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Abstract: In physics-based prognostics, model parameters are estimated by minimizing the error or
maximizing the likelihood between model predictions and measured data. When multiple model
parameters are strongly correlated, it is challenging to identify individual parameters by measuring
degradation data, especially when the data have noise. This paper first presents various correlations
that occur during the process of model parameter estimation and then introduces two methods of
identifying the accurate values of individual parameters when they are strongly correlated. The first
method can be applied when the correlation relationship evolves as damage grows, while the second
method can be applied when the operating (loading) conditions change. Starting from manufactured
data using the true parameters, the accuracy of identified parameters is compared with various
levels of noise. It turned out that the proposed method can identify the accurate values of model
parameters even with a relatively large level of noise. In terms of the marginal distribution, the
standard deviation of a model parameter is reduced from 0.125 to 0.03 when different damage states
are used. When the loading conditions change, the uncertainty is reduced from 0.3 to 0.05. Both are
considered as a significant improvement.

Keywords: Bayesian method; physics-based prognostics; correlation; parameter estimation; crack growth

1. Introduction

Aircraft structures are designed based on the damage-tolerance concept, where flaws
can exist in any structure and such flaws propagate with usage. A maintenance program
will result in the detection and repair of damage, corrosion and fatigue cracking before such
damage threatens the safety of the system. Structural maintenance of aircraft is currently
based on scheduled maintenance, which accounts for more than 27% of the lifecycle cost
of an aircraft [1]. There are ongoing research efforts to reduce the maintenance cost by
utilizing condition-based maintenance where the health status of the system is continuously
monitored, and maintenance is requested when the safety of the system is threatened [2].

Structural health monitoring (SHM) [3–5] is the process of identifying damage and
evaluating the safety of a system based on online and/or offline data. It uses an array of
sensors to obtain measurement data that are directly or indirectly related to damage. The
statistical analysis of these measurements can help predict the future state of the system and
thus improve the safety of the system. SHM can be found in a wide variety of applications
such as bridges and dams [6], buildings [7], stadiums, platforms, airframes [8], power
plants [9], etc. Prognostics is an extension of SHM, which is the process of estimating the
time beyond which a system can no longer function to meet desired performances [10].
The time, in terms of cycles/hours, remaining to run the system before failure is called the
remaining useful life (RUL).

There are two types of prognostics methods: data-driven and physics-based ap-
proaches [11]. The data-driven approaches [12] are advantageous when many training data
are available for a complex system, while the physics-based approaches [13,14] are good
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when a physical model of damage degradation is available. In this paper, the physics-based
approach is used for prognostics, where a well-defined physics model is assumed to be
available to represent the progression of degradation, and measurement data are used to
estimate the model parameters, from which the RUL can be predicted.

Identifying model parameters is the key step in the prognostics using physics-based
approaches [15] because, with the identified parameters, the RUL can easily be calculated by
propagating the degradation model to the future. In addition to operating conditions and
model-form errors, it is critically important to identify uncertainty in the parameters, as they
are directly related to the uncertainty in the RUL. In addition, when multiple parameters are
involved, it is important to identify the correlation between them. Correlation occurs when
the combinations of more than one parameter can represent the same physical phenomenon.
For example, in Paris crack growth model, different combinations of two model parameters
can yield the same crack growth rate [16]. This often happened because a single physical
quantity is measured, while multiple parameters influence the quantity.

Model parameter identification is equivalent to a curve-fitting process where the errors
between model predictions and measured data are minimized using linear/nonlinear
regression [10]. Recently, statistical estimation methods have become popular to consider
the uncertainty in future degradation [17]. Many of the statistical approaches have their
theoretical foundation on the Bayesian inference, where the observed data can improve
the information on the current model parameters. In the case of statistical approaches, the
maximum likelihood estimation is often used to identify the probability distribution of
model parameters [18]. In Bayesian inference, the joint probability density function (PDF)
of model parameters is updated from its prior PDF to the posterior PDF. The posterior PDF
shows the level of knowledge in the unknown parameters based on the observed data.

In general, correlation in statistics measures the similarity in trend between two or
more random variables. In the regime of epistemic uncertainty of model parameters, two
parameters are considered to be correlated when multiple combinations of them can predict
the same degradation state. Since the predicted value is the same, it is inherently difficult
to identify individual values of parameters. Instead, a relationship between them can
be obtained. If the marginal PDF of individual parameters is used, the RUL prediction
can significantly be different from the true one. Therefore, it is important to identify the
correlation structure between degradation parameters. Li and Vu [19] presented non-
identifiability problems of biology model parameters in nonlinear dynamic models due
to correlations between parameters. Santos and Pinto [20] showed that when a variable
correlation is unknown, the simultaneous estimation of model parameters and variable
correlation may lead to meaningless parameter estimates and parameter uncertainties. In
statistical approaches, Matzke et al. [21] used Bayesian inference to quantify the correlation
uncertainty in the presence of measurement error. Most literature on correlation focuses on
identifying the correlation structure, not the value of parameters.

An important contribution of the present work is related to the fact that the number of
unknown model parameters is normally larger than that of the measurement data types.
Normally a single type of degradation data is measured while multiple model parameters
need to be estimated. In addition, these parameters are often strongly correlated. In such
a situation, it is difficult, if not impossible, to identify the accurate model parameters.
An et al. [16] showed that even if the accurate model parameters may not be identified,
the correlation relationship can still be used to predict the RUL accurately. However, it is
often necessary to identify accurate model parameters in order to use them under different
operating conditions or to use them in different systems.

The objective of this paper is to present various types of correlations that occur during
model parameter estimation and then introduce two ways of identifying degradation
parameters even if the correlation between them is strong. The idea is that it is possible to
identify the accurate degradation parameters when the correlation structure changes over
time or when different operating conditions are used. The proposed methods of identifying
degradation parameters are demonstrated using a crack growth model with synthetic data.
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In particular, it is shown that the proposed method is robust even if relatively a large level
of noise is present in the data.

The remaining sections are organized as follows. In Section 2, it is shown that dif-
ferent types of correlations can occur in the model parameter estimation process. In
Section 3, Bayesian inference is introduced to obtain the distribution of model parameters.
In Section 4, two methods of identifying accurate model parameters are introduced using
the Paris model of fatigue crack growth, followed by conclusions in Section 5.

2. Correlations in the Identification Process

Crack growth is an important phenomenon related to structural failure [22]. In this
section, the Paris–Erdogan crack growth model is used to explain the fundamental nature
of correlation. The fatigue crack growth rate of the Paris–Erdogan model is given as:

da
dN

= C(∆K)m (1)

where a is the half crack size, N is the cycle of fatigue loading, ∆K = ∆σ
√

πa is the range
of Mode I stress intensity factor, ∆σ is the range of applied stress, and m and C are the
two model parameters that need to be estimated. Equation (1) is nonlinear because the
stress intensity factor ∆K depends on the crack size a. Although the loading cycle, N, is an
integer, it is considered as a continuous variable in the above differential equation. Since
the degradation model requires the crack size as a function of time and model parameters,
Equation (1) can be integrated to obtain the following degradation model:

aN(m, C) =
[

NC
(
1− m

2
)(

∆σ
√

π
)m

+ a1−m
2

0

] 2
2−m

, when m 6= 2

aN(m, C) = a0 exp
[

NC
(
∆σ
√

π
)m
]
, when m = 2

(2)

where a0 is the initial size of the crack when N = 0. It is assumed that the crack sizes are
measured using an SHM system, where the measured data include random noise and a
constant bias. It is assumed that the random noise follows a normal distribution as N(0, s2)
where s is the standard deviation (STD) of the noise. The deterministic bias represents the
error in the model form or the calibration error of SHM sensors.

In the following sub-sections, three types of correlations that occur during model
parameter estimation will be discussed.

2.1. Correlation between Model Parameters

In statistics, correlation is defined as the degree to which a pair of random variables
are linearly related. This commonly happens when two variables are not statistically
independent. The degree of correlation is often measured using correlation coefficients
such as Pearson correlation coefficient or Spearman’s rank correlation [23]. The former can
be applied for a linear relationship, while the latter is robust for a nonlinear relationship.
In this section, the concept of correlation is utilized to describe statistical dependency
between model parameters, which is represented in the form of the posterior joint PDF
using Bayesian inference.

Correlation in estimating model parameters can be shown using a simple example
of y = x1 + x2 where y is the measured output, while model parameters, x1 and x2, need
to be identified. For example, when y = 2 is measured, there are infinite combinations
of x1 and x2 to yield y = 2; i.e., (x1, x2) = (1, 1), (1.5, 0.5), (1.7, 0.3), . . .. Although it is
impossible to identify the true values of x1 and x2, the sum of the two variables always
shows a consistent outcome; i.e., x1 + x2 = 2.

It turned out that the correlation between the two parameters, m and C, was strong,
which means that it would be difficult to identify individual values. Instead, the correlation
relationship can be identifiable [16]. Figure 1a shows a log-log scale graph of the crack
growth rate versus the range of stress intensity factor. When the crack growth is in a stable
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stage, the crack growth rate shows a linear trend, which can be determined using the slope
m and y-intercept C.
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As shown in Figure 1a, for a given ∆K, the measured crack growth rate log(da/dN)
can be obtained by infinitely many combinations of m and C. That is, different combinations
of m and C can represent the same crack growth. This is the basic nature of correlation that
this paper addresses. Indeed, a functional relation between them can be obtained as:

log(C) = log(Ctrue) + (mtrue −m) log
(
∆σ
√

πa
)

(3)

where mtrue and Ctrue are the true model parameters that we want to identify. The above
equation can be considered as a linear relationship between m and log(C). Considering
Equation (3) as a linear curve, the slope − log(∆σ

√
πa) will change as the crack grows.

As the crack grows and the stress intensity factor increases, the correlation line between
the two parameters gradually rotates with the true values at the center, which makes the
correlation shape to be identified as a narrow-banded ellipse as shown in Figure 1b. If the
slopes of two lines are significantly different, the intersection of two lines can be used to
identify the true values of model parameters. This characteristic will be used in Section 4
to identify individual model parameters under correlation.

2.2. Correlation between Load Condition and Model Parameters

In addition to the correlation between two parameters, another interesting correlation
in physics-based models occurs between the applied loadings (operating conditions) and
degradation parameters. The black solid line in Figure 2 represents the true crack growth
when both applied loadings and degradation parameters are correct. In fatigue crack
growth, the range of stress intensity factor, ∆K, corresponds to the loading condition. Since
∆K depends on the local stress, it is possible that an incorrect stress can be used due to the
error in stress calculation. When engineers assume a lower value of ∆K, the same observed
crack growth can be obtained by increasing the y-intercept from log(C) to log(C1). That is,
the same crack growth can be obtained by decreasing ∆K and increasing y-intercept, which
is another case of correlation. This linear relationship between ∆K and log(C) can also be
seen from Equation (3) with a fixed m.

This kind of correlation is different from that of degradation parameters. The conclu-
sion in the correlation between degradation parameters in the previous section was that
even if the true values cannot be identifiable, the correlation allows predicting the RUL
properly. Different from the fact that degradation parameters need to be identified, loading
conditions are not a part of identification. Rather, they are input conditions. Therefore,
this case happens when the information on the applied loading is wrong. If a lower ∆K
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than the actual one is used, the crack growth in the black line moves to the dashed red
line in Figure 2. Therefore, a new combination of parameters, m and C1, will be identified
as equivalent parameters with a lower stress intensity factor. When the loading remains
constant, it is equivalent to correlated parameter identification. Therefore, the equivalent
parameters, m and C1, would predict the RUL properly.
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In order to show the relationship clearly, let us assume that the exponent is fixed to
m = mtrue. Then by taking the logarithm of Equation (1) at two different loading conditions,
the following equation can be derived as:

log(C) = log(Ctrue) + mtrue log
(

∆σtrue

∆σ

)
(4)

where mtrue and Ctrue are the correct model parameters under ∆σtrue.
For practical applications, this correlation and equivalent degradation parameters

are in favor of prognostics. It has been mentioned that the model–form error is an im-
portant issue in physics-based prognostics. Since most models include assumptions and
simplifications, the actual degradation behavior is different from that of the model. Such a
model-form error often appears in the form of loading conditions. As an example, it is well-
known that the Paris–Erdogan model is designed for an infinite flat plate with a loading
direction being perpendicular to the crack. In practice, all plates have a finite size under
various boundary conditions. Therefore, the model needs to be modified/corrected to
compensate for the effect of geometry, crack shape and location, and boundary conditions.
In order to compensate for these effects, the stress intensity factor is modified by:

∆K′ = Y∆K (5)

where Y is the correction factor, given as the ratio of the true stress intensity factor to the
value predicted by ∆K = ∆σ

√
πa. The correction factor depends on the geometry ratio of

the crack and plate and the loading conditions. Therefore, the apparent stress intensity
factor ∆K′ is different from the correct stress intensity factor ∆K′. However, the process
of identifying model parameters can compensate for this error by identifying equivalent
model parameters that can yield the same RUL.

2.3. Correlation between Measurement Bias and Initial Crack Size

When damage is measured using sensors, the signals may have calibration error or
the conversion model may have model form error, which leads to bias error. In particular,
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when a crack is measured using SHM, the exact location of the crack is often unknown.
Since the crack size is estimated using the signal strength and since the signal strength
depends on the crack location, the estimated crack size may include bias error [24]. In
prognostics algorithms, bias can significantly affect predictions. While estimating the crack
size, for example, if the estimated crack size is larger than the actual one, this is referred to
as a positive bias. Such a positive bias leads to overestimating ∆K = ∆σ

√
πa because the

crack size a is larger than the true one. When the crack size is large, but the crack growth is
the same, the exponent m will be underestimated. In the case of a negative bias, it will be
overestimated [25].

For simplicity, it is assumed that the bias is a constant, and it needs to be included as
an unknown parameter. It is possible that the bias may change as a function of the stress
intensity factor, but it would require a more complicated bias function with more unknown
parameters. With the physics model for the crack size given in Equation (2) and a constant
bias, the relationship between the measured and actual crack sizes can be written as:

ameas
N = aN + b (6)

where b is the unknown bias, and aN is the actual crack size at loading cycle N. When the
measurement process has a systematic bias, the stress intensity factor should be calculated
using the actual crack size; i.e., aN = ameas

N − b.
A new type of correlation occurs between the initial crack size and systematic bias,

which will influence the results of the prognostic. In order to show the correlation, let the
initial measure crack size be ameas

0 . Under the assumption that the measurement system
does not have any noise, the relationship between measured size and the true size can be
written as:

ameas
0 = a0 + b (7)

Since infinitely many combinations of a0 and b can produce the same ameas
0 , linear

correlation exists between the two.

3. Model Parameter Estimation Using Bayesian Inference

As previously mentioned, the noise in data makes the identification process difficult.
In addition, all three correlations may present simultaneously, which may cause the process
more challenging. Although there are many parameter identification methods, such as the
least-squares method, the Bayesian method is used in this paper.

In the following explanation, Θ represents the uncertain variable of unknown model
parameter, and Y represents the uncertain variable of the degradation feature. A variable
with an upper case denotes an uncertain variable, while a variable with a lower case
denotes a realization of the uncertain variable. Bayesian inference estimates the degree of
belief in a hypothesis based on collected evidence. Bayes [26] formulated the degree of
belief using the following identity in conditional probability:

P(Θ ∩Y) = P(Θ|Y)P(Y) = P(Y|Θ)P(Θ) (8)

where P(Θ|Y) is the conditional probability of Θ given Y. In the case of estimating
the model parameter using measured data, the conditional probability of Θ when the
probability of measured data Y is available can be written as:

P(Θ|Y) = P(Y|Θ)P(Θ)

P(Y)
(9)

where P(Θ|Y) is the posterior probability of parameter Θ for given measurement data Y,
and P(Y|Θ) is called the likelihood function or the probability of obtaining data Y for a
given parameter Θ. In Bayesian inference, P(Θ) is called the prior probability, and P(Y) is
the marginal probability of Y and acts as a normalizing constant. The above equation can
be used to improve the knowledge of P(Θ) when additional information P(Y) is available.
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Bayes’ theorem in Equation (9) can be extended to the continuous probability distribu-
tion with a probability density function (PDF), which is more appropriate for the purpose
of the present paper [27]. Let fΘ(θ) be a PDF of model parameter Θ. When there are more
than one model parameters, fΘ(θ) can be a joint PDF of multiple parameters. If SHM
measures a degradation feature Y, it is also a random variable, whose PDF is denoted by
fY(y). Then, the joint PDF of Θ and Y can be written in terms of fΘ(θ) and fY(y), as:

fΘY(θ, y) = fΘ(θ|Y = y) fY(y) = fY(y|Θ = θ) fΘ(θ) (10)

When Θ and Y are independent, the joint PDF can be written as fΘY(θ, y) = fΘ(θ) ·
fY(y) and Bayesian inference cannot be used to improve the probabilistic distribution of
fΘ(θ). Using the above identity, the original Bayes’ theorem can be extended to the PDF
as [28]:

fΘ(θ|Y = y) =
fY(y|Θ = θ) fΘ(θ)

fY(y)
(11)

Since the denominator fY(y) is a constant and since the integral of fΘ(θ|Y = y) is
one from the property of PDF, the denominator in Equation (11) can be considered as
a normalizing constant. By comparing Equation (11) with Equation (9), fΘ(θ|Y = y) is
the posterior PDF of parameter Θ given measured data Y = y, and fY(y|Θ = θ) is the
likelihood function or the PDF value of measured data y given model parameter Θ = θ.
The process of updating the posterior distribution fΘ(θ|Y = y) of model parameter using
the measured data y is called Bayesian inference.

When multiple, independent data are available, Bayesian inference can be applied for
all data at once. When Ndata number of measurements are available; i.e., y =

{
y1, y2, . . . , yNdata

}
,

the Bayes’ theorem in Equation (11) can be modified to:

fΘ(θ|Y = y) =
1
K

Ndata

∏
i=1

[ fY(yi|Θ = θ)] fΘ(θ) (12)

where K is a normalizing constant to make the integral of the posterior PDF equal to one.
In the above expression, it is possible that the likelihood functions of individual data are
multiplied together to build the total likelihood function, which is then multiplied by the
prior PDF followed by normalization to yield the posterior PDF.

An important advantage of Bayes’ theorem over other parameter identification meth-
ods, such as the least-squares method and maximum likelihood estimate, is its capability to
estimate the uncertainty structure of the identified parameters. These uncertainty structures
depend on the prior distribution and likelihood function. Accordingly, the accuracy of the
posterior distribution is directly related to that of the likelihood and the prior distribution.
Thus, the uncertainty in the posterior distribution must be interpreted in that context.

In the Bayesian method, it is assumed that the users know the prior distribution of
model parameters and the distribution type of measurement noise. In this paper, it is
assumed that the prior distribution is given as a uniform distribution with a lower- and
upper-bound. It is also assumed that the measurement noise has a Gaussian distribution;
that is ε ∼ N(0, s2), where s is the standard deviation of the noise. In most cases, since
the standard deviation of the noise is unknown, it should be a part of unknown model
parameters. In the case of crack growth, the vector of unknown model parameters is
defined as Θ = {m, log C, s}. It is also possible that the initial crack size and measurement
bias can be included in the unknown model parameters. For the correlation caused by
the initial crack size and bias can be found in An et al. [16]. The prior distribution of each
parameter is assumed as a uniform distribution. By assuming that all model parameters
are statistically independent, the prior joint PDF of the parameters can be defined as:

fΘ(θ) = f (m)× f (log C)× f (s) (13)
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The posterior distribution can be obtained by multiplying the prior distribution with
the likelihood function.

With the given prior distribution, the next step is to calculate the likelihood function
using the measured data, as shown in Equation (12). The definition of the likelihood
function is the probability (in this case the value of PDF) of obtaining the measured data
yk for given model parameters θ = {m, log C, s}. Since the measured data are fixed, the
likelihood function is a function of model parameters. If the model prediction is close to
the measured data, then the likelihood is large, while the likelihood is small when the
two values are significantly different. To build the likelihood, it is necessary to compare the
measured degradation with the predicted one from the model. Since the measured degra-
dation data (yk, tk), k = 1, 2, . . . , Ndata are given at discrete times, the degradation model is
also evaluated at the same discrete times as ỹk(m, C) = ỹ(tk; m, C), k = 1, 2, . . . , Ndata. It is
noted that since the degradation model is evaluated at discrete times tk, ỹk(m, C) is only a
function of model parameters m and C. The measured data yk include the random noise
that is governed by s, while the model prediction ỹk(m, C) depends on m and C. Then, the
likelihood function of the k-th measured data can be defined as:

fY(yk|θ) =
1

s
√

2π
exp

[
− 1

2s2 (yk − ỹk(m, C))2
]

, k = 1, 2, . . . , Ndata (14)

When multiple measured data are present, the likelihood of individual data are
multiplied together as shown in Equation (12). With Ndata data, y =

{
y1, y2, . . . , yNdata

}
,

the posterior joint PDF can be calculated by multiplying all likelihood functions with the
prior PDF as:

fΘ(θ|y) =
1

KsNdata
exp

[
− 1

2s2

Ndata

∑
k=1

(yk − ỹk(m, C))2

]
fΘ(θ) (15)

where K is a normalizing constant.
The posterior distribution in Equation (15) can be estimated using a sampling method,

such as the Markov-chain Monte-Carlo simulation. However, since the goal is to identify
accurate model parameters, a grid method is used to show the posterior PDF. In order to
present the results in 2D graph, the third parameter, s, is integrated over its range. The
posterior joint PDF is calculated at a 100 × 100 grid. The marginal distribution is calculated
by integrating each variable using the grid values.

4. Identification of Correlated Model Parameters

In this section, the fatigue crack growth data presented in Forman et al. [29] are
used to estimate the damage growth model parameters. Section 4.1 presents the first
method of identifying model parameters using two different stages of crack growth, while
Section 4.2 presents the second method of identifying model parameters using two different
operating conditions.

4.1. Identification of Correlated Model Parameters Using Two Different Stages

Figure 3 shows the measured fatigue crack growth rate of AL 7075-T651 plate, where
the 4th and 9th data are used to show the process of model parameter identification. With-
out knowing the true model parameters, Equation (3) cannot be used for the identification
process. Instead, the logarithmic version of Equation (1) is used, as:

log(C) = −m log(∆K) + log
(

da
dN

)
(16)

With given ∆K and da/dN data, Equation (16) yields an equation of line between m
and log(C). That is, with a measured crack growth rate, it is impossible to identify the
two model parameters because they are perfectly correlated. However, if two different
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crack growth rates are measured, then they can perfectly determine the two model param-
eters. For example, two black-colored lines in Figure 4 show the linear relationships in
Equation (16) at the fourth and ninth data points. These two lines intersect at m = 2.81
and C = 1.92× 10−8 (cross marker), which is considered as the true model parameters in
this paper.
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The above process of identifying multiple model parameters has two idealized as-
sumptions that cannot easily be overcome in structural health monitoring. Firstly, the
current state-of-the-art SHM sensors can measure the crack size, not the crack growth rate.
Secondly, the measured crack size includes a significant amount of noise. Small noise and
error in data can significantly affect the identification results. For the first difficulty, the
linear relationship in Equation (16) has to be revised in terms of measured crack size. By
taking the logarithm of Equation (2), the relationship between m and C can be obtained
when a crack size of aN is measured, as:

log(C) = −m log(∆σ
√

π)− log(1− m
2
) + log(a1−m/2

N − a1−m/2
0 )− log(N) (17)
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Although the relationship is nonlinear, and the expression seems complicated, it
actually shows almost a linear relationship as shown in Figure 4. In addition, the inter-
section between the two blue-colored curves is identical to the identified true parameters.
Therefore, the measured crack sizes at different sizes can be used to identify the correlated
model parameters.

The second challenge is related to the noise in measured data. The data provided in
Figure 3 are measured manually in the laboratory. When sensors in an SHM system are
used to measure the crack size, there is inevitably noise in the measurement. In addition,
the effect of noise in measured crack size is amplified further in crack growth rate, da/dN.
Although there are many different ways of identifying model parameters under noisy
measurements, Bayesian inference in Section 3 is utilized here. First, from the true values
of model parameters, mtrue = 2.81 and log Ctrue = −17.77, simulated measurement data
are generated around fourth and ninth points in Figure 3, where N4 = 23,841 cycles and
N9 = 55,864 cycles . In the interval of [N4 − 8000, N4 + 8000], 20 simulated measurement
data are generated, while in the interval of [N9 − 2000, N9 + 2000], five simulated measure-
ment data are generated. More data are generated around N4 because the crack grows
slowly in the early stage, and more data are required in the inference process. All data are
generated using the true model parameters and added random noise ε ∼ N(0, 0.152). The
magnitude of the standard deviation of the noise, 0.15 in, is significant compared to the
initial crack size of 0.097 in. The true model parameters are only used for the purpose of
generating data, not in the inference process.

For the prior, a uniform distribution is assumed for m ∼ U[2.0, 3.5] and log(C) ∼
U[−16.5,−18.5], independence assumption as in Equation (13) is used. These prior distribu-
tions were obtained using the lower- and upper-bounds of all test data in Forman et al. [29]
for AL 7075-T651 under various load ratios. This uniform distribution and independence
assumption are used because they are considered as a prior knowledge.

Using the likelihood function that is calculated using the measured data, the posterior
distribution can be obtained using Equation (15). Figure 5a shows the posterior joint
distributions that are obtained separately using 20 data around N4 and 5 data around
N9. As explained before, due to the strong correlation, the posterior distribution shows a
narrow-banded shape, where it is difficult to identify the model parameters. If the marginal
distribution is calculated, the distribution is almost identical to the prior distribution. This
happens because of the strong correlation between the two parameters. In addition, the
peaks of individual posterior distributions do not match with the true parameter values in
the start marker. As shown in Figure 5b, however, the combined posterior distributions
with N4 and N9 converges to the true values of model parameters, which is shown with a
star marker. If the marginal distributions are calculated, m ∼ N(2.81, 0.032) and log C ∼
N(−17.77, 0.022). Therefore, the uncertainties for both parameters are significantly reduced
compared to the posterior distributions from individual case in Figure 5a, and the mean
values are close to the true model parameters. Table 1 compares the uncertainty reduction
by combining the two posterior distributions in the form of the standard deviation of the
marginal distribution. The uncertainty in parameter m is reduced by four times, while that
in log C is three times.

Table 1. Comparison of standard deviation (STD) of model parameters using two different stages.

Conditions STD of m STD of logC

Using 20 data around N4 0.125 0.06
Using 5 data around N9 0.14 0.06
Combined posterior dist. 0.03 0.02

When two different crack sizes are used, the performance of uncertainty reduction
is significant as the difference between the two crack sizes is large. This is because the
slope log(∆K) = log(∆σ

√
πa) depends on the crack size a. However, there is a limitation

of crack size because as the crack size increases, the crack grows quickly, and the plate is
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near the fracture. Therefore, it is important to consider two significantly different crack
sizes but not too close to the fracture.
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4.2. Identification of Correlated Model Parameters Using Two Different Loading Conditions

The second method of identifying the accurate values of model parameters under
correlation is related to changing the loading conditions. In order to show the correlation
between the model parameters and loading conditions in Section 2.2, the same Paris model
in the previous section is used with the data shown in Figure 3. Since it is unnecessary
to use data at two different crack growth rates, a single 6th data point is used, where the
consumed cycles are N6 = 40,896 , the crack size aN6 = 0.556 in, the range of stress intensity
factor ∆K6 = 14.37 ksi

√
in, and the crack growth rate da/dN = 3.2× 10−2 in/cycle.

Since the stress intensity factor is the function of stress and crack size, it is possible
to change the level of stress while keeping the same stress intensity factor. Therefore, it
is assumed that the first case is when ∆σ1 = 10.88 ksi, while the second case is when
∆σ2 = 15.88 ksi. In the industry, this kind of two amplitude loadings is common. For
example, in a gas turbine power plant, the system is operated in nominal conditions most
of the time, but during the peak season, the system is operated in the maximum loading
conditions. Such a change in operating conditions can be used to identify the correlated
model parameters.

The correlation relationship in Equation (4) cannot be used here because it requires
the knowledge of the true model parameters. Instead, Equation (16) is used to show the
nature of correlation and how to identify the accurate model parameters. It is noted that
Equation (17) can also be used, but it will produce identical results. The linear relation-
ship between m and log C in Equation (16) is plotted at two different loading conditions,
∆σ1 = 10.88 ksi and ∆σ2 = 15.88 ksi, in Figure 6. As expected, the two correlation lines
meet at the true model parameters. Therefore, measuring crack growth rates at different
loading conditions can be used to identify the correlated model parameters.

The identification of model parameters as in Figure 6 has two challenges in practice.
The first challenge is the fact that the crack growth rates at different loading conditions can-
not be measured simultaneously. Therefore, a possible way is to measure the crack growth
before and after the loading condition changes. For that purpose, starting from the 6th
data (N6 = 40,886 cycles) in Figure 3, 20 crack size data are generated during 12,000 cycles
under the nominal operating condition ∆σ = 10.88 ksi. Then, it is assumed that the loading
condition is increased to the maximum operating condition ∆σ = 15.88 ksi, and 5 crack
size data are generated during the next 4000 cycles. Like the previous example, synthetic
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data are generated based on the true model parameters. Random noise ε ∼ N(0, 0.152) is
added to all data.
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Figure 7a shows the two posterior joint distributions that are obtained separately
using two sets of data. Even if two datasets are located closely, the correlation line in
Figure 7a shows a significant difference. This is due to the fact that the crack growth rates
are significantly different. When the two posterior PDFs are multiplied, Figure 7b shows a
much better identification of the two model parameters. The marginal distributions are
estimated as m ∼ N(2.81, 0.052) and log C ∼ N(−17.77, 0.022). Therefore, the uncertain-
ties for both parameters are significantly reduced, and the mean values are close to the
true model parameters. Table 2 compares the uncertainty reduction by combining the two
posterior distributions in the form of the standard deviation of the marginal distribution.
The uncertainty in parameter m is reduced by ten times, while that in log C is three times.
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Table 2. Comparison of standard deviation (STD) of model parameters using two different load-
ing conditions.

Conditions STD of m STD of log C

∆σ = 10.88 ksi 0.3 0.06
∆σ = 15.88 ksi 0.3 0.06

Combined posterior dist. 0.05 0.02

In theory, two lines with different slopes can have a single intersection, which corre-
sponds to the identified model parameters. In practice, however, the noise in data makes
the line a probability distribution, and the width of the distribution increases proportionally
to the level of noise. Therefore, it would require more data to clearly identify individual
parameters. In addition, if the difference in slopes is small, the intersection region will be
large, as shown in Figure 7b. This happens in the early stage of crack growth where the
cracks grow slowly. A better identification can be achieved in the region where the crack
grows fast. The performance of uncertainty reduction is improved proportionally to the
difference between load amplitudes. This is also because the slope log(∆K) = log(∆σ

√
πa)

depends on the load amplitude ∆σ.

5. Conclusions

In this paper, we showed that it is challenging to identify model parameters of physics-
based prognostics when they are strongly correlated. We illustrated this aspect using
the fatigue crack growth example, where common correlations occur between model
parameters, between model parameter and loading conditions, and between initial damage
size and measurement bias. By utilizing the fact that the correlation structure evolves at
different damage sizes or different loading conditions, the paper proposes two methods
of identifying model parameters accurately even if they show a strong correlation. By
utilizing different damage sizes, the standard deviation of the marginal distribution of
exponent m is reduced from 0.125 to 0.03. When different loading conditions are used, it
is reduced from 0.3 to 0.05. Since both results were obtained under a significant level of
noise, the standard deviation of 0.15 in, the proposed methods were effective in reducing
the uncertainty of correlated parameters. The performance of uncertainty reduction will be
more significant if the difference in the two crack sizes and the two loads is large.
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