 0.4645 69%

Novak [−0.9528, 0.0155, −0.1093, 0.0433, −1.1361, −0.7288]T 1.2450 3%
Novak (normalization) [−0.4141, 0.0067, −0.0475, 0.0188, −0.4938, −0.3168]T 0.5411 23%

Energy-optimal [−0.2012, 0.0012, −0.1084, 0.0020 − 0.1083, −0.2867]T 0.4779 N/A
Fuel-optimal [−0.2506, 0.0000, −0.0841, 0.0238 − 0.1397, −0.2158]T 0.5017 N/A

Table 7 shows that the POC of the proposed method is higher than Novak’s method,
because the trajectory designed by the proposed method is closer to the energy-optimal
trajectory in shape than that designed by Novak’s method; it also consumes less ∆V and
has smaller Ta,max. At the same time, compared with the non-normalized adjoint variables,
the POC of the normalized adjoint variables has been significantly improved.

Table 8 presents the simulation results for cases where only the i2 of the target orbit
is changed, while other parameters are kept unchanged. It can be seen that when the
adjoint variables are not normalized, the POC of Novak’s method is higher than that of
the proposed method in the case of a small elevation angle, but Novak’s method is not
applicable in the case of a large elevation angle. When the adjoint variables are normalized,
the POC of the two methods is significantly improved, and the POC of the proposed
method is significantly higher than that of Novak’s method.

Table 8. POC of different methods with different i2.

i2 Proposed Proposed (Normalization) Novak Novak (Normalization)

75◦ 0% 33% N/A N/A
65◦ 0% 47% N/A N/A
55◦ 0% 11% 0% 0%
45◦ 0% 42% 0% 24%
35◦ 5% 69% 3% 23%
25◦ 19% 87% 30% 51%
15◦ 68% 99% 99% 100%
5◦ 100% 100% 96% 100%

5. Conclusions

This paper proposed a new shape-based method to solve 3D rendezvous problems,
keeping the advantages of Novak’s method and Zeng’s method. It also improves the
out-of-plane shaping functions, which makes the proposed rendezvous trajectories more
flexible and more applicable. The proposed method can generate an arbitrary 3D ren-
dezvous trajectory and can significantly reduce the velocity increment and maximal thrust
acceleration for most test cases. Compared with other shape-based methods, the proposed
method does not need to optimize free parameters. At the same time, this paper adds
the adjoint normalization into the process of combining the shape-based method with the
optimization problem and takes the proposed trajectories as the nominal orbits to provide
the initial estimates of the adjoint variables for the indirect method. It is proved that the
shape-based method proposed in this paper can be effectively applied to the optimization
problems of orbital rendezvous problems when the inclinations of the initial and target
orbits differ greatly.



Aerospace 2021, 8, 315 18 of 21

Author Contributions: T.Z. and D.W. completed preliminary research and provided the numerical
part; T.Z. and F.J. conceived and wrote the paper; F.J. and H.Z. supervised the overall work and
reviewed the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
12022214).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This Appendix shows the expressions of r′, r′′, r′′′, ϕ′, ϕ′′, and ϕ′′′.
The derivative and double derivative of ϕ with respect to θ can be expressed as

ϕ′ =
er,z
′(er,x

2 + er,y
2)− er,z

(
er,xer,x

′ + er,yer,y
′)√

er,x2 + er,y2
(A1)

ϕ′′ = er,z
′′
√

er,x2 + er,y2 −
er,z

(
er,x
′2 + er,xer,x

′′ + er,y
′2 + er,yer,y

′′
)

√
er,x2 + er,y2

+
er,z
(
er,xer,x

′ + er,yer,y
′)2(

er,x2 + er,y2
) 3

2
(A2)

φ′′′ = er,z
′′′
√
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′′ er,xer,x
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where

er,x(y,or,z)
′ = φ′

(
cos f1 p1,x(y,or,z) + sin f1q1,x(y,or,z)

)
− φ′

(
cos f2 p2,x(y,or,z) + sin f2q2,x(y,or,z)

)
+φ
(
−p1,x(y,or,z) f1

′ sin f1 + q1,x(y,or,z) f1
′ cos f1

)
+ (1− φ)

(
−p2,x(y,or,z) f2

′ sin f2 + q2,x(y,or,z) f2
′ cos f2

) (A4)
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)
−φ′′′

(
cos f2 p2,x(y,or,z) + sin f2q2,x(y,or,z)

)
+3φ′′

(
−p1,x(y,or,z) f1

′ sin f1 + q1,x(y,or,z) f1
′ cos f1

)
−φ′′

(
−p2,x(y,or,z) f2

′ sin f2 + q2,x(y,or,z) f2
′ cos f2

)
+3φ′

(
−p1,x(y,or,z) f1

′′ sin f1 − p1,x(y,or,z) f1
′2 cos f1 + q1,x(y,or,z) f1

′′ cos f1 − q1,x(y,or,z) f1
′2 sin f1

)
−φ′

(
− f2

′′p2,x(y,or,z) sin f2 − f2
′2 p2,x(y,or,z) cos f2 + f2

′′q2,x(y,or,z) cos f2 − f2
′2q2,x(y,or,z) sin f2

)
+φ
(
−2p1,x(y,or,z) f1

′ f1
′′ cos f1 + p1,x(y,or,z) f1

′3 sin f1 − p1,x(y,or,z) f1
′′′ sin f1

)
+φ
(
−p1,x(y,or,z) f1

′′ f1
′ cos f1 − 2q1,x(y,or,z) f1

′ f1
′′ sin f1

)
+φ
(
−q1,x(y,or,z) f1

′3 cos f1 + q1,x(y,or,z) f1
′′′ cos f1 − q1,x(y,or,z) f1

′′ f1
′ sin f1

)
+(1− φ)

(
−2p2,x(y,or,z) f2

′ f2
′′ cos f2 + p2,x(y,or,z) f2

′3 sin f2 − p2,x(y,or,z) f2
′′′ sin f2

)
+(1− φ)

(
−p2,x(y,or,z) f2

′′ f2
′ cos f2 − 2q2,x(y,or,z) f2

′ f2
′′ sin f2

)
+(1− φ)

(
−q2,x(y,or,z) f2

′3 cos f2 + q2,x(y,or,z) f2
′′′ cos f2 − q2,x(y,or,z) f2

′′ f2
′ sin f2

)

(A6)

f j
′ =

pj,xqj,y − pj,yqj,x

der f j,(0)
, j = 1, 2 (A7)

f j
′′ = −

(
pj,xqj,y − pj,yqj,x

)
der f j,(1)

der f j,(0)
2 , j = 1, 2 (A8)

f j
′′′ = −

(
pj,xqj,y − pj,yqj,x

)(
der f j,(2)derjj,(0) − 2der f j,(1)

2
)

der f j,(0)
3 , j = 1, 2 (A9)

der f j ,(0), der f j ,(1), der f j ,(2), j=1,2 are defined as

der f j ,(0) =
((

pj,x
2 + qj,x

2
)

sin θ − 2 cos θ
(

pj,x pj,y + qj,xqj,y
))

sin θ +
(

pj,y
2 + qj,y

2
)

cos2θ (A10)

der f j,(1) =
(

pj,x
2 − pj,y

2 + qj,x
2 − qj,y

2
)

sin 2θ − 2
(

pj,x pj,y + qj,xqj,y
)

cos 2θ (A11)

der f j,(2) = 4
(

pj,x pj,y + qj,xqj,y
)

sin 2θ + 2
(

pj,x
2 − pj,y

2 + qj,x
2 − qj,y

2
)

cos 2θ (A12)

The derivative and double derivative of the interpolation function are
if r1 < r2

φ′ =
b + cn1βn1−1 + dn2βn2−1

θ2 − θ1
(A13)

φ′′ =
cn1(n1 − 1)βn1−2 + dn2(n2 − 1)βn2−2

(θ2 − θ1)
2 (A14)

φ′′ =
cn1(n1 − 1)(n1 − 2)βn1−3 + dn2(n2 − 1)(n2 − 2)βn2−3

(θ2 − θ1)
3 (A15)

if r1 > r2

φ′ =
b + cn3(β + 1)n3−1 + dn4(β + 1)n4−1

θ2 − θ1
(A16)

φ′′ =
cn3(n3 − 1)(β + 1)n3−2 + dn4(n4 − 1)(β + 1)n4−2

(θ2 − θ1)
2 (A17)
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φ′′ =
cn3(n3 − 1)(n3 − 2)βn3−3 + dn4(n4 − 1)(n4 − 2)βn4−3

(θ2 − θ1)
3 (A18)

Let der(0) denote the denominator of r, and der(1), der(2), and der(3) denote the deriva-
tive, double derivative, and triple derivative of the denominator of r with respect to f ,
respectively:

derr(0) = k0 + k1 f + k2 f 2 + (k3 + k4 f ) cos f + (k5 + k6 f ) sin f
derr(1) = k1 + 2k2 f − k3 sin f + k4 cos f − k4 f sin f + k5 cos f + k6 sin f + k6 f cos f
derr(2) = 2k2 − k3 cos f − 2k4 sin f − k4 f cos f − k5 sin f + 2k6 cos f − k6 f sin f
derr(3) = k3 sin f − 3k4 cos f + k4 f sin f − k5 cos f − 3k6 sin f − k6 f cos f

(A19)

Then, r′, r′′, and r′′′ are

r′ =
−derr(1)
derr(0)2 f ′ (A20)

r′′ =
−derr(2)derr(0) + 2derr(1)2

der(0)3 f ′2 +
−derr(1)
derr(0)2 f ′′ (A21)

r′′′ =
−3derr(2)derr(0)+6derr(1)

2

derr(0)3 f ′ f ′′ +
−derr(1)
derr(0)2 f ′′′

+
−derr(3)derr(0)

2+6derr(0)derr(1)derr(2)−6derr(1)
3

derr(0)4 f ′3
(A22)

where
f ′ =

pxqy − pyqx

der f(0)
(A23)

f ′′ = −
(

pxqy − pyqx
)
der f(1)

der f(0)
2 (A24)

f ′′′ = −

(
pxqy − pyqx

)(
der f(2)der f(0) − 2der f(1)

2
)

der f(0)
3 (A25)

der f (0), der f (1), and der f (2) are denoted as

der f(0) =
((

px
2 + qx

2
)

sin θ − 2 cos θ
(

px py + qxqy
))

sin θ +
(

py
2 + qy

2
)

cos2θ (A26)

der f(1) =
(

px
2 − py

2 + qx
2 − qy

2
)

sin 2θ − 2
(

px py + qxqy
)

cos 2θ (A27)

der f(2) = 4
(

px py + qxqy
)

sin 2θ + 2
(

px
2 − py

2 + qx
2 − qy

2
)

cos 2θ (A28)
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