
aerospace

Article

A Comparative Analysis of Multi-Epoch Double-Differenced
Pseudorange Observation and Other Dual-Satellite Lunar
Global Navigation Systems

Toshiki Tanaka 1,2,*, Takuji Ebinuma 3, Shinichi Nakasuka 4 and Heidar Malki 1,2

����������
�������

Citation: Tanaka, T.; Ebinuma, T.;

Nakasuka, S.; Malki, H. A

Comparative Analysis of

Multi-Epoch Double-Differenced

Pseudorange Observation and Other

Dual-Satellite Lunar Global

Navigation Systems. Aerospace 2021,

8, 191. https://doi.org/10.3390/

aerospace8070191

Academic Editor: M. Reza Emami

Received: 21 May 2021

Accepted: 14 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Engineering Technology, College of Technology, University of Houston,
306 Technology 2 Bldg., Calhoun Road, Houston, TX 77004, USA; hmalki@central.uh.edu

2 Department of Electrical & Computer Engineering, College of Technology, University of Houston,
306 Technology 2 Bldg., Calhoun Road, Houston, TX 77004, USA

3 Department of Astronautics and Aeronautics, Chubu University, 1200 Matsumoto-cho,
Kasugai 487-8501, Japan; ebinuma@isc.chubu.ac.jp

4 Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan; nakasuka@space.t.u-tokyo.ac.jp

* Correspondence: ttanaka@uh.edu

Abstract: In this study, dual-satellite lunar global navigation systems that consist of a constellation of
two navigation satellites providing geo-spatial positioning on the lunar surface were compared. In our
previous work, we proposed a new dual-satellite relative-positioning navigation method called multi-
epoch double-differenced pseudorange observation (MDPO). While the mathematical model of the
MDPO and its behavior under specific conditions were studied, we did not compare its performance
with other dual-satellite relative-positioning navigation systems. In this paper, we performed a
comparative analysis between the MDPO and other two dual-satellite navigation methods. Based on
the difference in their mathematical models, as well as numerical simulation results, we developed
useful insights on the system design of dual-satellite lunar global navigation systems.

Keywords: GNSS; lunar exploration; TOA; FOA; navigation; lunar rover; microsatellite; nanosatellite;
interplanetary missions

1. Introduction

In recent years, communication and navigation architecture for lunar exploration
programs has been of great interest [1]. In particular, the estimation of a rover vehicle’s
position on the lunar surface is one of the key technologies for the successful operation of the
rover, mapping resources, and making scientific observations on the lunar surface. It is well-
known that cold-trapped volatiles, including water-ice, in lunar Permanently Shadowed
Regions (PSRs) could be a high priority resource for future space exploration. As PSRs never
receive direct sunlight, visual-odometry based navigation methods, such as simultaneous
localization and mapping (SLAM), will be considerably constrained. Therefore, some
alternative is needed to realize long and efficient exploration of the PSRs. Additionally,
we aim to provide navigation information to multiple users on the lunar surface as the
locations of various resources are not known precisely, and wide-range exploration by
multiple small rovers is considered as promising approach [2]. With these two trends in
mind, multiple-user navigation system that can be used in PSRs is of immediate demand.

As one feasible approach to establish the multiple-user navigation system for the lunar
surface applications, several groups have studied the use of weak signals, i.e., the spill-over
of the beams irradiated from global navigation satellite systems (GNSS) that serve Earth
surface and proximity: the weak signals technology was investigated by [3] for the first
time, and applications to the lunar navigation were extensively studied by a great deal
of research [4–10]. While they are capable of providing navigation signals at the middle
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latitude of the lunar surface, they are not available at the far side and polar regions of the
Moon due to invisibility. As an alternative method, constellations of global navigation
satellites around the Moon have been studied [11,12]. Additionally, a combination of the
weak signals and a relatively small constellation of global navigation satellites around
the Moon has been studied [13]. While they can provide geo-spatial positioning to the
entire Moon and its proximity, the transportation cost to inject satellites into multiple lunar
orbits, as well as the ground station cost to operate a large number of lunar satellites, is not
affordable at the early stage of the lunar exploration programs.

In an attempt to reduce the cost of global navigation satellite systems, dual-satellite
lunar global navigation that consists of a constellation of two navigation satellites have
been studied. Originally, dual-satellite global navigation methods have been studied for
Earth GNSS in the literature [14,15] and applying them to lunar GNSS domain [16,17]. We
also proposed a new dual-satellite relative-positioning navigation method called multi-
epoch double-differenced pseudorange observation (MDPO) [18]. While the mathematical
model of the MDPO and its behavior under specific conditions were studied, we did not
sufficiently compare its performance with other dual-satellite global navigation systems.
In this paper, we show a comparative analysis between the MDPO and other selected
navigation methods. More specifically, we study and compare the following three naviga-
tion methods, (1) MDPO, (2) joint time difference of arrival and frequency difference of
arrival (TDOA–FDOA) [15], and (3) two-way ranging [19], and discuss the pros and cons
of each method.

These three dual-satellite navigation methods use different types of observations,
namely passive ranging, passing ranging, and Doppler, or active ranging (two-way rang-
ing), as shown in Table 1. As most dual-satellite navigation methods can be classified into
one of these types of observations, a comparative analysis and evaluation of these methods
will provide a benchmark of dual-satellite relative-positioning lunar GNSS. For instance,
recent work in joint Doppler and ranging (JDR) [16], which converts a differenced Doppler
shift into a pseudo-pseudorange using the Law of Cosines and integrates it with pseudor-
ange observation, can be classified as evolved families of joint TDOA–FDOA: otherwise as
evolved families of two-way ranging, if it employs two-way ranging observation instead
of pseudorange observation.

Table 1. Benchmark of dual-satellite lunar navigation systems.

Method Observation
Type

Number of
Supported Users Observation Time Navigation Accuracy

Multi-epoch
double-differenced

pseudorange observation
Passive ranging Multi-user

Using observations
from at least two

epochs 2

50 m under the condition
used in Section 4.3.

Double-differenced time of
arrival (TOA)-frequency of

arrival (FOA)

Passive ranging
and Doppler Multi-user Using observations

from a single epoch 3
100 m under the condition

used in Section 4.3.

Single-differenced two-way
ranging Active ranging Single-user at a

time 1
Using observations

from a single epoch 3
30 m under the condition

used in Section 4.3.
1 The second user needs another set of radio signals separately. 2 For example, 1 min (0.5 min × 2 epochs) such as set in this research. 3 For
example, 0.5 min (0.5 min × 1 epoch) such as set in this research.

Apart from these three types, dual-satellite navigation can be established only with
Doppler observation. For example, in [17], it was successfully shown that Doppler Based
Autonomous Navigation (DBAN) can operate with as few as one lunar orbiter and a
reference station and enable autonomous positioning of crewed missions. However, we
will rule out Doppler-only navigation from this comparative analysis, as it requires a long
observation period and is not able to provide position estimates as quickly as the other
methods do.
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In this research, the target of our study comprises a micro-sized satellite and rover
systems. In that case, power generation capability is limited by size and, consequently,
not compatible with a high-standard clock source, such as the deep space atomic clock
(DSAC) [20]. When the clock bias of space/user segment is not ignorable, or when satellite
orbit determination error is not ignorable, the existing joint TDOA–FDOA method must be
updated to a double-differenced form [21], the so-called double-differenced Time Of Arrival
(TOA)–Frequency Of Arrival (FOA), to cope with the clock bias and orbit determination er-
rors. Likewise, the two-way ranging method must be updated to a single-differenced form,
the so-called single-differenced two-way ranging, to cope with the orbit determination
errors. These updates have been taken into account to give a fair comparison.

The selected three navigation methods have different characteristics in terms of navi-
gation accuracy and system complexity. The comparative study of these three navigation
methods is shown in Table 1, which could assist designers to choose an appropriate method
for their own purposes. For example, MDPO can provide navigation information to mul-
tiple users at a time through passive ranging but requires observations from multiple
epochs. Double-differenced TOA–FOA can provide navigation information to multiple
users at a time with observation from a single epoch but requires Doppler observation
and pseudorange observation. Single-differenced two-way ranging can provide relatively
high-accuracy navigation information with observation from a single epoch but only to
a single user per one set of radio signals at a time, and also requires an active ranging,
i.e., radio signal power emission at the user segment. We also compared the navigation
accuracy of these three methods by numerical simulations under the selected conditions.

This paper consists of the following sections. In Section 2, we discuss the assumptions
for our study. In Section 3, the mathematical models of the three navigation methods
are presented. In Section 4, the achievable user position accuracies of three navigation
methods are analyzed by numerical simulation and comparative studies are discussed. In
Section 5, we summarize the key insights by analyzing the simulation results, and provide
suggestions from a system design point of view.

2. Assumptions

In recent years, NASA and private sectors have extensively studied and developed
unmanned micro mobile robots for lunar surface exploration [22,23]. The target of our study
comprises a micro-sized satellite and rover system whose power generation capability is
limited by size and, consequently, not compatible with the deep space atomic clock (DSAC).
In this case, the best current clock technology that is compatible with the micro-sized
satellite is the Chip Scale Atomic Clock (CSAC).

As reported in [24], while CSAC can suppress the frequency instability of the clock
down to about 1 part per billion (ppb) for 24 h, CSAC incurs several tens to hundreds of
meters of error in pseudorange observations after 24 h, which further increases over time.
As a result, using CSAC inevitably requires pseudorange-based navigation systems to
conduct frequent estimations of the satellite and/or user clock bias using Earth ground sta-
tions, which is very challenging in lunar GNSS due to the limitation of the availability and
number of earth ground stations that are capable of Earth–Moon distance communication.
In summary, the following assumptions were used:

• The bias of the satellite clock is not ignorable due to the limited capacity of micro-
satellites;

• The bias of the rover clock is not ignorable due to the limited capacity of micro-rovers;
• The satellite orbit determination error is not ignorable due to the limitation of the

availability and number of Earth ground stations.

3. Mathematical Models of the Three Navigation Methods

In this section, we derive the formulas for the three navigation methods listed in
Table 1. These navigation methods commonly use pseudorange observation and/or pseu-
dodoppler observation. Therefore, we first introduce the formulas of pseudorange obser-
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vation and pseudodoppler observation later to derive the formulas of the three different
navigation methods.

3.1. Pseudorange Observation

In the conventional Time Of Arrival (TOA) algorithm, the pseudorange (ρ) measure-
ment between one user (user1) and one satellite (satellite1) is presented by the following
equation [14];

ρS
R(ti) = rS

R(ti) + c
(

dτR(ti)− dTS(ts
i )
)
+ ωr

S
R(ti) (1)

rS
R(ti) = |Xs(ts

i )−XR(ti) + dXRsa| (2)

where Xs(ts
i
)
=
(

xS(ts
i
)
, yS(ts

i
)
, zS(ts

i
))

is the satellite1 position at the time of signal trans-
mission ts

i ; XR(ti) = (xR(ti), yR(ti), zR(ti)) is the user1 position at the time of signal
reception ti; c is the speed of light; dτR is the user clock bias; dTS is the satellite clock
bias; dXRsa corresponds to the user1 position transition due to the Sagnac effect; and ωr

S
R

is the range receiver observation error. In this study, we assume that the range receiver
observation error ωr

S
R follows a white Gaussian distribution with the standard deviation

of σωr.
The coordinate frame of the satellite position and user position is based on a local

topocentric frame, i.e., the x-axis points local east, the y-axis points local north, and the
z-axis points local up (East-North-Up), hereafter. The equations are formulated using the
relative position between the satellite and the user, and both the user positions have a
constant rotational offset with respect to the Moon-centered inertial frame. In other words,
the user position is changed due to the Moon rotation during the signal traveling time
from the satellite to the user, which appears as the Sagnac effect in Equation (2). The
Shapiro effect was not considered, as the selected three methods do not aim to have a
sub-meter accuracy.

3.2. Pseudodoppler Observation

In the Frequency Of Arrival (FOA) algorithm, the pseudodoppler shift (ΩS
R) between

user1 and satellite1 is given as [14];

ΩS
R(ti) = f S

R(ti) +
(

d fR(ti)− d f S(ts
i )
)
+ ωd

S
R(ti) (3)

f S
R(ti) =

f0

c

{(
VS

R
(
ts
i
)
+ dVS

R sa
)
·
(
Xs(ts

i
)
−XR(ti) + dXRsa

)T∣∣Xs(ts
i
)
−XR(ti) + dXRsa

∣∣
}

(4)

where VS
R
(
ts
i
)
=
(
Vx

S
R
(
ts
i
)
, Vy

S
R
(
ts
i
)
, Vz

S
R
(
ts
i
))

is the satellite velocity relative to the user at a
time of ts

i ; f0 is the radio wave frequency; c is the speed of light; d fR is the user frequency
bias; d f S is the satellite frequency bias; dVS

R sa corresponds to the satellite relative velocity
variation due to the Sagnac effect; and ωd

S
R is the Doppler receiver observation error. In

this study, we assume that the Doppler receiver observation error ωd
S
R follows a white

Gaussian distribution with the standard deviation of σωd.

3.3. Multi-Epoch Double-Differenced Pseudorange Observation

Multi-epoch double-differenced pseudorange observation (MDPO) is a multi-user,
pseudorange-based navigation algorithm. Using multi-epoch double-differenced observa-
tions reduces the number of navigation satellites required from four to two, while dealing
with the instability of the satellite clock at the same time, as shown in Figure 1.

In this paper, we only explain important equations which are necessary to clarify
the differences between the MDPO and other methods, while the complete formulation
derivation of the MDPO can be found in our prior research [18].
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Figure 1. Overview of the multi-epoch double-differenced pseudorange observation (MDPO) method.

MDPO uses double-differenced pseudorange observations to eliminate the clock bias
of the space segment and user segment as well as satellite orbit determination error, by
subtracting four pseudorange measurements between two users (user1 and user2) and two
satellites (satellite1 and satellite2) as shown in Equations (5)–(9):

ρ1
1(ti) = r1

1(ti) + c
(

dτ1(ti)− dT1
(

t1
i

))
+ ωr

1
1(ti) (5)

ρ2
1(ti) = r2

1(ti) + c
(

dτ1(ti)− dT2
(

t2
i

))
+ ωr

2
1(ti) (6)

ρ1
2(ti) = r1

2(ti) + c
(

dτ2(ti)− dT1
(

t1
i

))
+ ωr

1
2(ti) (7)

ρ2
2(ti) = r2

2(ti) + c
(

dτ2(ti)− dT2
(

t2
i

))
+ ωr

2
2(ti) (8)

∆∇ρ(ti) = ρ1
1(ti) −ρ2

1(ti)−
(
ρ1

2(ti)− ρ2
2(ti)

)
= r1

1(ti)− r2
1(ti)−

(
r1

2(ti)− r2
2(ti)

)
+ ωr

1
1(ti)−ωr

2
1(ti)−

(
ωr

1
2(ti)−ωr

2
2(ti)

)
= ∆∇r(ti) + ∆∇ωr(ti)

(9)

where ∆∇(·) is the double difference operator. In order to remove the satellite and user
clock bias errors effectively from the double-differenced observations, time synchronization
between the two receivers is essential. In the common GNSS systems, the time synchro-
nization can be achieved in the position calculation process by estimating the user clock
bias at the same time. However, the user clock bias is removed in the double-differenced
observation and cannot be estimated. In our proposed method, the time synchronization is
assumed to be achieved by the frame synchronization of the navigation message. As the
maximum range rate of the pseudorange observation from the low lunar orbiting satellite is
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about 1.3 km/s, the resulting range error is no larger than 1.3 m if the time synchronization
error is maintained under 1 ms. It is acceptable if the targeting navigation accuracy is tens
of meters.

In the double difference method, user2 is used as a reference station whose position is
fixed and known, and the position of user1 is estimated in relation to the position of user2;
i.e., user2′s position is referenced as the origin of navigation (0,0,0). In a lunar navigation
system, the lander can be used as a reference station (user2), and its geodetic position is
used as the origin of navigation. The geodetic position of the lander must be obtained
in advance of the start of the rover navigation by other means, such as identification by
satellite image: this is proven technique such as the Lunar Reconnaissance Orbiter Camera
(LROC) successfully identified the landing coordinates of China’s Chang’e 5 lander with a
reported accuracy of ±20 m [25]. Hereafter, the rover corresponds to user1, and the lander
corresponds to user2.

In the MDPO method, multiple double-differenced pseudorange observations, i.e.,
∆∇ρ(tk), . . . , ∆∇ρ(tk+N−1), are obtained from multiple epochs, i.e., ti = tk, . . . , tk+N−1,
where N is the number of observation epochs, and k is the epoch number at which the
estimation starts. It is important to note that the rover position must be fixed in place
during all multi-epoch observations taken, in order to keep the number of estimation
parameters lower than the number of observation equations. Otherwise, the rover position
cannot be identified deterministically by the MDPO, and the rover position accuracy
changes depending on the quality of other navigation information used during multi-
epoch observations. Hereafter, XR(tk) = (xR(tk), yR(tk), zR(tk)) represents a fixed rover
position during multi-epoch observations tk − tk+N−1.

The rover position can be estimated by solving the following Newton–Raphson equa-
tions iteratively. The following equations correspond to ‘2D MDPO’ in [18], which calcu-
lates an estimated two-dimensional (X–Y) position by the Newton-Raphson equation and a
rover altitude (Z) by using a lunar digital elevation model (DEM) as we discuss later. In
2D MDPO, the number of multi-epoch observations can be reduced to as low as 2 (N = 2).
The formulation for three-dimensional position calculation can be found in our previous
paper [18]. First, we define a new parameter R for ti = tk, . . . , tk+N−1:

R(ti) = ∆∇ρ(ti)− ∆∇r0(ti)
i = k, . . . , k + N − 1

(10)

where R is the difference between the measured double-differenced pseudorange value,
i.e., ∆∇ρ, and the calculated double-differenced range on an initial estimated value of the
rover position X0

R(tk), i.e., ∆∇r0. Then, the following equations can be derived:

R = GdX + w (11)

R =
[

R(tk) · · · R(tk+N−1)
]T (12)

dX = [dx, dy] (13)

w =
[

∆∇ωr(tk) · · · ∆∇ωr(tk+N−1)
]T (14)

G =
[

∂R
∂x

∂R
∂y

]
(15)

where G in Equation (15) is called an observation matrix, which is equivalent to the Jacobian
of R with regard to X.

By solving the least-square problem that minimizes the residual error |R−GdX|, an
estimated value of dX, defined as ˆdX, is obtained:

ˆdX =
(

GTG
)−1

GTR. (16)
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Then, a new estimated value X1
R(tk) =

(
xR

1(tk), yR
1(tk), zR

1(tk)
)

is given by Equation (17),
which provides a better fit to the observation.

X1
R(tk) = X0

R(tk) + ˆdX. (17)

This estimation process continues until the number of iterations reaches the designed value
n, i.e., X1

R, X2
R · · ·Xn

R, and then the final estimated value Xn
R(tk) is acquired.

In GNSS terminology,
(

GTG
)−1

is known as the dilution of precision (DOP) matrix,
which is used to specify error propagation as a mathematical effect of the navigation
satellite geometry on positional measurement precision. We define the DOP matrix as

DOP =

 (σDOP 11)
2 · · · (σDOP 1N)

2

...
. . .

...
(σDOP N1)

2 · · · (σDOP NN)
2

 =
(

GTG
)−1

(18)

where σDOP is the elements of DOP. Using DOP, the achievable rover position error, i.e.,
ˆdX− dX, at a time of tk can be obtained by

UPE(tk) =
∣∣∣ ˆdX(tk)− dX(tk)

∣∣∣ =
√√√√ N

∑
j=1

(
σDOP jj

)2 × σ∆∇ω (19)

where σ∆∇ω is the standard deviation of double-differenced receiver observation errors and
UPE represents user position error, which is the distance between the rover’s true position
and an estimated rover position. It is important to highlight that the standard deviation
of MDPO’s double-differenced receiver observation errors, i.e., σ∆∇ω, is amplified from
the standard deviation of the original receiver observation errors, i.e., σωr, as a result
of the double-differencing process, in particular ωr

1
1(ti) − ωr

2
1(ti) −

(
ωr

1
2(ti)−ωr

2
2(ti)

)
in Equation (9), and becomes as large as σ∆∇ω =

√
σωr

2 + σωr
2 + σωr

2 + σωr
2 = 2σωr

assuming that the receiver observation errors follow a white Gaussian distribution. Further,
by defining GDOP as

GDOP =

√√√√ N

∑
j=1

(
σDOP jj

)2 (20)

Equation (19) can be written as

UPE(tk) = GDOP× σ∆∇ω (21)

As mentioned in the previous section, we assume that the receiver observation errors
follow a normal distribution with a zero mean (i.e., Gaussian white noise). As such, UPE
also follows a 1D Gaussian distribution, and 95 percent of it lies inside the interval from
−2s to +2s, where s is the standard deviation. As a performance index, this research uses
2drms (2s or 95 percent confidence), which is commonly used in two-dimensional position
estimation problems:

UPE(tk)(2drms) = GDOP× 2σ∆∇ω (22)

Moreover, considering that the UPE value, as well as the GDOP value, changes over
time according to the satellite positions relative to the rover, an indicator that represents the
overall UPE over the course of the mission time is needed. For this purpose, the Total UPE
is newly defined, along with the Total GDOP, as below:

Total UPE(2drms) =

√
1
m

m

∑(UPE(tk)(2drms))2 = Total GDOP× 2σ∆∇ω (23)
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Total GDOP =

√
1
m

m

∑(GDOP)2 (24)

where m is the number of MDPO estimations over the course of the mission time. σ∆∇ω is
independent of time, and can be excluded from the square root without losing generality.

In the 2D MDPO, the rover altitude zR is pre-estimated using a lunar digital elevation
model (DEM). As shown in Equation (25), DEM is a function of longitude and latitude,
which are not known at the start. The estimation of sequences proceeds in the following
sequence: First, X0

R(tk) is estimated using the rover position before its relocation, i.e.,
X0

R(tk) = XR(tk−1) = (xR(tk−1), yR(tk−1), zR(tk−1)). Then, a new estimated rover posi-
tion, i.e., X1

R(tk), is estimated as X1
R(tk) =(xR

1(tk), yR
1(tk), zR(tk−1)) by Equation (17). zR

is not updated at this moment. After that, the altitude of the rover is updated to zR
1(tk)

using xR
1(tk) and yR

1(tk) by Equation (25), i.e., X1
R(tk) = (xR

1(tk), yR
1(tk), zR

1(tk)). The
calculation continues until the number of iterations reaches the designed value, i.e., n.

zi
R(tk) = zR DEM

(
xi

R(tk), yi
R(tk)

)
(25)

Here, zR DEM is a lunar DEM that is a function of latitude and longitude. According to
Equation (25), as zR changes along with xR and yR, errors in the X–Y position induce errors
in the Z position, which ultimately induce errors in estimated xR and yR, and as a result,
the Total UPE deteriorates stochastically. In our research, we did not apply the case in
which the rover altitude changes too rapidly, such as the rover dropping off the cliff or
roving on steep slopes. In that case, the Total UPE would not deteriorate too significantly,
which was confirmed by numerical simulations in our prior research [18].

3.4. Double-Differenced TOA–FOA

The conventional TDOA–FDOA approach uses single-differenced TOA observation
and FOA observation to cope with the satellite clock bias or the user clock bias, but is not
designed to cope with the satellite clock bias and the user clock bias at the same time [15].
Therefore, we updated the conventional TDOA–FDOA into a double-differenced form,
the so-called double-differenced TOA–FOA. Double-differenced TOA–FOA can determine
the user position using double-differenced pseudorange observations and pseudodoppler
observations from a single epoch, as shown in Figure 2.

Double-differenced TOA observations were formulated using Equations (5)–(9). Simi-
larly, double-differenced FOA observations can be formulated:

Ω1
1(ti) = f 1

1 (ti) +
(

d f1(ti)− d f 1
(

t1
i

))
+ ωd

1
1(ti) (26)

Ω2
1(ti) = f 2

1 (ti) +
(

d f1(ti)− d f 2
(

t2
i

))
+ ωd

2
1(ti) (27)

Ω1
2(ti) = f 1

2 (ti) +
(

d f2(ti)− d f 1
(

t1
i

))
+ ωd

1
2(ti) (28)

Ω2
2(ti) = f 2

2 (ti) +
(

d f2(ti)− d f 2
(

t2
i

))
+ ωd

2
2(ti) (29)

∆∇Ω(ti) = Ω1
1(ti) −Ω2

1(ti)−
(
Ω1

2(ti)−Ω2
2(ti)

)
= f 1

1 (ti)− f 2
1 (ti)−

(
f 1
2 (ti)− f 2

2 (ti)
)
+ ωd

1
1(ti)−ωd

2
1(ti)−

(
ωd

1
2(ti)−ωd

2
2(ti)

)
= ∆∇ f (ti) + ∆∇ωd(ti)

(30)

In order to remove the satellite and user frequency bias errors effectively from the
double-differenced observations, it is assumed that time synchronization is achieved by
the frame synchronization of the navigation message as we discussed earlier.
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Similar to the MDPO, we can use the Newton–Raphson method to solve the equations.
First, we define new parameters R1 and R2 at ti = tk:

R1(tk) = ∆∇ρ(tk)− ∆∇r0(tk) (31)

R2(tk) = ∆∇Ω(tk)− ∆∇ f 0(tk) (32)

where R1 is the difference between the measured double-differenced pseudorange value,
i.e., ∆∇ρ, and the calculated double-differenced range on an initial estimated value of
the rover position X0

R(tk), i.e., ∆∇r0; and R2 is the difference between the measured
double-differenced pseudodoppler value, i.e., ∆∇ρd, and the calculated double-differenced
Doppler on an initial estimated value of the rover position, i.e., ∆∇ f 0. Then, the following
equations can be derived:

R =
[

R1(tk) R2(tk)
]T (33)

w =
[

∆∇ωr(tk) ∆∇ωd(tk)
]T (34)

The following process is same as the Equations (11), (13) and (15)–(25) with
the exception that the double-differenced receiver observation error, i.e., σ∆∇ω,
is amplified from the standard deviation of the original receiver observation errors, i.e.,
σωr and σωd, during the double-differencing process and becomes as large as σ∆∇ω =√

α× (σωr
2 + σωr

2 + σωr
2 + σωr

2) +
(
σωd

2 + σωd
2 + σωd

2 + σωd
2
)

where α changes depend-

ing on the geometrical relationship between the satellites and receivers such as VS
R. Under

the conditions used in this study, α is small to negligible. It is also important to highlight
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that the above formulation corresponds to a DEM-aided form that calculates an estimated
two-dimensional (X–Y) position using a rover altitude that is given by Equation (25).

3.5. Single-Differenced Two-Way Ranging

Two-way ranging method determines Time of Arrival (TOA) of radio signal in round
trip and then calculates the distance between the nodes by multiplying the round-trip time
by the speed of light.

When the two-way ranging radio signal is initiated at the satellite side and the user
is fixed on the lunar surface, as shown in Figure 3, the pseudorange observation is pre-
sented as

ρS
R

(
tS
emit

)
= rS

R

(
tS
emit

)
+ ωrR

(
tR
receive

)
+ ωr

S
(

tS
emit + tS−R

roundtrip + tS−R
processing

)
(35)

rS
R

(
tS
emit

)
=
∣∣∣Xs
(

tS
emit

)
−XR + dXRsa

∣∣∣+ ∣∣∣Xs
(

tS
emit + tS−R

roundtrip + tS−R
processing

)
−XR + dXRsa

∣∣∣ (36)

where tS
emit is the time of signal emission at the satellite; tR

receive is the time of signal reception
at the rover; tS−R

roundtrip is a signal round-trip time that is the sum of the onward and return

signal traveling time; and tR
processing is the time to process the signal and rebroadcast at

the rover, which are also visually shown in Figure 3. ωrR and ωr
S are the range receiver

observation error at the user and satellite, respectively. In this study, we assume that the
range receiver observation error ωrR and ωr

S follow a white Gaussian distribution.
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In Equation (36), rS
R is written as a function of tS

emit based on the fact that troundtrip

can be presented as a function of tS
emit as long as the satellite orbit dynamics, orbital

parameters, the signal processing time tS−R
processing, as well as an estimate of the user position,

XR are provided.
Two pseudorange observations between two users (user1, user2) and a satellite can be

written as
ρS

1 (ti) = rS
1 (ti) + ωr

S
1 (ti) (37)

ρS
2 (ti) = rS

2 (ti) + ωr
S
2 (ti) (38)

where ti corresponds to tS
emit of Equation (35) and ωr

S
R(ti) corresponds to ωrR

(
tR
receive

)
+

ωr
S
(

tS
emit + troundtrip + tS−R

processing

)
of Equation (35) assuming ωrR and ωr

S follow a white

Gaussian distribution and are independent of time. The standard deviation of ωr
S
R(ti) is

defined as σωr.
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A method called single difference is used to effectively remove the satellite orbit deter-
mination error, i.e., dXS

sat OD as we discuss in Section 3.6, by subtracting two pseudorange
observations between two users (user1, user2) and a satellite:

∆ρS(ti) = ρS
1 (ti)− ρS

2 (ti) = rS
1 (ti)− rS

2 (ti) + ωr
S
1 (ti)−ωr

S
2 (ti)= ∆rS(ti) + ∆ωr

S(ti) (39)

where ∆(·) is the single difference operator.
To effectively remove the satellite orbit determination error at the moment of signal

emission, i.e., tS
emit, the clock ti of two pseudoranges, i.e., ρ1

1(ti) and ρ1
2(ti), must be synchro-

nized. This can be easily achieved, for instance, when pseudorange signals are initiated
from satellite side at the request of the user. In that case, pseudorange observations are to
be obtained at the satellite side, and then transferred to the user by telemetry: the so-called
telemetry ranging [26].

Furthermore, the timing of returned-signal reception at the satellite side, i.e.,
tS
emit + tS−R

roundtrip + tS−R
processing, slightly differs among four pseudorange observations due

to the difference in user1 and user2 position, as well as their different signal process-
ing delay times. In order for single difference to effectively remove the satellite orbit
determination error at the moment of returned-signal reception, the difference among
dXS

sat OD

(
t1
emit + t1−1

roundtrip + t1−1
processing

)
, dXS

sat OD

(
t1
emit + t1−2

roundtrip + t1−2
processing

)
,

dXS
sat OD

(
t2
emit + t2−1

roundtrip + t2−1
processing

)
, and dXS

sat OD

(
t2
emit + t2−2

roundtrip + t2−2
processing

)
must be

negligible. This assumption practically holds, unless the distance between user1 and user2
becomes largely apart, or their signal processing delay times are largely different, which
holds at least under the simulated conditions of this research.

Single-differenced two-way ranging can determine the user position using single-
differenced pseudorange observations from two satellites, i.e., S = 1, 2, at a single epoch
as shown in Figure 4. Similar to the other two methods, we can use the Newton–Raphson
method to solve the equation. First, we define a new parameter RS at ti = tk:

RS(tk) = ∆ρS(tk)− ∆rS 0(tk)
S = 1, 2

(40)

where RS is the difference between the measured single-differenced pseudorange value,
i.e., ∆ρS, and the calculated single-differenced range of s-th satellite on an initial estimated
value of the rover position X0

R(tk), i.e., ∆rS 0. Then, R and w are derived as follows:

R =
[

R1(tk) R2(tk)
]T (41)

w =
[

∆ωr
1(tk) ∆ωr

2(tk)
]T (42)

The following process is the same as the Equations (11), (13) and (15)–(25), with the
exception that the single-differenced receiver observation error, i.e., σ∆ω, is used instead
of the double-differenced receiver observation error, i.e., σ∆∇ω. The standard deviation
of single-differenced receiver observation errors, i.e., σ∆ω, is amplified from the standard
deviation of the original receiver observation errors, i.e., σωr, during the single-differencing
process and becomes as large as σ∆ω =

√
σωr

2 + σωr
2 =
√

2σωr assuming that the receiver
observation errors follow a white Gaussian distribution. It is also important to highlight
that the above formulation corresponds to a DEM-aided form that calculates an estimated
two-dimensional (X–Y) position using a rover altitude that is given by Equation (25).
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3.6. Systematic Errors

In an actual situation, with the presence of other systematic errors as shown in this
section, the discussed achievable Total UPE in Equation (23) will increase. In this section,
the theoretical background of systematic errors, as well as their impacts on the Total UPE,
is discussed. As the impact of such errors on the Total UPE cannot be predicted analyti-
cally, we used a numerical simulation, reported in the following section, to quantitatively
determine the resulting Total UPE.

3.6.1. Satellite Orbit Determination Error

In the derived formulas, the pseudorange ρ is calculated on the basis of pre-estimated
satellite positions Xs =

(
xS, yS, zS). In an actual situation, satellite orbit determination is

not perfect, and pre-estimation of the satellite position entails some error relative to the true
positions (dXS

sat OD). According to a general satellite orbit determination process, the error
is decomposed along with the satellite velocity direction (Along), satellite zenith direction
(Radial), and cross-track direction (Cross). In this simulation, the orbit determination error
is defined along with the Along, Radial, and Cross directions and then converted into a
user frame:

dXS
sat OD(ti) = T× (dAlong(ti), dRadial(ti), dCross(ti)) (43)

where T is a coordinate transformation matrix from the Along, Radial, and Cross directions
to a topocentric frame. The definition of the topocentric frame is explained in the previous
chapter. In multilateration theory, only satellite orbit determination error in the line-of-sight
direction (rover to satellite) matters, and other directions have almost no impact on the
rover position error. In the three navigation methods, the line-of-sight direction error is
effectively eliminated by either the double-difference or the single-difference equation,
along with the satellite, the rover, and the lander clock biases.
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3.6.2. Time Tag Error

In the estimation process of the satellite position at a given time, the time tag of the
receiver is used to propagate the estimated satellite positions. As we described earlier, the
time tag of the receiver clock is initialized by the frame synchronization of the navigation
message. In this case, the time tag has some error due to the signal propagation delay
between the satellite and user receiver, as well as the processing delay of the navigation
message. As a result, an estimated satellite position Xs =

(
xS, yS, zS) is deteriorated by

the receiver clock bias dτR(ti), and has some error relative to the true positions (dXS
time tag),

such as
dXS

time tag(ti) =
(

Vx
S
R(ti), Vy

S
R(ti), Vz

S
R(ti)

)
× dτR(ti) (44)

where
(
Vx

S
R, Vy

S
R, Vz

S
R
)

is a pre-estimated satellite relative velocity in a topocentric frame.
Essentially, the time tag error is mostly eliminated from the estimation by either the double-
difference or single-difference equation, except for the ‘difference’ of two user time tags. In
the numerical simulation, we only modeled the difference of two user time tags without
losing generality.

3.6.3. Signal Processing Delay Time Uncertainty

For the single-differenced two-way ranging, the time to process the signal and rebroad-
cast at the rover, i.e., tR

processing, may not be precisely known and have some uncertainty. In

this study, uncertainty of the signal processing delay time is modeled as dtR
processing.

3.6.4. DEM Information Error

As reported in [27,28], current lunar DEM information is developed from remote-
sensing data and, as a result, is not perfect. Therefore, the DEM error dzR DEM, which
is the difference between the true rover vertical position zR true and a pre-given rover
vertical position zR DEM, has a fixed, unknown, non-random bias. The DEM error leads to
a position estimation error in the X–Y plane (xR, yR). The impact of the DEM model error
on the X–Y position estimation accuracy stochastically changes depending on the satellite
position and velocity in relation to the rover and lander position.

dzR DEM = zR true − zR DEM (45)

3.6.5. Other Systematic Errors

In the general context of navigation satellite systems, other systematic errors must be
considered, such as ionospheric delay, tropospheric delay, antenna phase characteristics,
and multipath. However, such errors are negligible, or not detrimental to the rover position
estimation in lunar surface navigation systems. Ionospheric delay and tropospheric delay
are deemed negligible. Antenna phase characteristics appear in the same way and are
almost negligible. We assume that multipath can be suppressed by antenna design as
there are few high objects in the surroundings of the rover and lander on the lunar surface.
Therefore, these errors can be ignored, and were not considered in this research.

3.7. Design Parameters
3.7.1. DOP and Availability

The spatial position of two satellites is one of the most important design parameters
that directly impacts the rover position accuracy. In order to acquire an accurate user
position, a small DOP value is required.

In this analysis, we assume the satellite formation that has two satellites placed in
the same orbital planes with a phase difference (i.e., the difference in argument of latitude
of two satellites): this formation is the most desirable arrangement to keep the relative
position of two satellites. In that case, to reduce the DOP value, a large phase difference
is preferable. In comparison, to keep both satellites in the rover’s view for a long time, a
small phase difference is desirable. As a result, these two requirements conflict with each
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other, and both impacts must be carefully considered to find the best compromise point in
the satellite trajectory selection. In our comparative analysis, we used two performance
index parameters, the Total GDOP and availability, where availability is the percentage of
time at which both satellites are in the rover’s view to the total mission time.

The relationship between the Total GDOP and availability change depending on the
navigation methods, as well as the satellite orbital parameters. Tables 2 and 3 show the
Total GDOP and availability comparisons among the three navigation methods under
different orbital conditions: in this study, without losing generality, the rover/lander
position were fixed to the south-pole (−90 deg latitude) and the satellite orbit inclination
was fixed to 110 deg while the orbital attitudes of two satellites were changed (300 and
2100 km), and the phase differences between the two satellites were also changed (5, 10, 15,
and 25 deg).

Table 2. The Total GDOP and availability comparison among three navigation methods under
different orbital conditions: two satellites are placed in 300 km circular low lunar orbit with different
phase differences (5, 10, 15, and 25 deg). The rover/lander position were fixed to the south pole
(−90 deg latitude), and the satellite orbit inclination was fixed to 110 deg.

Navigation Methods Phase Difference [deg] Total GDOP Availability [%]

MDPO

5 217.8 4.1
10 63.1 3.2
15 38.5 2.3
25 34.3 1.4

Double-differenced
TOA–FOA

5 891.9 6.2
10 253.5 4.7
15 159.5 3.3
25 144.6 2.1

Single-differenced
Two-way Ranging

5 8.1 6.2
10 2.5 4.7
15 1.6 3.3
25 1.4 2.1

Table 3. The Total GDOP and availability comparison among three navigation methods under
different orbital conditions: two satellites were placed in 2100 km circular low lunar orbit with
different phase differences (5, 10, 15, and 25 deg). The rover/lander positions were fixed to the south
pole (−90 deg latitude), and the satellite orbit inclination was fixed to 110 deg.

Navigation Methods Phase Difference [deg] Total GDOP Availability [%]

MDPO

5 1336.6 10.9
10 447.8 10.0
15 274.2 9.0
25 203.6 8.1

Double-differenced
TOA–FOA

5 5669.0 16.3
10 1899.0 15.0
15 1162.9 13.4
25 863.5 12.1

Single-differenced
Two-way Ranging

5 21.6 16.3
10 6.7 15.0
15 3.8 13.4
25 2.7 12.1

We found that single-differenced two-way ranging provided the smallest DOP. This is
as single-differenced observation has a better quality by nature than double-differenced
observation, due to fewer differencing processes. On the other hand, double-differenced
TOA–FOA tends to result in the largest DOP due to the low quality of double-differenced
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pseudodoppler observations. Double-differenced TOA–FOA and single-difference two-
way ranging have a larger availability than the MDPO, as they only require single-epoch
observation, while the MDPO requires multiple-epoch observations. The Total GDOP and
availability changes depending on the attitudes of the satellites, as well as the phase differ-
ence between the two satellites. In general, higher orbits provide a larger Total GDOP and
availability, and larger phase differences provide a smaller Total GDOP and availability.

3.7.2. Satellite Orbital Parameters and Systematic Errors Related to DEM

As indicated by Equations (25) and (45), using DEM information in the estimation
process induces errors in the X–Y position estimates. There is some correlation between the
error and satellite positions: a larger elevation angle from the rover plane to the satellite
position tends to lead to a larger X–Y position error: This can be explained by looking
at Equation (2). Equation (2) can be reformatted as rS

R(ti) =
∣∣Xs(ts

i
)
−XR(ti) + dXRsa

∣∣ =√(
xS
(
ts
i
)
− xR(ti) + dxR sa

)2
+
(
yS
(
ts
i
)
− yR(ti) + dyR sa

)2
+
(
zS
(
ts
i
)
− zR(ti) + dzR sa

)2

and when the elevation angle is large, zS(ts
i
)
− zR(ti) becomes larger in relation to xS(ts

i
)
−

xR(ti) and yS(ts
i
)
− yR(ti) and, consequently, the projection of the Z direction error on the

X–Y plane is greater.

The mathematical process R = GdX + w, and its converted form dX =
(

GTG
)−1

GT

(R−w), indicates that the error in the estimates does not appear linearly with respect to
the elevation angle, as the process takes the double-differenced or single-differenced form
of pseudo-observations but multiplies them by the pseudo-inversed observation matrix,
which is also a function of the satellite and user positions. However, we can exploit some
useful findings with respect to the satellite orbital parameters: for instance, the higher the
satellite altitude at the same orbit inclination, the larger the error. Again, the error cannot be
analytically calculated, and we need to use a numerical simulation on a case-by-case basis.

Table 4 shows the user position error with different satellite altitudes, which was
calculated using the same numerical simulation as in Section 4.2. The satellite altitude
was changed among 300, 600, 900, and 2100 km, while the other parameters were set
the same as in Section 4. In this section, satellite orbital positions were created without
considering the precise cis-lunar dynamics, and the orbital parameters did not change due
to perturbations from the initial set. The result indicates that the user position accuracy
deteriorated immediately along with the satellite orbit altitude and that low lunar orbits
are suitable for these DEM-aided radio-triangulation-based relative-positioning systems.

Table 4. One example of correlation between the satellite altitude and Total UPE: two satellites were
placed in different circular LLO, 300, 600, 900, and 2100 km. The simulation takes an average of
100 simulation cases for each.

Navigation Methods Satellite Altitude (km) Total UPE (2drms) (m)

MDPO

300 57.9
600 121.4
900 197.3
2100 1038.3

Double-differenced
TOA–FOA

300 119.8
600 245.7
900 454.3
2100 2049.6

Single-differenced Two-way
Ranging

300 27.0
600 40.1
900 56.3
2100 217.8
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4. Comparative Analysis of Three Navigation Methods

As discussed in Section 3.6, the user position accuracy is subject to systematic errors
stochastically. Therefore, we require numerical simulation to compare the accuracy of the
three navigation methods.

4.1. Overview of Numerical Simulation

The simulation code was initially developed in our prior research [18] and was up-
dated to incorporate the double-differenced TOA–FOA and single-differenced two-way
ranging. The simulation code is open to the public and can be accessed at [29].

Figure 5 provides an overview of the simulation system. First, a rover trajectory in the
X–Y direction, i.e., a time-series dataset of xR and yR, was created, and then a rover position
in the Z direction, i.e., zR, was also created using the lunar DEM data zR DEM. Then, by
adding the DEM error (dzR DEM) to a created rover trajectory, the true rover position XR true
was developed. For lunar DEM data, we used [30], which is 5 m resolution DEM data for
latitude from −87.5 deg to −90 deg. The DEM error dataset, i.e., dzR DEM, was prepared
at a 1 m grid interval. In other words, the DEM data changed every 5 m grid, while the
DEM error data changed every 1 m grid. The true rover altitude, i.e., the z-component
of XR true, was estimated using the DEM value and DEM error value of the closest grid
point from its horizontal location, respectively. For example, if the rover is horizontally
located at (xR, yR) = (11.3 m, 3.5 m), it refers to the DEM data of the point (xR, yR) = (10.0 m,
5.0 m) and the DEM error data of the point (xR, yR) = (11.0 m, 3.0 m) to calculate the true
rover altitude.
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Next, the true satellite trajectory XS
true was prepared separately. A precise cis-lunar

dynamics model takes into account the gravity model of the Moon of degree 40, as well as
the gravity from the Earth and the Sun, which was used to generate satellite trajectory data
in the topocentric frame, whose origin is at the lander position.

The true velocity, true range and true doppler were calculated using the true satellite,
rover, and lander positions while taking into account the Moon rotation during the signal
traveling time between the satellites and rover/lander, i.e., dXRsa and dVS

R sa. Signal pro-
cessing delay time, i.e., tS−R

processing, was set to zero without losing generality. Then, by adding

the receiver observation errors, and the signal processing delay time uncertainty dtS−R
processing

for the single-differenced two-way ranging method, to a true range and true doppler, the
pseudorange observation ρS

R(ti) and pseudodoppler observation ρd
S
R(ti) were prepared.

By adding satellite orbit determination error dXS
sat OD and time tag error dXS

time tag

to the satellite’s true position XS
true, the observed satellite position XS

ob was prepared.
Then, the three methods respectively calculate an estimated rover position XR est using
the pseudorange observation ρS

R(ti), pseudodoppler observation ρd
S
R(ti), observed satellite

position XS
ob, and lunar DEM data zR DEM over the course of the simulation period. Finally,

the true rover position XR true and the estimated rover position XR est were compared to
evaluate the estimation accuracy.

4.2. Other User-Set Conditions

Table 5 summarizes the general parameters used in the simulation. The total sim-
ulation period was set to 15,000 min, assuming a two-week-long mission. The range
measurement resolution at the user pseudorange receiver was set to 0.4 m, and the Doppler
measurement resolution at the user pseudodoppler receiver was set to 0.2 Hz, assuming a
typical space GNSS receiver specification with a conservative safety margin. The initial
rover position and lander position were set to (−90 deg latitude), assuming a south-pole
mission. The rover trajectory was created dynamically by changing the rover position
after each observation epoch according to the defined traveling distance and the random
heading direction specified in Table 5.

Table 5. The simulation parameters.

Items Value Unit Remarks

Simulation Period 15,000 min Approximately two weeks in Earth time.
Range measurement resolution of the user

pseudorange receivers 0.4 m Minimum observable resolution by the rover and
lander receivers.

Doppler measurement resolution of the user
pseudodoppler receivers 0.2 Hz Minimum observable resolution by the rover and

lander receivers.
Latitude of initial rover/lander position −90 deg

Interval of pseudorange/doppler observations 0.5 min

Rover traveling distance between observations 3.75 m The rover travels at 7.5 m/min for 0.5 min between
position estimations.

Rover traveling direction Random deg The heading direction is selected from three values
(+ π

3 ,−π
3 , 0) randomly.

MDPO requires pseudorange observations from two epochs, while other navigation
methods require pseudorange and/or pseudodoppler observation from a single epoch, and
the interval of observations was set to 0.5 min. Hence, it took 1.0 min for the MDPO method
to estimate the rover position, and 0.5 min for the other navigation methods to estimate the
rover position. The rover position was fixed during the observation epoch(s), then the rover
position was changed in the following 0.5 min and then stopped for another observation
epoch(s), which continued over the course of the simulation period. In addition, the rover
moved only when both orbiters were in view.

Tables 6–10 show the systematic and random error statistics used in the simulation.
The realism of these values is discussed as follows: Table 6 summarizes the values of the



Aerospace 2021, 8, 191 18 of 25

satellite orbit determination error, i.e., ∆Along, ∆Radial, and ∆Cross, which are defined in
Equation (43). The satellite orbit determination error consists of white noise and systematic
error modeled as a sinusoidal function with the period of the satellite orbit. The values were
chosen by adding a sufficient margin to the reference data from the Lunar Reconnaissance
Orbiter (LRO) project [31]. Table 7 summarizes the value of the time tag error, which
is defined as the difference of two user time tags. Time tag error consists of offset and
random walk error: the offset component represents a residual time tag error after the
frame synchronization. The random walk component was reset to zero and increased until
the next frame synchronization. We assumed the frame synchronization takes place in
every orbital period. Table 8 summarizes the value of DEM model error, i.e., dzR DEM. The
value was determined based on the actual lunar DEM data by adding a sufficient margin:
the accuracy of the best existing DEM data in a vertical direction is about 3 m within a
±60–deg latitude and about 10 m near polar regions [27,28]. The DEM error is derived
from calibration errors between multiple sensors and practically consists of white noise
and offset according to Figure 4 of [27]. Table 9 summarizes the magnitude of receiver
observation errors used in the simulation, i.e., ωr and ωd. Table 10 summarizes the value of
signal processing delay time uncertainty, i.e., dtS−R

processing. The signal processing delay time
uncertainty consists of white noise and systematic error modeled as a sinusoidal function
with the period of the lunar rotation, assuming that the systematic noise is derived from
thermal variation of the user radio, which coincides with the lunar thermal environment
variation due to the Sun elevation transition of the landing point. Table 11 shows the
satellite orbital parameters used in the simulation: two satellites were placed in the 110 deg–
300 km (inclination–altitude) circular orbits with 15 deg phase difference. It is important to
note that argument of latitude was defined instead of the argument of periapsis and the
true anomaly as they were circular orbits. The same parameters were used in the following
simulations unless otherwise mentioned.

Table 6. Overview of the satellite orbit determination error used in the simulation.

Items Type Value Unit Remarks

Satellite Orbit
Determination Error in

the Along Direction

dAlong(ti) = ωOD−Along (ti) + cOD−Along

White Gaussian
random error
ωOD−Along

100.0 m ωOD t = Value× a random scalar drawn from the standard
normal distribution each time.

Systematic error
cOD−Along

200.0 m

Systematic error cOD is an output of the sinusoidal function
A× sin(2πx/T): the argument x is epoch time, the period T was

set equal to the satellite orbital period, and the amplitude A is
randomly selected between −Value and Value at the beginning of

each simulation.

Satellite Orbit
Determination Error in

the Radial Direction

dRadial(ti) = ωOD−Radial(ti) + cOD−Radial

White Gaussian
random error
ωOD−Radial

10.0 m
Same as above.

Systematic error
cOD−Radial

20.0 m

Satellite Orbit
Determination Error in

the Cross Direction

dCross(ti) = ωOD−Cross(ti) + cOD−Cross

White Gaussian
random error

ωOD−Cross

100.0 m
Same as above.

Systematic error
cOD−Cross

200.0 m
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Table 7. Overview of the time tag error used in the simulation.

Item Type Value Unit Remarks

Time Tag
Error

dτR(ti) = ctime tag + xtime tag

Offset error
ctime tag

1.0 ms

Offset error ctime tag is randomly selected between −Value and
Value after the time synchronization and fixed until the next time
synchronization. The time synchronization takes place in every

orbital period.

Random walk
x time tag

1.0× 10−8 ms/min

A random walk is a time series model xtime tag (t) such that
xtime tag (t) = xtime tag (t−1) + ωt where ωt is a discrete white noise

series. Random walk noise is reset to zero after the time
synchronization and increases until the next time synchronization.

The time synchronization takes place in every orbital period.

Table 8. Overview of the DEM error used in the simulation.

Item Type Value Unit Remarks

DEM Error

dzR DEM = ωDEM + cDEM

White Gaussian random
error ωDEM

10.0 m ωDEM t = Value× a random scalar drawn from the standard normal
distribution each time.

Offset error cDEM 5.0 m Offset error cDEM is randomly selected between −Value and Value at
the beginning of each simulation and fixed during the simulation.

Table 9. Overview of the receiver observation error used in the simulation.

Item Type Value Unit Remarks

Receiver
Observation

Error

Range white Gaussian
random error ωr

0.2 m ωr = Value× a random scalar drawn from the standard normal
distribution each time, i.e., σωr = 0.2 m.

Doppler white Gaussian
random error ωd

0.1 Hz ωd = Value× a random scalar drawn from the standard normal
distribution each time, i.e., σωd = 0.1 Hz.

Table 10. Overview of the signal processing delay time uncertainty used in the simulation.

Item Type Value Unit Remarks

Signal
Processing
Delay Time
Uncertainty

dtS−R
processing = ωprocess + cprocess

White Gaussian
random error ωprocess

20.0 ns ωDEM t = Value× a random scalar drawn from the standard normal
distribution each time.

Systematic error
cprocess

20.0 ns

Systematic error cprocess is an output of the sinusoidal function
A× sin(2πx/T): the argument x is epoch time, the period T was set
equal to the lunar rotation period, and the amplitude A is randomly

selected between −Value and Value at the beginning of each simulation.

Table 11. The satellite orbital parameters used in the simulation.

Items Value Unit

Satellite 1 perilune altitude 300 km
Satellite 1 apolune altitude 300 km

Satellite 1 inclination 110 deg
Satellite 1 right ascension of the ascending node 0 deg

Satellite 1 argument of latitude 0 deg

Satellite 2 perilune altitude 300 km
Satellite 2 apolune altitude 300 km

Satellite 2 inclination 110 deg
Satellite 2 right ascension of the ascending node 0 deg

Satellite 2 argument of latitude −15 deg
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To secure the statistical accuracy, a Monte Carlo simulation was conducted 100 times,
and averaged data are presented for each specific scenario. The rover trajectory and model
errors were renewed and created with every simulation.

4.3. Numerical Simulation Result

The simulation results for the three navigation methods are shown in Table 12. Due to
the systematic errors discussed in Section 3.6, the Total UPE(2drms) became larger than
the product of the Total GDOP and twice the standard deviation of differenced receiver
observation error, i.e., Total GDOP× 2σ∆∇ω for the MDPO and double-differenced TOA–
FOA with σ∆∇ω = 0.4 m and σ∆∇ω = 0.2 m, respectively, and Total GDOP× 2σ∆ω for the
single-differenced two-way ranging with σ∆ω = 0.28 m. The deterioration by systematic
errors in Total UPE in relative proportion is greater in the single-differenced two-way
ranging than in other two navigation methods under the selected condition.

Table 12. The numerical simulation results taking an average of 100 simulation cases.

Navigation Methods Total
GDOP

Total UPE
(2drms) (m)

Availability
(%)

Total Traveling
Distance (m)

MDPO 46.7 55.3 3.3 3753.75

Double-differenced TOA–FOA 193.8 109.9 5.0 5625

Single-differenced
Two-way Ranging 1.2 26.3 5.0 5625

The three navigation methods provided different Total GDOP and availability and,
as a result, the Total UPE and total traveling distance were also different. In general,
single-differenced two-way ranging outperformed the other two methods with respect to
the user position accuracy due to a smaller Total GDOP. The total traveling distance of the
MDPO was shorter than that of the other two methods due to a longer observation period.

Figure 6 shows examples of the estimated rover trajectory overlaying the true rover
trajectory of the three different navigation methods, as well as the distribution of the
user position error between the true rover positions and the estimated rover positions.
According to Figure 6, under the condition of the selected orbital parameters shown
in Table 10, the error distribution does not have a large anisotropy, but may become
more anisotropic for other cases, depending on the satellite orbital parameters, initial
rover/lander position, and DEM error.
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4.4. Numerical Simulation Result with Increased Reveiver Observation Noise

It is important to highlight once again that the user position accuracy is dependent on
the magnitude of the receiver observation error. The receiver observation error is caused
by several factors including thermal noise, symbol timing offsets in signal processing, and
environmental factors. Additionally, the signal processing delay time uncertainty is subject
to thermal noise and environmental factors as well. The simulation results with increased
receiver observation errors and signal processing delay time uncertainty by a factor of 10,
i.e., σωr = 2.0 m, σωd = 1.0 Hz, the magnitude of ωprocess is 200.0 ns, and the magnitude of
cprocess is 200.0 ns, as shown in Table 13.

Table 13. The numerical simulation results with increased receiver observation errors and signal
processing delay time uncertainty: σωr = 2.0 m, σωd = 1.0 Hz, the magnitude of ωprocess is 200.0 ns,
and the magnitude of cprocess is 200.0 ns.

Navigation Methods Total
GDOP

Total UPE
(2drms) (m)

Availability
(%)

Total Traveling
Distance (m)

MDPO 46.7 437.9 3.3 3753.75

Double-differenced TOA–FOA 193.8 922.1 5.0 5625

Single-differenced
Two-way Ranging 1.2 249.9 5.0 5625

Total UPE of the three methods were increased by a factor smaller than 10, and the
factors were slightly different among the three methods. This is essentially, as mentioned
in Section 4.3, due to the systematic errors that affect Total UPE differently depending on
navigation methods.

5. Discussion

In general, the three navigation methods have different characteristics in terms of nav-
igation accuracy and system complexity. Therefore, the system designer must understand
the difference and representative performance of these three navigation methods to choose
an appropriate method based on the desired specifications.

Through the numerical simulation, we quantitatively confirmed an achievable position
accuracy for the three navigation methods under the selected orbital condition. From a user
position accuracy point of view, single-differenced two-way ranging outperformed the
other two navigation methods. The drawback of the single-differenced two-way ranging
is power efficiency, which requires transmitting power at the rover side to reply each
receiving radio signal from two satellites. Additionally, the method requires transmitting
power at the satellite side to send radio signals to multiple users respectively, i.e., radio
signals to multiple rovers and at least one lander.

Based on the simulation results in Section 4.3, if the mission requires a navigation
accuracy as high as 30 m, but only for a single rover, and allows a radio signal emission at a
rover, then single-differenced two-way ranging is the best choice. On the other hand, if the
mission requires the provision of navigation information to multiple users, the MDPO or
double-differenced TOA–FOA could be a more efficient option depending on the required
accuracy, total traveling distance, and the desired system complexity, i.e., either requiring
range sensors or range and Doppler sensors. For instance, the MDPO is the best choice
from power efficiency point of view when the mission requires a multi-user navigation
system, and the required user position accuracy is about 50 m.

A combination of two navigation methods could be considered to compensate their
weaknesses. For example, having the MDPO and single-difference two-way ranging on
the same satellite can change the configuration between providing several tens of meters of
navigation accuracy to multiple users, or providing higher than thirty meters of navigation
accuracy to a single user, depending on the mission needs, without launching another set
of satellites.
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Single-differenced two-way ranging can also be achieved with a single satellite us-
ing multi-epoch observation at the expense of availability. We will study that in our
future work.

6. Conclusions

In this paper, we studied and compared three dual-satellite lunar navigation systems
that consist of a constellation of two navigation satellites. Dual-satellite navigation systems
play key roles in establishing a low-cost navigation platform around the Moon. While sev-
eral dual-satellite navigation methods have been studied, we focused on the comparison of
three navigation methods, MDPO, double-differenced TOA–FOA, and single-differenced
two-way ranging, as these three methods represent three different types in terms of obser-
vation data, i.e., passive ranging, passive ranging and doppler, and active ranging, into
which most dual-satellite navigation methods can be classified.

First, we derived the mathematical models of these three methods step by step, to clar-
ify the differences among the three navigation methods. Next, we confirmed the achievable
user position accuracy of the three navigation methods by numerical simulation under the
selected orbital conditions. Based on the numerical simulation results, we discussed the
advantages and disadvantages of the three navigation methods and provided a guideline
to select one or a combination of these three navigation methods depending on the mission
requirements: From a user position accuracy point of view, single-differenced two-way
ranging outperformed the other two navigation methods, while single-differenced two-
way ranging requires larger power consumption at the rover side as well as at the satellite
side. If the mission requires the provision of navigation information to multiple users, the
MDPO or double-differenced TOA–FOA could be a more efficient option, depending on the
desired specifications such as required accuracy, total traveling distance, and the desired
system complexity, i.e., either requiring range sensors or range and Doppler sensors.

Furthermore, a combination of two navigation methods could be considered to com-
pensate their weaknesses. For instance, having the MDPO and single-difference two-way
ranging on the same satellite enables the users to choose between two configurations,
providing several tens of meters of navigation accuracy to multiple users, or providing
higher than thirty meters of navigation accuracy to a single user, without launching another
set of satellites.
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