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Abstract: Ablative-cooled hybrid rockets could potentially combine a similar versatility of a liquid
propulsion system with a much simplified architecture. These characteristics make this kind of
propulsion attractive, among others, for applications such as satellites and upper stages. In this
paper, the use of hybrid rockets for those situations is reviewed. It is shown that, for a competitive
implementation, several challenges need to be addressed, which are not the general ones often
discussed in the hybrid literature. In particular, the optimal thrust to burning time ratio, which
is often relatively low in liquid engines, has a deep impact on the grain geometry, that, in turn,
must comply some constrains. The regression rate sometime needs to be tailored in order to avoid
unreasonable grain shapes, with the consequence that the dimensional trends start to follow some
sort of counter-intuitive behavior. The length to diameter ratio of the hybrid combustion chamber
imposes some packaging issues in order to compact the whole propulsion system. Finally, the heat
soak-back during long off phases between multiple burns could compromise the integrity of the
case and of the solid fuel. Therefore, if the advantages of hybrid propulsion are to be exploited, the
aspects mentioned in this paper shall be carefully considered and properly faced.

Keywords: hybrid rockets; upper stages; satellite propulsion; ablative cooling

1. Introduction

Hybrid rocket propulsion has the potential to offer several advantages compared with
current mature technologies as solid and liquid rockets, including simplicity, reliability,
costs, safety, ease-of-use/production, and environmental friendliness [1].

In particular, hybrid rockets could provide a similar degree of flexibility in the thrust
profile as a liquid engine (deep throttling and multiple stop-restart on demand) at a
reduced complexity.

For these reasons, they have been proposed for several applications [2–16], including
but not restricted to upper stages and satellites/spacecrafts, which are the specific subject of
this paper. Reference [2] is a review of hybrid rocket status and several potential proposed
applications of this technology written in the sixties, while [3] is a similar update version
done recently that describes the major challenges in hybrid hockets and future applications
of hybrid-propulsion systems, including the recent market of space tourism. Reference [4]
focuses on the market perspective of paraffin-based hybrids, while reference [5] defines
the most suitable applications for a near-term implementation considering hybrid rocket
technology status. Reference [6] is a study of the most promising hybrid applications from
a large company point of view, citing manned systems, small launchers, landers, and upper
stages. Reference [7] is one of the multiple examples of the study of hybrid propulsion for
sounding rockets. Reference [8] proposes the use of hybrid propulsion for an air-launched
orbital vehicle. References [9,10] suggest two different hybrid architectures for the upper
stages of small launch vehicles. Reference [11] describes a hybrid propulsion system for or-
bit raising applications while reference [12] proposes the use of hybrid propulsion to lower
the orbit of a small satellite launched as a secondary payload from GTO [Geostationary
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Transfer Orbit] to LEO [Low Earth Orbit]. References [13,14] consider a hybrid motor for a
small recoverable satellite. Reference [15] describes an alternative geometry hybrid rocket
for spacecraft orbit transfer. Finally, reference [16] proposes a hybrid engine module for
active space debris removal.

However, several challenges have prevented this kind of propulsion to reach opera-
tional status. The most cited are low regression rate, low combustion efficiency, instabilities,
and mixture ratio shift [17–20]. Reference [17] underlines that, due to the previous issues,
the hybrid technology available at the end of the previous century is not able to compete
effectively with the consolidated liquid and solid ones. Reference [18] highlights the ben-
efits of the increase in the regression rate, and reference [19] focuses on advanced fuels
able to boost hybrid performance. Reference [20] is an example of modelling of hybrid
rocket instabilities.

In the last decades, a lot of effort has been put into solving those issues, and only
few examples of the most promising techniques are presented in the references [21–28].
Reference [21] is a review of the several ways proposed and studied to compensate or solve
the low regression rate in hybrid rockets. Reference [22] describes the successful testing
of high regressing paraffin-based fuels while reference [23] shows the flight testing of this
solution. Reference [24] explores the use of diaphragms to increase hybrid performance,
while references [25–28] study different aspects of swirling injection for the same purpose.

Nowadays, several groups have demonstrated good performance for low to medium
scale demonstrators, which are compatible with the majority of expected thrusts for the
applications considered in this paper.

In the following chapters, the use of hybrid propulsion for upper stages and satellites
is reviewed and analyzed, showing some overlooked challenges other than the classical
ones most frequently addressed in the literature, which must be considered for successful
implementation of this technology.

Even if this is not a necessary condition, hybrid rockets are often ablatively cooled
in order to keep the architecture as simple as possible and to exploit similarities with
solid propellant combustion chambers [29], while liquid engines are today more often
radiatively or regeneratively cooled (with few, more historical exceptions [29]). Thus, part
of the problems highlighted in this paper are general for all hybrid rockets, while some
others are specific to the ones that are ablatively cooled, which is often the case.

The rest of the paper is composed of four chapters. In the second chapter, the hybrid
combustion chamber sizing is recalled and discussed. In the third chapter, the satellite case
is presented while the fourth deals with upper stages. Finally, the conclusions are drawn.

2. Hybrid Rocket Combustion Chamber Sizing

In a previous paper by the author [30], some equations for single cylindrical port
combustion chamber sizing and mission envelope were obtained and discussed. In par-
ticular, it was shown that the volume loading and the length of the fuel grain depend
asymptotically on the ratio of the initial to final port diameter R. Consequently, while a
minimum value of R (generally between 2 and 3) is necessary to achieve a good volume
loading, much larger values do not provide major benefits; on the contrary, considering
also the pre- and post-combustion chambers, sometimes the opposite occurs. Moreover,
the maximum value of R can be limited by the root square of the ratio between the max-
imum and minimum allowable port fluxes, which also cannot be selected arbitrarily as
constrained by phenomena such as flooding or chuffing, instabilities, and efficiency. This
maximum ratio depends on the propellant combination and rocket design, particularly
regarding the injection. Consequently, in [30] it was shown that while for large boosters
or short burning times, the low regression rate of hybrid rockets is definitely a strong
limitation; for the applications considered in this paper, sometimes the opposite could
occur, namely, even the regression rate of classical polymeric fuels could be too high to be
compatible with the imposed constraints.
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In particular, the following scaling law was obtained:

aGn
0 tb

D0
=

R2n+1 − 1
(4n + 2)

(1)

which explicitly shows that high thrust and short burning time require high regression
rates to achieve a sufficient value of R, but small sizes and long burning time necessitate a
low regression rate in order to avoid passing the threshold on the maximum value of R.

This analysis highlights not only the importance to find solutions in order to enhance
the regression rate for an efficient scale up of hybrid rockets but also the importance of
tailoring the regression rate for specific mission requirements. Regression rate tailoring can
be achieved in several ways, first of all with the selection of the fuel and corresponding
additives [31], but also playing with the injection pattern, for example, by varying the swirl
number [32]. Unfortunately, for some conditions, for instance, the ones typical of in-space
liquid engines, no trivial solutions exist, and the hybrid should be designed with different
parameters or discarded, as it will be discussed later on.

This paper will consider mainly single port hybrids with brief citations of the multiport
case. Several other kinds of hybrid architectures have been proposed and tested [33]
but they present several drawbacks and their technology readiness level is much lower;
therefore, for the moment they are not taken into consideration as a near-term possibility.

For a single cylindrical port, it is possible to demonstrate that the maximum final grain
diameter is related to the minimum allowable oxidizer flux. For a fixed external diameter,
the length of the grain is minimized for the maximum volume loading, i.e., when the initial
oxidizer flux is maximum, even if, above a certain value of R, the effect is asymptotic.
Thus, if we consider the possibility to adjust the regression rate level in order to reach
the maximum possible value of R and minimize the length of the motor, eq. 1 can be
rewritten as:

aGn
maxtb
D0

=
R2n+1

max − 1
(4n + 2)

(2)

considering that the initial diameter is proportional to the square root of the thrust, it is
possible to write:

D0 ∝
√

T =

√
Itot

tb
(3)

Consequently, the final diameter is a fixed multiple of the initial one:

D f = RmaxD0 ∝
√

T =

√
Itot

tb
(4)

From Equations (2) and (3), it is possible to determine the regression rate level needed
to achieve the maximum possible packaging, i.e., Rmax:

a =
f (Rmax, n)D0

Gn
maxtb

∝

√
T

tb
2 =

√
Itot

tb
3 (5)

As expected, for the same burning time, larger motors require higher regression rates
in order to achieve the same volume loading. For too large motors and/or too short burning
times, it is possible that Equation (4) cannot be satisfied, i.e., the regression rate level is
not sufficient to guarantee not only Rmax but even the Rmin necessary for a good volume
loading. This is the typical problem of boosters that is repeatedly discussed in the hybrid
literature. However, in this paper, an often overlooked opposite situation is highlighted,
which is typical of the application under consideration, i.e., satellites and upper stages. If
the thrust is low and the burning time is very long, the value of a can result to be too low
and incompatible with any of the classical polymeric fuels that have been successfully used



Aerospace 2021, 8, 190 4 of 19

for hybrid propulsion. On a few occasions, some fuels have been used with even lower
regression rates (such as blocks of graphite) but without the same combustion performance.

The length of the grain can be calculated in the following way:

L =
Vf uel

π/4D2
0(R2 − 1)

∝
Itot

Itot/tb
= tb (6)

therefore, for a fixed diameter ratio R (equal to Rmax for maximum packaging) the length
of the grain is proportional only to the burning time, not to the thrust of the motor. This
result seems counter-intuitive, as in general it is expected that a larger motor is also longer.
Moreover, for the same total impulse, an increase in the burning time should shorten the
motor, not the opposite. Nevertheless, in the common literature, the regression rate level is
considered as constant, while in this analysis the regression rate is tailored to achieve but
not overcome Rmax. As already pointed out, this is not always possible at the two extremes
of the range of allowable regression rate levels.

The physical meaning of this result is that, for the same burning time, in order to keep
the diameter ratio equal to Rmax, two motors with different propellant masses (i.e., total
impulse and thrust) will have the same length as the smaller motor needs to burn with a
lower regression rate level (e.g., changing the fuel or the injection pattern) in order to keep
the web thickness proportional to the smaller initial port diameter.

Finally, the length to diameter ratio for a fixed R is:

L
D f

∝
tb√

Itot
tb

=

√
tb

3

Itot
(7)

which, again leads to a counter-intuitive result, i.e., the length to diameter ratio increases
with the burning time and decreases with the propellant mass or thrust. However, again,
the effect is due to the hypothesis of regression rate tailoring; instead, for a fixed regression
rate, the opposite occurs as expected. In conclusion, the previous analysis has been done
to show that, on the contrary of boosters, which maximize the regression rate, for the
applications considered in this paper (satellites and upper stages), where often the ratio
between burning time and thrust could be significant, the regression rate level may need to
be limited to avoid unreasonable grain shapes and/or motor initial and final parameters.
The consequence of this regression rate limitation leads to a different (even opposite)
behavior of the grain geometry with respect to motor global parameters such as thrust,
burning time, and total impulse, affecting the packaging of the combustion chamber and
the whole hybrid propulsion system.

3. Satellites and Spacecrafts
3.1. Current Status Quo

Satellites employ propulsion systems for several tasks, including orbit raising, or-
bit circularization, station-keeping and orbit control, collision avoidance, de-orbiting or
transfer to a graveyard orbit, and so on.

Looking to the historical trend, it is possible to notice that both solid and liquid propul-
sion have been widely used, but liquid propulsion has become more and more dominant.

This fact has several explanations. The first one is by the fact that, thanks to its
restartability, liquid propulsion can accomplish many of the aforementioned tasks with the
same unit. On the contrary, a single burn solid rocket can perform only a single maneuver
in a single shot. For this reason, solid rockets have been often employed as a kick stage
for orbit circularization, but a liquid propulsion system is still required for the rest of the
mission. Unified liquid propulsion systems that include both the main engine and the
attitude thrusters fed by the same propellants have become more and more widespread in
the last decades.
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Moreover, the burning time of a solid motor is limited in a certain range due to
design constraints of the grain and the ablative thermal protection system. Looking, for
example, at the Northrop Grumman [USA] catalog [34] at the STARTM motor series, it is
possible to note that, even with a certain level of data dispersion due to the different design
requirements, the burning time of the solid motors tend to increase with the scale of the
motor, from a dozen of seconds at few hundred newtons up to asymptotically reach a value
around 100 s at dozens of kN. This implies that an increase in total impulse is necessarily
related with an increase in motor thrust. On the contrary, the typical radiative in-space
small liquid engine has virtually an unlimited firing time (on the order of hours), so it can
provide a large total impulse at very low thrust. Liquid engines operate for a long burning
time for several reasons: keep the engine and fluidic size/mass/cost/emitted heat at a
minimum, limit the spacecraft acceleration, operate at low pressures with a benefit on the
pressurization budget and chamber thermal loads without compromising the engine size.

Because of the low thrust of the liquid engine, the maneuvers can be performed
with the solar panel deployed and an active attitude control system. On the contrary, the
relatively high thrust solid rocket has been often used on spinning satellites with attached
solar panels (at least during the fire). This second “rough” option has been employed more
in the past on simpler systems while modern more complex satellites tend to prefer the
first solution that is softer and more accurate.

3.2. Hybrid Analysis

It is interesting to analyze how the hybrid technologies place themselves in the same
situation. Based on the previous thoughts and considering hybrid energy management
capability, it is preferable to exploit the multiple burn possibility of the hybrid as this
represent a significant benefit for the satellite mission flexibility.

The liquid propulsion system is the only one that has the degree of freedom to de-
couple thrust from the total impulse/burning time. The hybrid is limited by the previous
scaling law, which provides a qualitatively similar trend of a solid rocket. This is particu-
larly reinforced in the case of ablative cooling where another analogue scaling law can be
defined with reference to nozzle throat erosion:

∆Dt

Dt
=

2
.

ertb
Dt

∝
p0.8

c tb

D0.2
t Dt

(8)

Again, for a fixed maximum tolerable relative nozzle erosion, larger motors can burn
for longer times. Consequently, to provide larger total impulses, the hybrid needs to
increase its thrust.

Regarding satellite propulsion, for the sake of clarity, we define three possible cases:

• The satellite/spacecraft is limited by a maximum allowable acceleration;
• No significant acceleration limits are considered;
• The satellite/spacecraft requires a minimum acceleration level for a specific maneuver.

In the first case, the limit could be related to the attitude control system capabilities or
by structural considerations of the appendices (e.g., deployable solar panels). For a certain
satellite mass and maximum tolerable acceleration level, the maximum thrust is defined.
The liquid propulsion system is the only one that can provide almost any total impulse
for the selected thrust. Both solids and hybrids can provide only a certain level of total
impulse for a specific thrust; consequently, if the acceleration limit is low, only a moderate
velocity increment could be obtained. For a fixed acceleration, the thrust is proportional
to the satellite mass while the total impulse is proportional to the product of the thrust
and the burning time, with the latter that increases with the square root of the thrust for a
fixed grain geometry. Consequently, as shown in Figure 1 from [30], the possible velocity
increment for a hybrid is higher for larger satellites.
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Figure 1. Examples of hybrid rocket design limits for satellites: (a) Propellant mass vs. thrust; (b) Velocity increment vs.
thrust for different maximum allowable accelerations. Reprinted with permission from ref. [30]. Copyright 2020 American
Institute of Aeronautics and Astronautics.

In the second case, even if no acceleration limits are considered, again the liquid engine
will tend to be small in order to minimize the inert mass. On the contrary, the hybrid has to
increase its thrust to provide larger total impulses, because of the lower limit of regression
rate. For moderate velocity increments, the size and inert mass of the propulsion system
have a lower impact on the whole system, so the hybrid could better exploit its advantages.
For larger velocity increments, the small liquid (few hundreds N) should be compared with
a hybrid providing a thrust even one or two orders of magnitude larger (up to dozen kN).
For such difference in thrust, it is difficult for the hybrid propulsion system to compete with
the liquid one in terms of inert mass and size, even including the propellant tanks due to the
large combustion chamber. For large ∆V, the sensitivity on inert mass is high, so the penalty
becomes much more relevant. Packaging is also more difficult, as the combustion chamber
is long and bulky and for the reasons aforementioned, needs to fulfill some geometrical
constraints that determine a limited range of possible shapes. Liquid propellant tanks
are more flexible in this regard. In order to reduce the length to diameter ratio of the
combustion chamber, it is worth mentioning an unconventional hybrid configuration, the
so-called vortex pancake [15]. However, as in this case the thrust is proportional to the
frontal surface area and the grain height is proportional to the burning time, and for a
reasonable design, this configuration is limited to moderate velocity increments.

Solid rockets have also to increase their thrust with the total impulse; however, their
density impulse tends to be far superior to hybrids, particularly when the whole system
is considered, as the solid lacks the need for plumbing, valves, and the pressurization
system as well as employing denser propellants. Moreover, the nozzle size can be kept
reasonable with a moderately high chamber pressure. The small liquid engine operates
at lower pressures to minimize the mass of the pressurization system. The hybrid falls in
an uncomfortable position where an increase in pressure will burden the pressurization
system while its reduction will enlarge the nozzle size (which is not an issue for the much
smaller liquid).

An example of such a situation is presented in [11] where a large hybrid is designed
for orbit raising. Another example of the use of a hybrid is described in [12] where a small
motor is operated cumulatively for less than 90 s to perform several maneuvers to transfer a
secondary small satellite from a GTO to LEO orbit. A detailed trajectory analysis is missing
so it is not known if the same set of maneuvers could be performed by a smaller (liquid)
thruster operating for longer periods. The alternative geometry hybrid rocket for spacecraft
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orbit transfer studied in [15] is proposed for moderate ∆V and imposes a relatively high
acceleration on the small satellite, questioning again the trade-off against a lower thrust
liquid engine. In [16], the hybrid engine module for active space debris removal is used on
a large spacecraft for a ∆V around 500 m/s and thus, as shown in the previous analysis, the
increased scale and not too high, and ∆V helps the competitiveness of the hybrid solution.

The third situation is probably the rarest, that is when the spacecraft needs a certain
minimum acceleration and therefore thrust. This could happen in particular for exploration
missions or other situations where a capture or re-entry burn must be performed in a
fixed amount of time to fulfill the trajectory needs (as in the case of the SARA platform
Universidade de Brasília, Brazil, [13,14]).

In this case where the thrust of the hybrid and the liquid are the same, the usual
comparison of hybrids vs. liquids found in the classical literature is valid.

In conclusion, the hybrid rocket is much more competitive against a liquid propulsion
system for satellites or spacecrafts when the velocity increment is relatively small or the
maneuver requires a significant acceleration, i.e., thrust (in satellites terms).

Compared to solids, the need for multiple ignitions or throttleability is mandatory to
justify the hybrid adoption, unless the requirements are relaxed and other aspects are a
priority (e.g., safety, costs. . . ).

3.3. Heat Soak-Back and Fuel Issue for Satellites

The general simplicity feature attributed to hybrids is also dependent on the typical
use of an ablative nozzle and a simple combustion chamber design. The fuel itself behaves
as an effective “free” ablative protection of the combustion chamber. However, when the
motor is shut down, a significant heat soak-back from the nozzle occurs. This is not such a
big issue for solid rockets that are typically used only for a single shot or for few pulses
not so far from each other in some military applications. The problem becomes much
more relevant in the case of a small hybrid motor for satellites that has to perform several
maneuvers far apart from each other (e.g., orbit raising, de-orbiting. . . ). Liquid engines
have also to face the heat soak-back issue; however, they have a metallic construction
that can withstand high temperatures and are decoupled from the rest of the propulsion
system through specific devices (e.g., spacers, heat shields). The propellants are stored
in separate tanks at room-temperature. On the contrary, in the hybrid, the fuel is placed
inside the combustion chamber and could melt or be damaged by the heat soak-back. The
chamber case itself is generally not designed to withstand high temperatures. Some heat
can be radiatively dissipated slowly through the divergent part of the nozzle; however, the
thermal design should have a sufficient heat sink/thermal barrier to prevent that while
the case and/or the fuel integrity are jeopardized. The very low thermal conductivity and
melting temperature of typical plastic fuels prevent the use of the remaining fuel mass for
the following burns as a heat sink, since the heat will damage the fuel near the interfaces
without penetrating significantly in the bulk of the fuel. In the case of fuels doped with solid
particles (such as carbon or metals), the increased conductivity and density could partially
help, but probably not in a decisive way. Doped fuels can also have a higher radiative heat
transfer during the burn, which in turns influence the heat soak-back. Moreover, in case
some hot particles are not fully expelled with the gaseous products from the nozzle, they
could negatively influence the post-burn heat transfer inside the combustion chamber.

The solution to this specific issue, namely, the long waiting times between multiple
burns could bring important additional mass and/or costs. Again, the impact of this
issue is less severe for moderate ∆V. A more detailed discussion is presented in [29]. The
problem can be partially alleviated in case of satellite propulsion, where often a single
maneuver can be split in multiple steps if every single burn (except the last) is limited to a
maximum fraction of the total impulse, reducing the amount of heat accumulated at the
end of each burn.
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4. Upper Stages
4.1. Current Status Quo

Upper stages are used in launch vehicles to provide the last part of the ∆V necessary
to put the payload into orbit. Compared to booster stages, the engines used in the upper
stages have a lower thrust (except when the lower stage uses a cluster of the same engine
such as in the RocketLab Electron [USA-NZ] or SpaceX Falcon 9 [USA]) and often burn for
a longer time.

Two main configurations can be recognized, one where the last stage provides a
significant fraction of the ∆V required to reach orbit and has to overcome a certain degree
of gravity losses (less than the booster stages as the flight path angle is more horizontal),
the other when the upper stage has on top another smaller stage that behaves as a final
space tug that is ignited in orbit or almost there to place the payload in the final orbit.

The larger upper stage thrust to weight ratio depends on a trade-off between engine
weight/size and gravity losses. The ablative-cooled medium pressure (generally between
30 to 80 bars) solid rocket motors for upper stages generally optimize at the burning time
between 60 to 120 s [34].

On the contrary, liquid engines are much more sensitive to thrust and tend to optimize
at longer burning times (few hundreds of seconds). Chamber pressure can vary a lot, from
very low values in smaller pressure-fed engines to moderate values in expander cycles
to very high values in large pump-fed propulsion systems. The majority of the liquid
engines are regeneratively cooled, except for some operating at low pressures that are
ablatively cooled.

The space tug does not require a significant thrust as gravity losses are minimal during
Hohmann transfers between different orbits. For this reason, these kinds of stages have a
very low thrust to weight ratio, using relatively small liquid engines (compared with the
total propellant mass) burning for very long times (several hundreds or even thousands
of seconds). This solution provides a very low acceleration and high accuracy and is also
more suitable for multiple maneuvers and higher orbits (i.e., total ∆V) up to GTO/GEO.
Examples are the Russian space tugs (Khrunichev State Research and Production Space
Center Briz, TsSKB-Progress Volga, NPO Lavochkin Fregat [Russia]) or the Curie and
HyperCurie engines produced by Rocketlab [USA-NZ].

Regarding solid rocket-based launch vehicles, the first option is used with a direct
injection trajectory as the solid motor must deliver all its total impulse in a single burn. This
solution incurs in a ∆V penalty for higher orbits and is less precise due to the high thrust
and the uncertainty of the solid stage. At other times, a small re-ignitable liquid stage is
placed on top of the large solid stage for precise injection and a more efficient trajectory (e.g.,
AVIO [Italy] Vega with AVUM [Attitude and Vernier Upper Module], Northrop Grumman
[USA] Pegasus + HAPS [Hydrazine Auxiliary Propulsion System]).

In the following Tables 1 and 2, some examples of current upper stage engines
are shown.
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Table 1. Selected operational upper stage engines (manufacturer/country).

Model (Stage/Launcher) Manufacturer Country

RD-843 (AVUM-Vega) Yuzhmash Ukraine
17D64 (Volga-Soyuz) KB Melnikov Russia
S5.98M (Briz-Proton) KBKhM Russia
S5.92 (Fregat-Zenit) KBKhM Russia

Rutherford (Electron) RocketLab USA-New Zealand
Aestus (Ariane 5) Airbus Defence and Space Europe
Kestrel (Falcon 1) SpaceX USA

Orion 38 (Pegasus) Northrop Grumman USA
HM7B (Ariane 5 ECA) Snecma France

RL10 (Centaur) Aerojet Rocketdyne USA
Vinci (Ariane 6) ArianeGroup Europe
Zefiro 9 (Vega) Avio Italy

Castor 30 (Antares) Northrop Grumman USA
Merlin 1D (Falcon 9) SpaceX USA

Table 2. Selected operational upper stage engines (motor parameters).

Model (Stage/Launcher) Thrust (kN) Burning Time (s)

RD-843 (AVUM-Vega) 2.45 300–600
17D64 (Volga-Soyuz) 2.94 600
S5.98M (Briz-Proton) 19.6 3000
S5.92 (Fregat-Zenit) 19.85 1350

Rutherford (Electron) 26 258–373
Aestus (Ariane 5) 27 1170
Kestrel (Falcon 1) 31 378

Orion 38 (Pegasus) 32 67.7
HM7B (Ariane 5 ECA) 67 945

RL10 (Centaur) 110 400–700–1125
Vinci (Ariane 6) 180 900
Zefiro 9 (Vega) 314 117

Castor 30 (Antares) 300–500 127–156
Merlin 1D (Falcon 9) 934 397

The data for solid rockets tend to be easy to retrieve as the nominal motor total impulse
is part of the motor design. On the contrary, for liquid engines, care must be taken to
separate the burning time for which the motor is qualified and the burning time that will
deplete all the propellant of the stage. The same liquid engine (for example, the RL-10) can
provide very different burning times (from 400 up to over 1100 s) depending on the stage
in which it is integrated. Moreover, sometimes a liquid engine is throttled down during the
final part of orbit injection to improve accuracy and reduce acceleration as gravity losses
becomes much lower. For this reason, the stage burning time does not always correspond
to the total impulse divided the nominal thrust. However, the aim of this paper is not to
report accurate data but to show the trends and determine how the hybrid solution will fit
as a possible replacement.

Regarding the total stage shape, it is important to underline that booster stages and
upper stages often share the same diameter. Consequently, due to the large difference in
propellant mass, booster stages have much higher stage L/D, or equivalently, upper stages
have much lower L/D. The L/D of the booster stage range from 4 to higher than 12 [35]
and tends to be compatible with a hybrid design until the regression rate is sufficient for
the required thrust, otherwise a cluster of motors or a multiport design is necessary. The
L/D of the upper stages is instead very low and can be even less than 1 for the Russian
space tugs with toroidal-like arrangement (Figure 2).
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Figure 2. Examples of liquid propelled space tugs: (a) NPO Lavochkin Fregat (Soyuz/Zenit); (b) GKNPTs Khrunichev
Briz-M (Proton). Note the extremely compact length to diameter ratio and the propellant tank arrangement. Copyright:
publicly available pictures on the internet.

Liquid propelled upper stages with a more conventional serial arrangement are very
mass efficient and still have a relatively low length to diameter ratio thanks to the flexibility
in the liquid propellant storage tank design and the use of a common bulkhead (Figure 3).

Figure 3. Examples of upper stages for small launch vehicles: (a) Liquid propelled SpaceX Falcon 1; (b) ORPHEE Hybrid
Upper Stage proposal. Note the relatively high length to diameter ratio of the serial hybrid and the compact packaging of
the common bulkhead liquid propellant design. (a) Reprinted with permission from ref. [36]. Copyright 2008 International
Astronautical Federation. (b) Reprinted with permission from ref. [6]. Copyright 2010 American Institute of Aeronautics
and Astronautics.

Solid rocket upper stages are very compact, sometimes using a spherical combustion
chamber or otherwise a cylindrical chamber with a low length to diameter ratio and a high
propellant mass fraction (Figure 4).
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Figure 4. Examples of solid rocket upper stages: (a) Avio Zefiro 9 (Vega); (b) Northrop Grumman Star 48 (Minotaur IV).
Note the very compact length to diameter ratio. (a) Reprinted with permission from https://www.avio.com/ (accessed on
9 July 2021). Copyright 2021 Avio. (b) Reprinted with permission from ref. [34]. Copyright 2016 Northrop Grumman.

4.2. Hybrid Analysis

It is helpful to try to compare the geometrical characteristics of an equivalent hybrid
upper stage. For the sake of simplicity, the motors of Tables 1 and 2 have been considered,
keeping the same thrust and burning time (i.e., total impulse). It is worth noting that
the same total impulse does not provide the same payload performance as the latter is
dependent also on inert mass and specific impulse of the stage. Moreover, the hybrid
propulsion system could be better designed, optimizing the thrust and burning time to a
different working point. It is still very useful to make a direct comparison to retrieve some
interesting information.

Four propellant combinations have been considered: the combination between two
oxidizers (LOX, [Liquid Oxygen], and hydrogen peroxide, H2O2) and two fuels, a high
regressing one (such as paraffin wax) and a low regressing one (such as HDPE, [High
Density PolyEthylene]). The specific impulse was fixed to 340 s for the LOX combinations
and to 300 s for the H2O2 ones. The regression rate coefficients for LOX-paraffin have been
defined as a = 0.117 and n = 0.62 [31] (with Gox in kg/m2 s and

.
r in mm/s); for H2O2–

paraffin a = 0.15 and n = 0.5 [37]. The regression rate of the HDPE cases was fixed as five
times lower than the paraffin one [31]. The paraffin fuel density was set to 930 kg/m3 while
the HDPE density to 950 kg/m3. The mixture ratio for the LOX combinations was set equal
to 2.7, while 7.5 was chosen for the H2O2 combinations. The initial oxidizer flux was fixed
to 500 kg/m2·s. The internal diameter D0 was calculated from the oxidizer mass flow and
initial mass flux while the external diameter was calculated with the following equation:

D f =
(

a(4n + 2)
(
4

.
mox/π

)ntb + D0
2n+1

)1/(2n+1)
(9)

The length of the grain was calculated with the following equation:

L =
Vf uel

π/4
(

D2
f − D2

0

) (10)

Then, the diameter ratio R and the length to diameter ratio L/Df can be determined.
The results are shown in the following Tables 3–6.

https://www.avio.com/
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Table 3. Calculated equivalent hybrid grain design. LOX-paraffin case.

Reference Model Grain R = D0/Df Grain L/Df

RD-843 (AVUM-Vega) 11–15 1.3–1.1
17D64 (Volga-Soyuz) 14 1.1
S5.98M (Briz-Proton) 19 0.9
S5.92 (Fregat-Zenit) 13 1.1

Rutherford (Electron) 5.9–7 2.1–1.9
Aestus (Ariane 5) 11.5 1.3
Kestrel (Falcon 1) 6.8 1.9

Orion 38 (Pegasus) 3.2 3.4
HM7B (Ariane 5 ECA) 8.5 1.6

RL10 (Centaur) 5.2–6.7–8.3 2.3–1.9–1.6
Vinci (Ariane 6) 6.7 1.9
Zefiro 9 (Vega) 2.5 4.1

Castor 30 (Antares) 2.6 4
Merlin 1D (Falcon 9) 3.3 3.3

Table 4. Calculated equivalent hybrid grain design. H2O2-paraffin case.

Reference Model Grain R = D0/Df Grain L/Df

RD-843 (AVUM-Vega) 10–14 0.6–0.4
17D64 (Volga-Soyuz) 13 0.4
S5.98M (Briz-Proton) 18 0.3
S5.92 (Fregat-Zenit) 12 0.4

Rutherford (Electron) 5–6 1.1–0.9
Aestus (Ariane 5) 10.5 0.5
Kestrel (Falcon 1) 5.8 0.9

Orion 38 (Pegasus) 2.6 2
HM7B (Ariane 5 ECA) 7.6 0.7

RL10 (Centaur) 4.4–5.8–7.3 1.2–0.9–0.7
Vinci (Ariane 6) 5.8 0.9
Zefiro 9 (Vega) 2.1 2.6

Castor 30 (Antares) 2.1 2.5
Merlin 1D (Falcon 9) 2.7 2

Table 5. Calculated equivalent hybrid grain design. LOX-HDPE case.

Reference Model Grain R = D0/Df Grain L/Df

RD-843 (AVUM-Vega) 5–7 11–9
17D64 (Volga-Soyuz) 6.8 9.2
S5.98M (Briz-Proton) 9.2 7.4
S5.92 (Fregat-Zenit) 6.4 9.7

Rutherford (Electron) 3–3.5 18–16
Aestus (Ariane 5) 5.6 11
Kestrel (Falcon 1) 3.4 16

Orion 38 (Pegasus) 1.75 27
HM7B (Ariane 5 ECA) 4.2 13

RL10 (Centaur) 2.7–3.3–4 19–16–14
Vinci (Ariane 6) 3.4 16
Zefiro 9 (Vega) 1.5 32

Castor 30 (Antares) 1.5 31
Merlin 1D (Falcon 9) 1.8 27
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Table 6. Calculated equivalent hybrid grain design. H2O2-HDPE case.

Reference Model Grain R = D0/Df Grain L/Df

RD-843 (AVUM-Vega) 4–6 6–4
17D64 (Volga-Soyuz) 5.9 4.4
S5.98M (Briz-Proton) 8.2 3.2
S5.92 (Fregat-Zenit) 5.5 4.7

Rutherford (Electron) 2.4–2.8 11–9
Aestus (Ariane 5) 4.8 5.5
Kestrel (Falcon 1) 2.8 9.5

Orion 38 (Pegasus) 1.5 18
HM7B (Ariane 5 ECA) 3.5 7.5

RL10 (Centaur) 2.2–2.7–3.4 12–9.6–7.7
Vinci (Ariane 6) 2.7 9.5
Zefiro 9 (Vega) 1.3 20

Castor 30 (Antares) 1.3 20
Merlin 1D (Falcon 9) 1.5 17

From the tabulated results, it is possible to infer some considerations. The regression
rate with H2O2 is lower than that with LOX, so the diameter ratio is higher with the
latter. The length to diameter ratio of the grain is much lower for H2O2 thanks to its
higher optimal mixture ratio and, consequently much lower fuel mass. For very long
burning times (relative to the thrust level), the paraffin motors turn out to have too high
diameter ratios and sometimes too low L/Df (the latter particularly for H2O2). On the
contrary, reducing the regression rate with the HDPE fuel makes the diameter ratio more
manageable but significantly increases the L/Df to values that are generally not acceptable.

Moreover, considering a simple ablative-cooling, burning times from few hundreds to
thousands of seconds are considered almost impossible for the hybrid (some prototype
ablative liquid engines from the 1960s achieved this at very low pressures and with
significant fuel film cooling [29]).

The hybrid configuration gives reasonable results with paraffin for intermediate levels
of thrust to burning time ratios, generally in between the values chosen for solids and
liquids (as shown in the sizing presented in [9]).

However, the L/Df tabulated values refer to the grain, not to the whole stage. As the
majority of the propellant is the oxidizer, it is easy to understand that, if the oxidizer is
placed in a tank with the same diameter of the grain, the total length to diameter ratio
will be more compatible with a booster than an upper stage. The only way to achieve
a very low hybrid stage length to diameter ratio with a serial configuration is to use
a cluster of combustion chambers or a multiport grain, but both solutions come with
several drawbacks and have a significant impact on the inert mass of the stage, which is a
fundamental parameter for an upper stage. Therefore, it is necessary to place the oxidizer
in a different way. Three possible solutions have been presented by Karabeyoglu [9] as
shown in Figure 5.

The simplest one is to use a larger spherical or cylindrical tank on top of the com-
bustion chamber in a way similar to some liquid upper stages. Unfortunately, the hybrid
combustion chamber is much longer than a liquid engine and this solution, which is struc-
turally efficient at motor level, leaves a significant amount of unused space inside the stage.
The total length becomes relevant and the stage stiffness could be an issue. An advantage
could be that, because of a large clearance, stage separation could be placed near the tank,
and the interstage could remain attached in the previous stage, allowing the propulsion
system to fly “naked” with lower inert mass.
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Figure 5. Examples of hybrid upper stage arrangements: (a) Serial; (b) Toroidal; (c) Multiple
tanks. Reprinted with permission from ref. [9]. Copyright 2011 American Institute of Aeronautics
and Astronautics.

In the second case, a toroidal solution is employed. This solution makes the better
use of the available space but is more complex and expensive to produce/assemble. The
structural efficiency at the stage level is dependent on the specific design (type of toroid,
alternative shapes, common walls, etc.) and, in common with the other configurations, from
the scale of the system and the tank pressure level (in turn dependent on the pressurization
choice, press-fed vs. pump-fed [38]).

In the third case, the propellant is placed in several tanks around the combustion
chamber. This solution does not completely fill all the cylindrical space around the motor.
Moreover, several tanks (with corresponding fluidic) of smaller volume tend to be heavier
than a single tank of the same total volume [39], see Figure 6. In this case, there is no
clearance, so the stage has to fly with its own case unless it is placed inside the fairing.

Figure 6. Sampling of Scorpius® [USA] Composite Tanks (1.7 MPa MEOP (250 psi)): Volume vs. Tank mass factor. Reprinted
with permission from ref. [39]. Copyright 2010 American Institute of Aeronautics and Astronautics.
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In all cases, the length to diameter ratio cannot reach the minimum levels of the
competing technologies. In this regard, hydrogen peroxide turns out to be a better solution
when very low L/D values are sought. Of course, the selection of the oxidizer is based on
many other aspects, in particular the specific impulse advantage of LOX is much relevant
for an upper stage, while the non-cryogenic storability of H2O2 is preferable when the
orbital mission duration becomes relevant. Metal additives [40] can increase the specific
impulse and fuel density but they generally also operate at lower optimal mixture ratios.

It is important to remember that, compared to a booster, an upper stage is much more
sensitive to performance (i.e., inert mass and specific impulse) and has a lower impact on
total costs, and this should be kept in mind in the selection of a hybrid solution instead of a
conventional one and also in the way to design/configure it. Great care has to be placed on
the structural mass, residuals [41], mixture ratio shift, and so on, as a too “rough” design
will be competitive for a booster in terms of sensible cost reductions, but for an upper
stage, could incur payload losses that completely jeopardize the relative potential minor
(compared to the whole launcher) cost decrease.

4.3. Heat Soak-Back, Fuel Issue, and Orbit Insertion for Upper Stages

Again, the general simplicity feature attributed to hybrids is also dependent on the
typical use of an ablative nozzle and a simple combustion chamber design. When hybrid
rockets are proposed for upper stages, often the restartability feature is considered an
advantage in order to perform the final orbit injection through a sort of Hohmann transfer.
However, this aspect re-iterates the heat soak-back issue that is not present in ablative-
cooled solid rocket upper stages, which perform a less efficient single burn direct injection.
In particular, in a typical trajectory, the upper stage has to deliver almost all its total impulse
in the first burn up to injection in a transfer orbit. In a pure Hohmann transfer, after a long
coasting phase of roughly half an orbit (around 45 min), the circularization burn occurs.
This second ignition consumes only the last few percent of the total propellant mass. This
situation is very problematic, and in some way the worst possible, for several reasons. First,
the first long burning time (almost the full duration) results in a considerable accumulation
of heat and leaves only a small amount of residual fuel and thermal protection masses. In
between the two burns, the very long coasting phase provides a substantial time for the
heat to flow back to the combustion chamber case and fuel grain. Compared to the satellite
case, here it is obviously not possible to split the first burn into small steps (perhaps it is
possible for the space tug). Moreover, the already mentioned high sensitivity of upper
stages to inert mass makes it difficult to solve the problem with the simple addition of
significant added thermal protection mass. This issue is more relevant for small upper
stages as the thermal transient is shorter and the relative size of thermal protection becomes
larger. A more detailed discussion of the problem is presented in [29].

Finally, at constant thrust, the duration of the circularization burn tends to last only
few seconds, with a detrimental effect on injection accuracy. A possible remedy is to
exploit the potential hybrid throttleability at the cost of an increased complexity. However,
throttling down a hybrid rocket motor produces a mixture ratio shift. This occurs under
a very limited amount of the total impulse; the high upper stage sensitivity to specific
impulse losses induces a non-negligible effect on the payload mass. Some more complex
hybrid architectures are able to compensate the mixture ratio shift during throttling [42–48].
A simpler intermediate option that can be used for a pre-determined mission profile is the
use of a concentric double fuel grain. Two different fuels burning at different rates can
potentially compensate the mixture ratio shift during throttling. An example could be two
paraffin-based fuel blends with different amounts of burning rate tailoring additives (such
as polyethylene).

For instance, with n = 0.5, a throttling ratio of 4 can be achieved if the ratio between
the mass flow production (i.e., the product of the regression rate times the density) of the
two fuels is 2, and a throttling ratio of 9 can be achieved if the ratio between the two fuels
is 3.
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For the previous discussion about heat soak-back, an increased attention should be
given to the thermomechanical properties of the second fuel.

In conclusion, performing an orbit injection through a Hohmann transfer using an
ablative-cooled hybrid rocket upper stage without sensible loss of performance is a very
demanding task that requires a careful evaluation and advanced design solutions.

5. Conclusions

Hybrid rocket motors have several positive features, one of these is the capability
to be stopped/restarted multiple times. Another one is the intrinsic simplicity thanks to
its single liquid feed system and, generally, the choice of an ablative cooled combustion
chamber-nozzle assembly. These characteristics make this kind of propulsion attractive,
among others, for applications such as satellites and upper stages. In this paper, the use of
hybrid rockets for those situations has been reviewed.

First, it has been shown that, in contrast to boosters, which require maximization of the
regression rate, for the applications considered here, where the ratio between the burning
time and thrust could be significant, the regression rate may need to be limited to avoid
unreasonable grain shapes and/or motor initial and final parameters. The consequence
of this regression rate limitation leads to a different (even opposite) behavior of the grain
geometry with respect to the motor global parameters such as thrust, burning time, and
total impulse, affecting the packaging of the combustion chamber and, consequently, of the
whole hybrid propulsion system.

It was demonstrated that a hybrid rocket is much more competitive against a liquid
propulsion system for satellites or spacecrafts when the velocity increment is relatively
small or the maneuver requires a significant acceleration, i.e., thrust (in satellites terms).
Compared to solids, the need for multiple ignitions or throttle ability is needed to justify
the hybrid adoption, unless the requirements are relaxed and other aspects are a priority
(safety, costs). However, the heat soak-back during long off phases between multiple burns
could compromise the integrity of the case and the solid fuel. Splitting each long burn into
multiple shorter steps can partially alleviate the issue.

Regarding upper stages, hybrid rocket grain/combustion chamber design constraints
impose some boundaries on the possible combinations of motor parameters such as thrust
and burning time, which tend to optimize between liquids and solids. The length to
diameter ratio of the hybrid propulsion system cannot match the minimum levels of
the competing technologies, and to achieve compact designs, the possible oxidizer tank
arrangements present some issues. Moreover, the difficulties to perform an orbital injection
trough a Hohmann transfer have been highlighted. In fact, the circularization burn is very
short and potentially imprecise (unless the motor is throttled down, but inducing a mixture
ratio shift if not counteracted) and takes place after a long coasting phase where the heat
soak-back from the almost full initial burn represents a significant threat for the combustion
chamber and the little amount of fuel remaining. All the problems are exacerbated by the
high sensitivity of upper stages to performance.

The discussion presented here does not preclude the use of (ablatively cooled) hy-
brid propulsion for these applications but underlines that a careful evaluation should be
undertaken before and after the hybrid selection.
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Nomenclature

a, n regression rate law coefficients
D0 initial port diameter
Df final port diameter
Dt nozzle throat diameter
.

er nozzle throat erosion rate
G0 initial port oxidizer mass flux
Gox port oxidizer mass flux
Gmax maximum (initial) port oxidizer mass flux
Itot total impulse
L fuel length
.

mox oxidizer mass flow
pc chamber pressure
.
r fuel regression rate
R diameter ratio
Rmin minimum diameter ratio
Rmax maximum diameter ratio
tb burning time
T thrust
Vfuel fuel grain volume
∆V spacecraft velocity increment
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26. Paccagnella, E.; Barato, F.; Pavarin, D.; Karabeyoğlu, M.A. Scaling Parameters of swirling oxidizer injection in hybrid rocket

motors. J. Propuls. Power 2017, 33, 1378–1394. [CrossRef]
27. Ronningen, J.E.; Husdal, J. Nammo Hybrid Rocket Propulsion TRL Improvement Program; AIAA Paper 2012–4311. In Proceed-

ings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Atlanta, GA, USA, 30 July 2012–1 August
2012.

28. Ruffin, A.; Paccagnella, E.; Santi, M.; Barato, F.; Pavarin, D. Real-time deep throttling tests of a hydrogen peroxide hybrid rocket
motor; AIAA 2019–4266. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August
2019.

29. Barato, F.; Paccagnella, E.; Franco, M.; Pavarin, D. Numerical analyses of thermal protection design in hybrid rocket motors;
AIAA 2020–3769. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event. 24–28 August 2020.

30. Barato, F.; Paccagnella, E.; Pavarin, D. Explicit analytical equations for single port hybrid rocket combustion chamber sizing. J.
Propuls. Power 2020, 36, 6. [CrossRef]

31. Karabeyoglu, M.A.; Cantwell, B.; Stevens, J. Evaluation of homologous series of normal-alkanes as hybrid rocket fuels; AIAA
Paper 2005–3908. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ,
USA, 10–13 July 2005.

32. Franco, M.; Barato, F.; Paccagnella, E.; Santi, M.; Battiston, A.; Comazzetto, A.; Pavarin, D. Regression rate design tailoring
through vortex injection in hybrid rocket motors. J. Spacecr. Rocket. 2020, 57, 278–290. [CrossRef]

33. Chiaverini, M. Review of solid-fuel regression rate behavior in classical and nonclassical hybrid rocket motors. In Fundamentals of
Hybrid Rocket Combustion and Propulsion; Chiaverini, M.J., Kuo, K.K., Eds.; American Institute of Aeronautics and Astronautics:
Reston, VA, USA, 2007; Volume 218, pp. 37–126.

34. Northrop Grumman. Propulsion Products Catalog. From Northrop Grumman Website. Approved for Public Release OSR No.
16-S-1432. Available online: https://www.northropgrumman.com/ (accessed on 5 April 2016).

35. Kearney, D.; Joiner, K.F.; Gnau, M.P.; Casemore, M.A. Improvements to the marketability of hybrid propulsion technologies. In
Proceedings of the AIAA SPACE 2007 Conference & Exposition, Long Beach, CA, USA, 18–20 September 2007.

36. Bjelde, B.; Capozzoli, P.; Shotwell, G. The SpaceX Falcon 1 launch vehicle flight 3 results, future developments, and Falcon
9 evolution. In Proceedings of the 59th International Astronautical Congress, IAC-08-D2.1.03, Glasgow, Scotland, UK, 29
September–3 October 2008.

37. Paccagnella, E.; Santi, M.; Ruffin, A.; Barato, F.; Pavarin, D.; Misté, G.; Venturelli, G.; Bellomo, N. Testing of a long-burning-time
paraffin-based hybrid rocket motor. J. Propuls. Power 2019, 35, 432–442. [CrossRef]

38. Barato, F.; Bettella, A.; Pavarin, D. Numerical investigation of pressure-fed solutions for paraffin based hybrid rocket motors;
AIAA 2013–3897. In Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Jose, CA,
USA, 14–17 July 2013.

39. Delamata, A.; Besnard, E.; Bostwick, C. Fuel trade study for a nanosat launch vehicle upper stage; AIAA Paper 2010–6804. In
Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, USA, 25–28 July 2010.

http://doi.org/10.2514/1.B35282
http://doi.org/10.1155/2012/649753
http://doi.org/10.2514/1.3340
http://doi.org/10.2514/1.A34035
http://doi.org/10.2514/1.B34908
http://doi.org/10.2514/1.B34506
http://doi.org/10.2514/1.B36241
http://doi.org/10.2514/1.B37992
http://doi.org/10.2514/1.A34539
https://www.northropgrumman.com/
http://doi.org/10.2514/1.B37144


Aerospace 2021, 8, 190 19 of 19

40. Shark, S.; Sippel, T.; Son, S.; Heister, S.; Pourpoint, T. Theoretical performance analysis of metal hydride fuel additives for rocket
propellant applications. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego,
CA, USA, 31 July–3 August 2011.

41. Barato, F.; Grosse, M.; Bettella, A. Hybrid rocket residuals: An overlooked topic; AIAA Paper 2014–3753. In Proceedings of the
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland, OH, USA, 28–30 July 2014.

42. Barato, F.; Toson, E.; Pavarin, D. Variations and control of thrust and mixture ratio in hybrid rocket motors. Adv. Astronaut. Sci.
Technol. 2021, 1–22. [CrossRef]

43. Culver, D.W. Comparison of forward and aft injected hybrid rocket boosters. In Proceedings of the 27th AIAA/SAE/ASME Joint
Propulsion Conference, Sacramento, CA, USA, 24–26 June 1991.

44. Usuki, T.; Shimada, T. Improvement on thrust profile flexibility by oxidizer-to-fuel ratio feedback control in hybrid rocket. In
Proceedings of the 66th International Astronautical Congress (IAC), Jerusalem, Israel, 12–16 October 2015.

45. Ozawa, K.; Usuki, T.; Mishima, G.; Kitagawa, K.; Yamashita, M.; Mizuchi, M.; Katakami, K.; Maji, Y.; Aso, S.; Tani, Y. Static
burning tests on a bread board model of altering-intensity swirling oxidizer-flow-type hybrid rocket engine. In Proceedings of
the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016.

46. Shimada, T.; Usuki, T. Conceptual study on flight demonstration of mixture-ratio-controlled throttling of hybrid rocket. In
Proceedings of the 67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26–30 September 2016.

47. Ozawa, K.; Shimada, T. Flight performance simulations of vertical launched sounding rockets using altering-intensity swirling-
oxidizer-flow type hybrid motors. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA,
27–29 July 2015.

48. Ozawa, K.; Shimada, T. A theoretical study on throttle ranges of O/F controllable hybrid rocket propulsion systems. J. Fluid Sci.
Technol. 2018, 13. [CrossRef]

http://doi.org/10.1007/s42423-021-00076-3
http://doi.org/10.1299/jfst.2018jfst0031

	Introduction 
	Hybrid Rocket Combustion Chamber Sizing 
	Satellites and Spacecrafts 
	Current Status Quo 
	Hybrid Analysis 
	Heat Soak-Back and Fuel Issue for Satellites 

	Upper Stages 
	Current Status Quo 
	Hybrid Analysis 
	Heat Soak-Back, Fuel Issue, and Orbit Insertion for Upper Stages 

	Conclusions 
	References

