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Abstract: This research presents an automatic flight control system whose advantage is its ease of
modification or maintenance while still effectively meeting the system’s performance requirement.
This research proposes a mixed servo state-feedback system for controlling aircraft longitudinal
and lateral-directional motion simultaneously based on the coefficient diagram method or CDM
as the controller design methodology. The structure of this mixed servo state-feedback system is
intuitive and straightforward, while CDM’s design processes are clear. Simulation results with
aircraft linear and nonlinear models exhibit excellent performance in stabilizing and tracking the
reference commands for both longitudinal and lateral-directional motion.

Keywords: coefficient diagram method (CDM); mixed servo state-feedback

1. Introduction

Generally, the design process of an automatic flight control system starts from inves-
tigating the flight behavior or flight dynamics of an aircraft. The aircraft flight dynamics
usually vary depending on the aircraft type. However, most aircraft exhibit a common
behavior in flight dynamics if the primary flight control system remains the same. Typi-
cally, the flight dynamics model of a general aircraft becomes nonlinear. In the design of
an automatic flight control system, complex procedures are involved when attempting
to address nonlinear aspects of the flight dynamics model. For the sake of simplicity,
sometimes, these nonlinear models need to be linearized. After such linearization, the
original system model is divided into two linear components, namely, the longitudinal
model and the lateral-directional model. If we focus on the relationship between these two
models and the primary flight control system, the performance of the aircraft longitudinal
model is strongly influenced by the deflection of the elevator, while the lateral-directional
model is affected by the deflection of the aileron and rudder. Over the past decades, many
researchers have investigated these aircraft flight models and proposed automatic aircraft
flight control systems in a variety of means as well as for a variety of flight operations
or flight envelopes. As related to previous works, an automatic flight control system is
developed based on the new inversion model technique (using a Newton–Raphson trim
algorithm) for advanced aircraft configurations with severe nonlinear characteristics [1].
The analysis in [2] emphasizes the feedback decoupling theory on the time domain and
its application to roll attitude control. The attitude control is also studied in [3] where the
automatic control is developed by using the method of calculating the torque driving the
aircraft to a prescribed attitude. A well-known controller called the “Proportional–Integral–
Derivative controller or PID controller” is presented for pitch attitude control in [4]; this
research uses many different tuning methods to obtain the optimum parameter’s value of
the PID. In [5], pitch attitude control analysis based on a singular perturbation approach
theory dealing with the aircraft longitudinal decoupling was presented. These automatic
aircraft flight control systems can be applied to either full or partial aircraft flight models.
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The purpose of this research is to present another type of automatic flight control
system, where the resulting system has a simple structure, and the design processes are
straightforward. It is common to use a state-space model and a servo state feedback system
to describe the aircraft dynamics and build an automatic flight control system. Its simple
structure and flexibility are a primary advantage of this feedback system. The coefficient
diagram method or CDM is the controller design theory used to obtain the servo state
feedback gains. CDM is an efficient, easy-to-understand controller design theory and pro-
vides the decision-making criteria for determining system response in an explicit manner.
In CDM, a coefficient diagram is used to analyze the system response. There are three
essential parameters (stability index, γi, stability limit, γ∗i , and equivalent time constant,
τ) established by CDM to adjust the system coefficient equations to meet the shape of the
coefficient diagram’s needs. All three parameters also have discretionary criteria, but they
can also be adjusted to achieve the desired system performance. The efficacy of the CDM
has been verified by previous works in which a partial model of an aircraft is employed for
simulation [6–8]. The entire structure of the automatic flight control system comprises two
subsystems, that is, one for longitudinal control and another for lateral-directional control.
The altitude and heading are controlled variables in these subsystems. Both subsystems
have their controller gains, which are obtained from the linearized state-space model and
separately designed by the CDM. We then applied the proposed automatic flight control
system to the nonlinear aircraft flight dynamics model to investigate the system’s perfor-
mance. The simulation results showed that the proposed automatic flight control system
exhibited satisfactory performance while retaining simplicity in its design processes.

2. Aircraft Flight Dynamics
2.1. Longitudinal Dynamics

After linearization, the desired longitudinal dynamics in the state-space form are
shown in Equation (1), where x(t)Long is a state vector, x(t)Long =

[
v α q θ h

]T ,
u(t)Long is the input [9,10], which consists of the elevator deflection and thrust, u(t)Long =[

δE δT
]T and y(t)Long are the output. By using dimensional derivative notation, the

longitudinal state matrix, ALong, the longitudinal control matrix, BLong, and the longitudinal
output matrix, CLong are given as shown in Equation (1).

.
x(t)Long = ALongx(t)Long + BLongu(t)Long

=


X′u X′α X′q X′θ 0
Z′u Z′α Z′q Z′θ 0
M′u M′α M′q M′θ 0
0 0 1 0 0
0 −Vp1 0 VP1 0

x(t)Long +


X′δE

X′δT
Z′δE

Z′δT
M′δE

M′δT
0 0
0 0

u(t)Long

y(t)Long = CLongx(t)Long = I5x(t)Long

(1)

2.2. Lateral-Directional Dynamics

Following the same way as in the longitudinal dynamics, the desired lateral-directional
dynamics in the state-space form is shown in Equation (2), where x(t)LatDir is a state vector
and is expressed as x(t)LatDir =

[
β p r φ ψ

]T , u(t)LatDir is an input, which consists

of the aileron and rudder deflection, u(t)LatDir =
[

δA δR
]T and y(t)LatDir are output.

By using dimensional derivative notation, the lateral-directional state matrix, ALatDir, the
lateral-directional control matrix, BLatDir, and the lateral-directional output matrix, CLatDir
are given in Equation (2).
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.
x(t)LatDir = ALatDirx(t)LatDir + BLatDiru(t)LatDir

=


Y′β Y′p Y′r Y′φ 0
L′β L′p L′r 0 0
N′β N′p N′r 0 0

0 1 tgΘ1 0 0
0 0 0 g

VP1
0

x(t)LatDir +


Y′δA Y′δR
L′δA L′δR
N′δA L′δR

0 0
0 0

u(t)LatDir

y(t)LatDir = CLatDirx(t)LatDir = I5x(t)LatDir

(2)

2.3. Integrated Dynamics

The integrated dynamics is a combination of longitudinal and lateral-directional

dynamics. These dynamics have x(t) as a state vector, x(t) =
[

x(t)T
Long x(t)T

Latdir

]T
and

u(t) as the input, u(t) =
[

u(t)T
Long u(t)T

LatDir

]T
. These integrated dynamics are used

for investigating the system performance and its state-space form as given in Equation (3).

.
x(t) =

[
ALong 0

0 ALatDir

]
x(t) +

[
BLong 0

0 BLatDir

]
u(t)

y(t) =
[

CLong 0
0 CLatDir

]
x(t)

(3)

3. Coefficient Diagram Method and Servo State-Feedback System
3.1. Coefficient Diagram Method

The coefficient diagram method or CDM is a kind of controller design theory and was
first introduced by Professor Shunji Manabe [11]. From the efficient and uncomplicated
CDM, there are many studies about CDM in various fields [12,13]. In addition, there is
specific research using CDM in the aeronautic and aerospace field [14,15]. This controller
design theory uses a diagram called the “coefficient diagram,” which provides sufficient
information about the three primary characteristics of the control system (stability, re-
sponse, and robustness). By consideration of the shape of the coefficient curve, the stability
can be observed from the curvature, the response can be observed from the inclination,
and the robustness can be observed from the variation of the shape of the curve due to
plant/controller parameter variation. The characteristic polynomial of the desired auto-
matic control system (closed-loop system) will determine the coefficient values in this
curve. In CDM, this characteristic polynomial is obtained from the CDM’s characteristic
polynomial. The CDM’s monic characteristic polynomial is shown in Equation (4),

Pm(s) =

n−1
∏
j=1

γ
j
n−j

τn

 n

∑
i=2

i−1

∏
j=1

1

γ
j
i−j

(τs)i

+ τs + 1

 = sn + an−1sn−1 + · · ·+ a1s + a0 (4)

where a0, a1, . . . , an are the coefficients. CDM introduces three specific design pa-
rameters comprising stability index, γi, stability limit, γ∗i , and equivalent time constant,
τ and uses these three parameters in conjunction with Equation (4) to obtain the CDM’s
characteristic polynomial. By tuning, these three parameters lead to the proper controller.
CDM defines the criterion for tuning these parameters as follows: The stability index
must satisfy the inequality, and the stability limit relates to the stability index, as shown in
Equation (5).

γi > 1.5γ∗i and γ∗i =
1

γi−1
+

1
γi+1

; i = 1 . . . n− 1, γ0 = γn = ∞ (5)
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The equivalent time constant is related to the settling time and shown in Equation (6),

τ =
ts

c
; 2.5 ≤ c ≤ 3 (6)

However, CDM recommends the value set of the stability index known as the standard
stability index, as shown in Equation (7),

γn−1 = . . . = γ3 = γ2 = 2 and γ1 = 2.5. (7)

For an illustration purposes to explain how the shape of the coefficient diagram should
be interpreted from a stability viewpoint, three 5th-order systems with different sets of
stability index,γi, and the equivalent time constant,τ, are compared. Their characteristic
polynomials and poles are expressed as Equations (8)–(10).

P1(s) = 0.25s5 + 0.7s4 + s3 + s2 + 0.7s1 + 0.2
γi =

[
∞ 1.96 1.4268 1.4268 2.45 ∞

]
, τ = 3.5

ai =
[

0.25 0.7 1 1 0.7 0.2
]

s = −0.0842± 1.0359i, −1.0324± 0.4905i, −0.5670

 (8)

P2(s) = 0.25s5 + s4 + 2s3 + 2s2 + s1 + 0.2
γi =

[
∞ 2 2 2 2.5 ∞

]
, τ = 5

ai =
[

0.25 1 2 2 1 0.2
]

s = −1.1114± 1.2797i, −0.6042± 0.3528i, −0.5689

 (9)

P3(s) = 0.25s5 + 2s4 + 4s3 + 4s2 + 2s1 + 0.2
γi =

[
∞ 4 2 2 5 ∞

]
, τ = 10

ai =
[

0.25 2 4 4 2 0.2
]

s = −5.6128, −1.0592, −0.5992± 0.8248i, −0.1295

 (10)

By considering the poles of these systems,P3(s) is more stable than the other two, and
the coefficient diagram of P3(s) is more curved than the other, as shown in Figure 1a. For
another comparison, the same stability indexes but different equivalent time constants,
4, 5, and 6, are assigned for P1(s),P2(s), and P3(s), respectively. It is seen from Figure 1b
that P1(s) with the smallest equivalent time constant is more left-end down than the other
two. Therefore, after observing both coefficient diagrams, the more up-lifted the diagram’s
curve is, the more stable the system becomes, and the more left-end down the curve is, the
faster the response becomes.

3.2. Servo State-Feedback System

Both longitudinal and lateral-directional dynamics are the plants that have an integra-
tor and the same pattern (same number of state variables, inputs, and outputs). Therefore,
this subsection uses the longitudinal dynamics, shown in Figure 2, to explain the servo
state-feedback system’s general configuration for this research [16]. In this servo system,
let the output y(t)Long be the velocity and altitude, y(t)Long =

[
u h

]T . Then, only
three state variables remain as the variables to feedback into the system. Therefore, it is
necessary to introduce two reduced matrices to complete this servo state feedback system.
The reduced matrix HrL and HL are shown in Equation (11).

HrL =

 0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

, and HL =

[
1 0 0 0 0
0 0 0 0 1

]
(11)
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Figure 2. The longitudinal dynamics servo state-feedback system.

By considering Figure 2 and Equation (1), with rL(t) as the reference command, and KL,
GL as state-feedback gain matrices, the input u(t)Long can be described as in Equation (12),

u(t)Long = −KLHrLx(t)Long + GL

(
rL(t)−HLx(t)Long

)
; KL =

[
k2 k3 k4

]
and GL =

[
k1 k5

]
. (12)

Letting KsL be the total servo state-feedback gain matrix and using Equation (12), KL
and GL, we rewrite the input u(t)Long again, as shown in Equation (13),

u(t)Long = −KsLx(t)Long +
[

k1 k5
]
rL(t); KsL =

[
k1 k2 k3 k4 k5

]
(13)

As stated previously, the lateral-directional dynamics servo state-feedback system also
has two outputs (sideslip and the heading angle) and two inputs, as in the longitudinal
dynamics. Therefore, we are able to apply the same configuration, as shown in Figure 2,
to this system. The reduced matrices of lateral-directional dynamics servo state-feedback
system, HrLD and HLD, are identical with HrL and HL, respectively. The total servo state-
feedback gain matrix for both systems (KsL and KsLD) is applied to the integrated dynamics,
Equation (3), to obtain the proposed aircraft flight stabilizer system, as shown in Figure 3.
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Figure 3. Aircraft flight stabilizer system.

The aircraft flight stabilizer system in Figure 3 uses CDM to determine the total servo
state-feedback gain matrix. The summary of the procedures to determine the total servo
state-feedback gain matrices is given as follows.

• Choose the values of γi, and τ, to determine the desired CDM’s monic characteristic
polynomial, Equation (4).

• Use the poles of obtained CDM’s monic characteristic polynomial to specify the eigen-
values of the matrix, ALong − BLongx(t)Long and ALatDir − BLatDirx(t)LatDir. Then use
a pole placement technique to determine the values of the total servo state-feedback
gain matrix, KsL, and KsLD.

• Calculate the values of KL, GL for longitudinal dynamics, and KLD, GLD for lateral-
directional dynamics.

• If necessary, the adjustment follows CDM’s criterion, Equations (5) and (6), until the
system requirement can be met for each system.

4. Simulation Results

To investigate the performance of the proposed aircraft flight stabilizer system, the
simulation was carried out with MATLAB® and Simulink® with Cessna 182 as the test
aircraft in the linear model and nonlinear model. The nonlinear model used in this
simulation was Airlib [17], developed by Giampiero Campa. This tool block was a general
nonlinear 6-DOF aircraft model, with a very accurate built-in atmosphere model and
constant aerodynamic derivatives. The block’s architecture was largely based on the
Aircraft block provided by the FDC toolbox (Marc Rauw, 1993–2000) [18]. The geometric
data of a Cessna 182 and flight condition data used in this simulation are shown in
Tables 1 and 2 [9], respectively.

Table 1. Cessna 182 geometric data.

Cessna 182 Symbol Value

Wing surface (ft2) S 174
MAC (ft) c 4.9

Wingspan (ft) b 36
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Table 2. Cessna 182 flight condition data.

Symbol Cruise

Altitude (ft) h 5000
Mach number M 0.201

Airspeed (ft/sec) Vp1 220.1
Dynamic Pressure (lbs/ft2) q 49.6

CG -%MAC xCG 0.264
AOA (deg) α 0

The longitudinal state matrix, ALong, the longitudinal control matrix, BLong, the lateral-
directional state matrix, ALatDir and the lateral-directional control matrix, BLatDir of Cessna
182 used in Equation (3) are shown in Equations (14) and (15), respectively.

ALong =


−0.0456 19.4590 0 −32.2000 0
−0.0013 −2.0925 0.9706 0 0
0.0033 −13.9387 −6.8053 0 0

0 0 1 0 0
0 −220.1000 0 220.1000 0

, BLong =


0 0.0117

−0.2026 0
−34.7359 0

0 0
0 0

 (14)

ALatDir =


−0.1868 −0.0029 −0.9917 0.1463 0
−30.2500 −12.9700 2.1400 0 0

9.2700 −0.3600 −1.2100 0 0
0 1 0 0 0
0 0 0 0.1463 0

, BLatDir =


0 0.0889

75.0600 4.8200
−3.4100 −10.1900

0 0
0 0

 (15)

With the total servo state-feedback gain matrices obtained as above, we chose the set
values of γi, as given in Equation (7). These set values of γi are called standard stability
index, and CDM guarantees that the obtained system with these values has a good balance
between stability, robustness, and response. The value of τ equal to 1.1 for longitudinal
dynamics and τ equal to 4 for lateral-directional dynamics were chosen to meet the required
system response that wants the fastest control system response as soon as possible with less
overshoot. With the CDM’s monic characteristic polynomial, Equation (4), the coefficient
diagrams of both subsystems are shown in Figures 4 and 5.
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By observing both coefficient diagrams, Figures 4 and 5, both systems had stability
due to the use of the same set of γi which can be observed from the diagram’s curvature.
If the diagram’s curvature became larger, the system becomes more stable. However, the
longitudinal dynamics exhibited a faster response than the lateral-directional dynamics
due to a different τ and can be observed from the greater inclination of Figure 4 than
Figure 5. The proposed control system used the obtained CDM’s polynomial to determine
the total servo state-feedback gain matrices, and the controller was constructed in the
Simulink®. The total servo state-feedback gain matrices for longitudinal dynamics and
lateral-directional dynamics are shown in Equations (16) and (17), respectively.

KsL =

[
0.0044 3.6018 −0.2123 −6.0210 −0.0367

221.7777 −4.8475e + 03 283.3598 6.5117e + 03 66.4017

]
(16)

KsLD =

[
−0.3662 −0.1472 0.0476 0.0397 0.1294
−0.6879 0.2256 −0.0801 0.1626 0.3473

]
(17)

The simulation used an 840 feet per minute rate of climb and descent as a command
signal to the longitudinal dynamics system and 45 degrees per minute rate of turn to the
lateral-directional dynamics system. The response of altitude and heading control are
shown in Figures 6 and 7, respectively.

The altitude command changed from 5000 to 6000 feet at the beginning and held at
this altitude until 160 s, then returned to 5000 feet. The heading command changed from 0
degrees to−30 degrees at 100 and held at this angle until 200 s, then came back to 0 degrees.
The simulation response in Figure 6 illustrates that both controllers of linear and nonlinear
systems exhibited excellent performance in tracking altitude command signals at the same
rate of climb and descent as the command signals. However, the altitude response of the
nonlinear system had a small overshoot, 0.07%, when a heading change occurred at 100 s
(see Figure 6b) and had a small error, 0.01%, at a steady-state, between the command signal
and response of the linear system (see Figure 6c). In the heading response (see Figure 7),
both controllers of linear and nonlinear systems still exhibited excellent performance in
tracking heading command signals. However, the nonlinear system’s response had a small
overshoot of approximately 0.8 degrees when the heading changed. With respect to the
heading command, both linear and nonlinear systems presented no steady-state error.
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It is generally known that the aircraft’s altitude is the one crucial parameter in flight.
Therefore, to investigate the proposed control system’s effectiveness, this simulation tested
the control system for the aircraft’s altitude and zero-heading stabilization. There were
three tested altitudes: 4000 feet, 5000 feet, and 6000 feet, and the disturbance signal to
both controlled variables (altitude and heading) at each altitude test was applied. The
disturbance signals were impulse signals and applied to the altitude at 50 s and heading at
100 s. The response of altitude and heading are shown in Figures 8 and 9, respectively.
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By observing Figure 8, it was found that the proposed control system exhibited a
good disturbance rejection behavior (the disturbance signal applied directly to the altitude
at 50 s) in all three tested altitudes. The proposed control system could also mitigate a
change in heading occurring at 100 s. As seen in Figure 9, the heading response was not
affected by the altitude change and exhibited an excellent disturbance rejection behavior
(the disturbance signal applied directly to the heading at 100 s) in all three tested altitudes.
Considering the proposed control system’s performance for all three flight altitude changes,
the system was found to exhibit little change, which implies its robustness. For example, in
Figure 8, in an attempt to maintain a constant altitude in three different levels, there was a
slight change in the steady-state error when the altitude decreased. Similarly, in Figure 9,
the overshoot increased only slightly as the altitude increased.

5. Conclusions

This research’s objective was to obtain an efficient controller in which the controller’s
structure was straightforward and easy to modify. The consideration of the general struc-
ture of the controller, controller design processes, and the simulation results, confirmed
that the obtained controller met the objectives. In terms of the controller’s structure, the use
of the servo state-feedback controller, which decouples longitudinal and lateral-directional
dynamics, makes these controllers easy to modify the controlled state variable for other
control purposes by means of modifying the reduced matrix. Moreover, if there is a need
to change the controller structure or type, it can be done partially without affecting the
rest. In terms of controller design based on CDM, which is a useful and practical controller
design theory, this controller design approach had a straightforward and clear criterion in
tuning and guarantees that the obtained system will achieve a good balance of stability,
response, and robustness.
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Abbreviations

g gravity acceleration, ft/sec2

h altitude, ft
L′, M′, N′ dimensional derivative of moment
p roll angular rate, rad/sec2

q pitch angular rate, rad/sec2

r yaw angular rate, rad/sec2

ts settling time, sec
v velocity, ft/sec
VP1 airspeed, ft/sec
X′, Y′, Z′ dimensional derivative of force
α angle of attack, rad
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β sideslip angle, rad
δ deflection of control surfaces, rad
φ roll angle, rad
γi stability index
γ∗i stability limit
θ pitch angle, rad
Θ1 steady state pitch angle, rad
τ equivalent time constant, sec
ψ yaw angle, rad
Subscripts
A aileron
E elevator
LatDir, LD relative to the lateral-directional dynamics
Long, L relative to the longitudinal dynamics
rL reduce matrix of the longitudinal dynamics
rLD reduce matrix of the lateral-directional dynamics
R rudder
T thrust
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