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Abstract: Performance of the traditional Kalman filter and its variants can seriously degrade when
they are used to track a non-cooperative continuously thrusting spacecraft. To overcome this
shortcoming, an adaptive tracking method for relative state estimation of a non-cooperative target
is proposed based on the interacting multiple model (IMM) algorithm. First, built upon a current
statistical jerk (CSJerk) model, a robust CSJerk filtering (RCSJF) algorithm is developed, which can
address the issue of low estimation accuracy and instability of traditional approaches at the moments
when the spacecraft starts and ends thrusting. Second, the developed RCSJF algorithm is further
used to form the model set of the IMM by incorporating different maximum jerk values, based on
which an adaptive tracking method is presented that can track a non-cooperative target with different
maneuvering levels. Simulation results show that the proposed method can effectively track the
target across all thrusts levels under the conditions considered, and the convergence performance
of the proposed method is improved in comparison to the CSJerk-based extended Kalman filter,
especially at the start and end time of the maneuver.

Keywords: maneuvering target tracking; relative state estimation; interactive multiple model;
CSJerk model

1. Introduction

In cooperative space rendezvous and docking, the chasing spacecraft needs to estimate
the relative state of the target spacecraft to conduct the rendezvous mission safely. Recent
years have witnessed a large amount of works in relative state estimation of cooperative
spacecraft targets [1–3]. Recently, with the emergence of new space missions such as Space
Operations [4,5], Space Attack–Defense Counter [6,7], and Space Situational Awareness
(SSA) [8,9], research focus has been given to rendezvous with non-cooperative targets.
In contrast to cooperative targets, the non-cooperative may perform abnormal proximity
maneuvers, which increases the collision risk between the on-orbit spacecraft and the
target. To this end, it is vital for the on-orbit spacecraft to track the non-cooperative target
accurately and monitor its abnormal maneuvers; hence, early warning can be obtained to
avoid potential collisions. In recent years, SSA technology has become a crucial issue to
many space missions [10–13]. Researchers have paid more attention to the study of angles-
only relative orbit determination for non-cooperative targets with no maneuvers [14–17].
Although there is a large tracking error, the initial orbit parameters can be provided for
accurate tracking. However, the estimation performance of the filters based on angles-
only measurements can seriously degrade if the target performs unknown maneuvers.
Hence, how to track non-cooperative maneuvering spacecraft effectively has caused great
concern [18–20]. For the problem of relative state estimation of a non-cooperative spacecraft
which performs continuous thrusts, the traditional Kalman filter and its variants such as
the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) mostly have
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issues in estimation accuracy and robustness. Generally, due to a lack of prior information
about the maneuver, there will be a mismatch between the nominal dynamic model and
the actual maneuver, which may significantly diminish the tracking performance. Some
solutions have been proposed to solve this problem [18,21–24]. The maneuvering detection
variables were designed to reveal whether some maneuvers had been executed, which can
inflate the covariance [18] or vary the state dimension [21] to guarantee the convergence of
filters. Based on batch least squares and the EKF, Kelecy et al. [22] developed a maneuver
detection algorithm which has been used for maneuvering target tracking in practice.
Jiang et al. [23] developed an augmented unbiased minimum-variance input and state
estimation (AUMVISE) method to estimate the state and maneuvering acceleration. In [24],
an observer was developed to detect unknown maneuvers, and the estimated maneuvers
were added to an EKF as compensation, which enabled the estimator to work adaptively.
Although some progress has been made, there still exist problems of missed detections
and false alarms for missions with mismatched threshold values [18,21], poor real-time
performance [22], inaccessible observations [23], weak adaptability to target maneuvering
conditions [24], etc.

Since the acceleration information of the non-cooperative target is unknown, it is
difficult to describe the motion of the maneuvering target based on the traditional orbital
dynamics model. An effective method to model the accelerations of the target is based
on the stochastic process, such as the well-known Singer model [25] and its improved
models, including the current statistical (CS) model [26], the jerk model [27,28], and the
current statistical jerk (CSJerk) model [29]. The Singer model assumes that the target
maneuvering acceleration is a stable time-dependent zero-mean first-order Markov process,
which uses time-dependent colored noise instead of white noise to model the maneuvering
acceleration. The CS model alleviates the zero-mean assumption of the Singer model and
takes the predicted value of the acceleration at the current moment as the mean value of the
maneuvering acceleration; thus, it can adjust the process noise according to the acceleration
estimated at the previous moment. Both the jerk model and the CSJerk model expand the
concept of the Singer model and further improve the tracking ability.

If the maneuvering parameters (maneuver frequency and maximum jerk value) do
not match the actual maneuvers at the moments when the spacecraft starts and ends
thrusting, the EKF algorithm based on the CSJerk model mostly fluctuates sharply and
is difficult to converge. The strong tracking filtering algorithm [30] improved the robust
adaptability of the single-model for unknown maneuvers by orthogonalizing the residual
sequence, but it had insufficient sensitivity to weak maneuvers, which easily led to a
declination of filtering accuracy. Jiang et al. [31] further proposed a residual-normalized
strong tracking filter based on residual-normalized orthogonalization. The method can
detect maneuvers in a timely manner and improve the tracking accuracy after unknown
maneuvers occur. Inspired by Jiang et al. [31], this paper combines the idea of residual-
normalized orthogonalization with the CSJerk-based EKF and presents a robust CSJerk
filtering (RCSJF) method to solve the problem that the filter is difficult to converge when
an unknown maneuver happens or ends.

The single-model estimation method is generally difficult to adapt to various states in
the process of the movement when the target is maneuvering; thus, its application in non-
cooperative maneuvering target tracking is limited. Therefore, the multi-model method
was developed. The interacting multiple model (IMM) algorithm [32] selects appropriate
models to match the state changes during the movement of the target. It has superiorities
of strong adaptability in maneuvering target tracking and has been widely used in space
maneuvering target tracking. Xiong et al. [33] combined the robust Kalman filter with the
IMM algorithm and proposed a robust multi-mode adaptive algorithm. Goff et al. [21]
combined the IMM algorithm with the variable-state dimension filters and proposed an
adaptive variable dimension estimation algorithm. Lee et al. [34] modeled the unknown
maneuvering information as a state change problem under specific conditions, so that the
transition probability of the IMM algorithm changes adaptively. In this paper, three RCSJF
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algorithms with different levels of maneuvering parameters are used to form the IMM
algorithm model set, each of which is matched to a maneuver level so that the adaptability
of the algorithm to maneuvering conditions can be further improved.

An adaptive IMM algorithm based on RCSJF is proposed in this study to track non-
cooperative spacecraft with continuous-thrust maneuvers. First, in order to improve the
tracking performance at the start or end time of the unknown maneuvers, this paper
applies the principle of residual-normalized orthogonalization to CSJerk filtering so that
the robustness of a single model to unknown maneuvers is enhanced. Second, because the
maneuvers performed by the target are unknown, three RCSJF algorithms with different
maneuvering level parameters are designed as the model set of IMM algorithm so as to
adapt to the uncertain maneuvers of the target.

This paper is organized as follows: In Section 2, the relative dynamics model, obser-
vation model, and maneuvering acceleration model are introduced. Section 3 proposes
the adaptive tracking algorithm for continuously thrusting spacecraft. Section 4 provides
simulations to show the feasibility of the method proposed in various maneuver conditions.
In Section 5, discussions and conclusions of the proposed method are presented.

2. Basic Models for Maneuvering Target Tracking
2.1. Relative Dynamics Model

For non-cooperative maneuvering targets, the traditional relative orbit dynamics
model cannot describe the unknown maneuver, which may cause the performance degra-
dation of the filtering method. The CSJerk model considers the unknown maneuver as a
stochastic process and takes the non-zero mean first-order Markov model to describe the
jerk change process. Taking the derivation of x-direction as an example, it has the structure

...
x (t) = j + j′(t) (1)

where x is the position,
...
x (t) is the acceleration change rate whose probability density is

defined by the modified Rayleigh distribution, j is the mean of
...
x (t), j′(t) is the random

acceleration change rate associated with zero mean exponential distribution.
Briefly, when the current jerk j =

...
x (t) is positive, the probability density function of j

can be written as follows:

f (j) =

 (jmax−j)
µ2 e

− (jmax−j)2

2µ2 (0 < j < jmax)

0 (j ≥ jmax)
(2)

where jmax > 0 is the upper bound of j. µ is a positive constant. The mean of j is

E(j) = jmax −
√

π
2 µ with the variance σ2

j = 4−π
2 µ2. When the current jerk is negative, it is

f (j) =

 (j−j−max)
µ2 e

− (j−j−max)
2

2µ2 (0 > j > j−max)

0 (j ≤ j−max)
(3)

where j−max < 0 is the lower bound of j. The mean of j is E(j) = j−max +
√

π
2 µ with a

variance σ2
j = 4−π

2 µ2.
When the current jerk is zero, the probability density function becomes f (j) = δ(j).

According to the characteristics of the modified Rayleigh distribution, the probability
density function can be determined as long as the mean of current jerk is given.

The correlation function of j′(t) in Equation (1) is defined as

rj′(τ) = E
[
j′(t)j′(t + τ)

]
= σ2

j e−α|τ| (4)
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where α is the frequency of jerk maneuver. Whitening the colored noise in Equation (1), it
can be obtained as .

j
′
(t) = −αj′(t) + w(t) (5)

where w(t) is the white noise with the covariance Q = 2ασ2
j . Taking the derivative of

Equation (1) and substituting Equation (5) into it yields

.
j(t) = −αj(t) + αj + w(t) (6)

Then the states of the system satisfy

.
X(t) = AX(t) + G1 j + G2ω(t) (7)

where
X(t) =

[
x(t)

.
x(t)

..
x(t)

...
x (t)

]T
A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 −α


G1 =

[
0 0 0 α

]T
G2 =

[
0 0 0 1

]T
Discretizing Equation (7), then the prediction equation can be written as

X(k + 1) = Φ(k + 1, k)X(k) + U(k)j + W(k) (8)

where Φ(k + 1, k) = eAT , U(k) =
∫ tk+1

tk
eA(tk+1−τ)G1dτ . Specifically

Φ(k + 1, k) =


1 T T2/2 2−2αT+α2T2−2e−αT

2α3

0 1 T e−αT−1+αT
α2

0 0 1 1−e−αT

α

0 0 0 e−αT

 (9)

U(k) =



1
2α2

[
2T − αT2 + α2

3 T3 − 2 1−e−αT

α

]
1
α

[
−T + αT2

2 + 1−e−αT

α

]
T − 1−e−αT

α

1− e−αT

 (10)

W(k) is the white noise with covariance Q(k), and the details of the 12-dimensional
version are provided in Appendix A.

Q(k) = E
[
W(k)W(k)T

]
=
∫ tk+1

tk

∫ tk+1

tk

eA(tk+1−τ)G2E
[
ω(k)ω(k)T

]
GT

2 (e
A(tk+1−ζ))dτdζ

(11)
According to the CSJerk model, if the target is maneuvering with a certain jerk at the

current moment, the jerk at the next moment can only be valued in the neighborhood of
the current jerk. In the process of the simulation, it is considered that

j = E(j) =
...
x (k + 1, k) (12)
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Equation (12) indicates that the maneuvering mean value of jerk can be updated
adaptively by the prediction in the very step as simulation goes on. In addition, the
variance σ2

j can be derived as follows:

σ2
j =

4− π

π
(jmax −

...
x (k + 1, k)) (13)

In summary, Equation (8) gives the discrete relative motion equation of the spacecraft
in the x-direction based on the CSJerk model, and the full 12-dimensional version is pro-
vided in Appendix A. The CSJerk model considers the change of jerk as a random process;
thus, it still has certain applicability under the condition that the target’s maneuvering
information (maneuver size and maneuver time) is unknown.

2.2. Coordinate System and Observation Model

In this study, the Vehicle Velocity and Local Horizontal (VVLH) coordinate system is
used to describe the relative motion between the observing satellite and the maneuvering
target. The origin of the VVLH frame is attached to the observing satellite’s centroid; the
y-axis points to the direction of the negative normal to the orbital plane, the z-axis points
to the center of the earth, and the x-axis satisfies the right-handed rule. In the VVLH
coordinate system, the elevation angle E is defined as the angle between the line-of-sight
and the x–y plane; the azimuth angle A is defined as the angle between the projection of
line-of-sight in the x–y plane and the x-axis direction, and it takes the x-axis as the starting
point to rotate counterclockwise as positive (see in Figure 1).
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Then the observation equation can be described as

Z =

 ρ
E
A

 = h(X) =


√

x2 + y2 + z2

tan−1 z√
x2+y2

tan−1 y
x

 (14)

Additionally, the observation matrix can be derived as

H =
∂h(X)

∂XT =


H11 H12 H13

H21 H22 H23 09×3

H31 H32 H33
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H12 =
y√

x2 + y2 + z2

H13 =
z√

x2 + y2 + z2

H21 =
−xz√

x2 + y2(x2 + y2 + z2)

H22 = − yz√
x2 + y2(x2 + y2 + z2)

H23 =

√
x2 + y2

x2 + y2 + z2

H31 =
−y

x2 + y2

H32 =
x

x2 + y2

2.3. Maneuvering Acceleration Model

It is known from the fundamentals of orbital dynamics that the estimated value
of acceleration in the relative motion represented by Equation (8) is a total acceleration
value, which contains the relative gravitational acceleration and the relative maneuvering
acceleration. For the spacecraft orbital pursuit–evasion game, it is of great significance for
the observing satellite to identify the maneuvering acceleration of the target in real-time
so as to implement security defense strategies. The process of solving the maneuvering
acceleration of the target in the VVLH frame is given below.

According to the composition theorem of acceleration, the acceleration of the maneu-
vering target relative to the observing satellite can be expressed as

ac − ao = arel + ε× rrel + ω× (ω× rrel) + 2ω× vrel (16)

where ac is the absolute acceleration of the maneuvering target, ao is the absolute accelera-
tion of the observing satellite, and arel is the relative acceleration of the maneuvering target
to the observing satellite. ω and ε are the angular velocity and angular acceleration of the
observing satellite, respectively. rrel and vrel are the relative position and velocity vectors,
respectively, between the maneuvering target and the observing satellite.

The acceleration of the maneuvering target consists of two parts, namely gravitational
acceleration acg and maneuvering acceleration ac f , and

ac = acg + ac f (17)

Under the two-body hypothesis, the gravitational acceleration satisfies

acg = − µ

r3
c

rc (18)

where rc is the absolute position of the target. The relative states can be replaced by the
values estimated: rrel = r̂rel , vrel = v̂rel , arel = ârel , rc = r̂c = ro + r̂rel , and ro is the
absolute position of the observing satellite. Therefore, âcg = −µr̂c/r̂3

c . Substituting it into
Equation (16) yields

âc f = ârel − âcg + ao + ε× r̂rel + ω× (ω× r̂rel) + 2ω× v̂rel (19)
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If the observing satellite does not maneuver, it flies approximately along the Keplerian
orbit within a filtering period. Then we have

ao = aog = − µ

r3
o

ro (20)

ω =
ro × vo

r2
o

=
ho

r2
o

(21)

ε =
.

ω =
−2(ro · vc) (ro × vo)

r4
o

(22)

where aog and vo are the gravitational acceleration the absolute velocity of the observing
satellite. Substituting Equations (20)–(22) into Equation (19), then the estimated value of
âc f can be obtained.

If the observing satellite maneuvers, generally the maneuvering acceleration of the
spacecraft is small, so it can be considered that the angular momentum of the observing
satellite is a constant vector within each simulation step. Therefore,

ao = aog + ao f = −
µ

r3
o

ro + ao f (23)

ω =
ro × vo

r2
o

=
ho

r2
o

(24)

ε =
.

ω =
r2

o(ro × ao f )− 2(ro · vo) (ro × vo)

r4
o

(25)

where ao f is the maneuvering acceleration of the observing satellite. Substituting
Equations (23)–(25) into Equation (19), then the estimated value of âc f can be obtained.

3. Adaptive Tracking Algorithm for Continuously Thrusting Spacecraft
3.1. Introduction to CSJerk-Based EKF Filtering

The CSJerk model is a linear model, and the observation model is a non-linear model.
The EKF algorithm is used to estimate the relative states of the target based on the CSJerk
model. The estimated state is a 12-dimensional vector, including 3 relative position compo-
nents, 3 relative velocity components, 3 relative acceleration components, and 3 jerk compo-
nents. The CSJerk-based EKF algorithm has the following steps within one filtering period:

Step 1: Determining the initial estimation X̂0 and P̂0

X̂0 = E[X0] (26)

P̂0 = E
[
(X0 − X̂0)(X0 − X̂0)

T
]

(27)

Step 2: Updating the state mean and covariance matrix

(1) The prediction of relative state X(k + 1, k)

X(k + 1, k) = Φ(k + 1, k)X̂(k) + U(k) (28)

where Φ(k+ 1, k) and U(k) are associated with Equations (A3) and (A4) in Appendix A.
(2) The covariance matrix P(k + 1, k)

P(k + 1, k) = Φ(k + 1, k)P̂(k)Φ(k + 1, k)T + Q(k) (29)

Step 3: Updating the measurement

(1) The gain matrix K(k + 1)

K(k + 1) = P(k + 1, k)H(k + 1)T[H(k + 1)P(k + 1, k))H(k + 1)T + R(k + 1)]−1 (30)
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H(k + 1) =
∂h
∂X

∣∣∣∣
X(k+1,k)

(31)

(2) The estimations X̂(k + 1) and P̂(k + 1).

X̂(k + 1) = X(k + 1, k) + K(k + 1)v(k + 1) (32)

v(k + 1) = z(k + 1)− h(X(k + 1, k)) (33)

P̂(k + 1) = (I−K(k + 1)H(k + 1))P(k + 1, k) (34)

3.2. Improved CSJerk Filtering Algorithm Based on Residual-Normalized Orthogonalization

If the maneuvering parameters of the CSJerk filtering match the actual values, the
EKF algorithm based on the CSJerk model can track the target stably. However, for the
non-cooperative spacecraft, its maneuvering information is unknown. Moreover, due to
the abrupt change of the target maneuvering acceleration, the values set according to the
prior information may not match the maneuvering change of the target, which will make
the filter suffer from degradation and even divergence. In order to address this problem,
this paper combines the idea of residual-normalized orthogonalization with CSJerk-based
EFK filtering, and a robust CSJerk filtering algorithm is developed.

The principle of traditional strong tracking is to make the residual v orthogonal to
each other in each step [30].

E
[
(vk+1+j)

T(vk+1)
]
= 0 j= 1, 2, . . . , n (35)

However, the residual orthogonalization principle has different sensitivity to different
residual components because the change magnitude of the range and angle measurement
are different when the target executes maneuvers, which makes the filter not able to detect
the state change quickly and accurately. To deal with this shortcoming, Jiang et al. [31]
proposed a method to normalize the residual vector before orthogonalization.

E
[
(Mvk+1+j)

T(Mvk+1)
]
= 0 j= 1, 2, . . . , n (36)

where M = diag(σ−1
ρ σ−1

A σ−1
E ) is the weighting matrix.

Inspired by Jiang et al. [31], this note combines the idea of residual-normalized orthog-
onalization with EFK based on the CSJerk model. According to Section 3.1, the improved
filtering algorithm is as follows:

P∗(k + 1, k) = λk+1Φ(k + 1, k)P̂(k)Φ(k + 1, k)T + Q(k) (37)

K∗(k + 1) = P∗(k + 1, k)H(k + 1)T[H(k + 1)P∗(k + 1, k))H(k + 1)T + R(k + 1)]−1 (38)

X̂(k + 1) = X(k + 1, k) + K∗(k + 1)v(k + 1) (39)

P̂(k + 1) = (I−K∗(k + 1)H(k + 1))P∗(k + 1, k) (40)

where λk+1 is a fading factor to amplify the covariance when a maneuver occurs, and it
can be derived by the principle of residual-normalized orthogonalization [31].

λk+1 =

{
1, αk+1 ≤ 1

αk+1, αk+1 > 1
(41)

αk+1 =
tr[(Vk+1 −R)M2]

tr[(Hk+1Φk+1,kP̂kΦT
k+1,kHT

k+1)M
2]

(42)

Vk+1 = E(vk+1vT
k+1) ≈

 v1vT
1 , k = 0

ρVk+vk+1vT
k+1

1+ρ , k ≥ 1
(43)
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where 0 < ρ ≤ 1 is a forgetting factor, and it is re-commanded as ρ = 0.95 in default. So far,
the RCSJF method can be described by Equations (26)–(28) and (37)–(43).

3.3. IMM Algorithm Based on RCSJF

In Section 3.2, by combining the idea of residual-normalized orthogonalization with
CSJerk-based EKF, the RCSJF is proposed, which enhances the robustness of tracking a
target with abrupt state changes. In order to extend its applicability for different maneuver
levels, this paper uses the RCSJF algorithms with different maneuver frequencies and
maximum jerk values to form the model set of the IMM. With this model set, an adaptive
IMM filtering algorithm based on RCSJF is developed.

The standard IMM algorithm contains four modules [32]: input mixing, model-
conditioned estimation, model probability update, and comprehensive output. The recur-
sive steps from time k to k + 1 are given as follows:
Step 1: Input Mixing

Assuming the estimation of filter i (i = 1, 2, 3) is X̂i
(k) at time k (k = 1, 2, 3 . . . n) with

the covariance P̂i
(k), then the input of filter j (j = 1, 2, 3) after interactive calculation can

be expressed as

X0j(k) =
3

∑
i=1

mi|j(k)X̂i
(k) (44)

P0j(k) =
3

∑
i=1

mi|j(k)× {P̂i
(k) + [X̂i

(k)−X0j(k)][X̂i
(k)−X0j(k)]

T
} (45)

where mi|j(k) is the mixing probability from the filter i to j, and it can be computed as

mi|j(k) =
γijmi(k)

∑3
i=1 γijmi(k)

(46)

where mi is the model probability, and the model transition probability γij is a constant
value designed according to a priori information.
Step 2: Model-Conditioned Estimation

Substitute the mixed values calculated in step 1 into the sub-filters of the model set to
obtain the estimation of X̂j

(k + 1) and covariance Pj(k + 1) of each model

Xj(k + 1, k) = Φj(k + 1, k)X0j(k) + Uj(k)j (47)

Pj(k + 1, k) = λ
j
k+1Φj(k + 1, k)P0j(k)Φj(k + 1, k)T + Qj(k) (48)

X̂j
(k + 1) = Xj(k + 1, k) + K(k + 1)vj(k + 1) (49)

vj(k + 1) = y(k + 1)− h(Xj(k + 1, k)) (50)

P̂j
(k + 1) = (I−Kj(k + 1)Hj(k + 1))Pj(k + 1, k) (51)

Kj(k + 1) = Pj(k + 1, k))Hj(k + 1)T[Hj(k + 1)Pj(k + 1, k))Hj(k + 1)T + R(k + 1)]−1 (52)

Hj(k) =
∂h
∂X
|Xj(k+1,k) (53)

Step 3: Model Probability Update
Assuming that the residual vj(k + 1) is according to a Gaussian distribution with

covariance Sj(k + 1), then the model likelihood function Λj(k + 1) and model probability
mj(k + 1) can be updated as

Λj(k + 1) =
1√∣∣∣2πSj(k + 1)

∣∣∣ exp {−1
2
[vj(k + 1)]

T
(Sj(k + 1)])

−1
[vj(k + 1)]} (54)
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mj(k + 1) =
1
C

Λj(k + 1)Cj (55)

where C =
3
∑

j=1
Λj(k + 1)Cj, Cj = ∑3

j=1 γij(k)mj(k), vj(k + 1) and Sj(k + 1) are calculated as

vj(k + 1) = Z(k + 1)− h(Xj(k + 1, k)) (56)

Sj(k + 1) = Hj(k + 1)Pj(k + 1, k))Hj(k + 1)T + R(k + 1) (57)

Step 4: Comprehensive Output
The estimated state X̂(k + 1) and its covariance P̂(k + 1) can be expressed by the

model probability and the update of each model

X̂(k + 1) =
3

∑
j=1

X̂j
(k + 1)mj(k + 1) (58)

P̂(k) =
3

∑
j=1
{P̂j

(k + 1) + [X̂j
(k + 1)− X̂(k + 1)][X̂j

(k + 1)− X̂(k + 1)]
T
}mj(k + 1) (59)

4. Results

To validate the proposed method, simulations were designed from two aspects. First,
the feasibility of the RCSJF was verified. Assuming that the maneuvering target executes a
constant thrust maneuver during the approaching process, the changes of the algorithm
tracking error between the CSJerk-based EKF and RCSJF were compared. Second, the
applicability of the IMM algorithm based on RCSJF was verified by different maneuvering
conditions. Three constant maneuvering conditions and three time-varying maneuvering
conditions were set for the maneuvering target in the simulation. The magnitude of
the maneuvering amplitude was different for the constant maneuvering condition while
the maneuvering amplitude, frequency, and phase were different for the time-varying
maneuvering condition.

4.1. Simulation Setups

Assume that the maneuvering target approaches the observing satellite by maneuvering with
continuous thrusts. Both of them run on the orbits with the parameters shown in Table 1, and the
initial error is defined with mean Xerror = [103 103 103 101 101 101 10−4 10−4 10−4 10−4 10−4]

T

and covariance P = diag([103 103 103 101 101 101 10−2 10−2 10−2 10−2 10−2 10−2]). In Table 1,
the parameters a, e, i, Ω, w, and f denote the orbit elements of the semimajor axis, eccentric-
ity, inclination, longitude of the ascending node, argument of perigee, and true anomaly,
respectively. The observing satellite uses an optical camera and a laser ranger to measure
the maneuvering target, the elevation angle, and azimuth angle, and the relative distance
can be obtained in real time. The observing satellite uses this information to estimate
the relative state and the maneuvering acceleration of the target. In the simulations, the
measurement errors and the measurement frequency of the observing satellite are set as
σρ = 10 m, σA = σE = 0.001 rad, and f = 1 Hz, respectively. Additionally, the smaller the
measurement error or the higher the observation frequency, the higher the accuracy, but
they are limited by the sensors.

4.2. Analysis of the Residual-Normalized Orthogonalization

To analyze the effectiveness of the RCSJF algorithm, assume that the target maneuvers
during the time from t = 1000 s to t = 2000 s, and the acceleration vector in VVLH is set as[
−0.2 m/s2, 0 m/s2, 0.2 m/s2]T. The maneuvering frequency and the maximum jerk value

of CSJerk are specified as α = 0.001 and jmax = 10−4, respectively. Generally, α and jmax
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permit one to model targets with different levels of thrust: small α and jmax for targets with
enduring jerk, and high α and jmax for target with rapidly fluctuating jerk [29].

Table 1. Initial orbital elements of the observing satellite and maneuvering target.

Parameters a (km) e i (◦) Ω (◦) w (◦) f (◦)

Observing satellite 42,175.14 0.002 1.37 359.12 −113.12 184.52

Maneuvering target 42,165.14 0.008 1.38 359.12 −113.12 184.80

The sub-graphs (a)–(c) in Figure 2 show the error changes in the estimation results of
maneuvering target before and after improving the CSJerk-based EKF filtering algorithm
by residual-normalized orthogonalization. The sub-graph (d) shows the maneuvering
acceleration estimation of the maneuvering target. As shown in Figure 2, before the
improvement of residual-normalized orthogonalization, the estimation errors of all position,
velocity, and acceleration are beyond the scale described by±3σ values when the maneuver
starts or ends and stabilize 500 s later. However, after the improvement, the estimation
errors are reduced and basically remain within the scale described by ±3σ values and
stabilize about 200 s later. It is evident that the ability to converge is significantly improved.
The effect of the residual-normalized orthogonalization is that when the state changes
abruptly, the residual sequences are sensitive to this change, which makes the fading factor
change adaptively, thereby inflating the prediction covariance to maintain filter stability
and then improve the convergence effect.
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4.3. Analysis of the IMM Algorithm Based on RCSJF

To demonstrate the applicability of the IMM algorithm based on RCSJF in this paper,
a variety of maneuver conditions was considered. The constant maneuvering scenarios
are set in Table 2, while the time-varying maneuvering scenarios are set in Table 3. For
the constantly maneuvering case, the influence of maneuver size was compared; for the
time-varying maneuvering case, all three, namely maneuvering amplitude, frequency, and
initial phase, were analyzed in the conditions.

Table 2. Maneuver levels for constant maneuver.

Conditions Size (m/s2) Time (s) x(m/s2) y(m/s2) z(m/s2)

1 0.141 1000–2000 −0.1 0 0.1
2 0.707 1000–2000 −0.5 0 0.5
3 1.414 1000–2000 −1 0 1

Table 3. Maneuver levels for time-varying maneuver.

Conditions Time (s) x(m/s2) y(m/s2) z(m/s2)

1 1000–2000 −0.1 sin(0.3t− 200) 0 0.1 sin(0.3t− 200)
2 1000–2000 −0.5 sin(0.2t− 100) 0 0.5 sin(0.2t− 100)
3 1000–2000 − sin(0.1t− 100) 0 sin(0.1t− 100)

For the IMM algorithm based on RCSJF, the maneuvering frequency is α̃ = 0.001,
and the maximum jerk values of the three models in the IMM algorithm are set as
jmax1 = 10−6,jmax2 = 10−4, jmax3 = 10−3, which are responsible for different levels of
thrust, respectively. The IMM model transition probability matrix Mγ determines the
proportion of each model output in the step of input mixing. Usually, the target is in the
state with no maneuvers, so Mγ is set to

Mγ =

 0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

 (60)

At the beginning of the simulation, the importance of each model is considered to be
consistent, thus the model probability is set as mj(0) = 0.333. The filter estimation initial

value X̂j and initial covariance matrix Pj of each model are set as

X̂j
(0) = X(0) + Xerror (61)

Pj(0) = diag(
[
106 106 106 102 102 102 10−2 10−2 10−2 10−2 10−2 10−2

]
) (62)

This section focuses on the estimated maneuvering acceleration of the target under
different maneuver conditions. As shown in Figures 3–5, the proposed algorithm can
effectively estimate the component values of the maneuvering acceleration for both constant
maneuvering and time-varying maneuvering conditions, and it converges about 200 s
later when the enginehen the maneuvering acceleration amplitude of the target is larger,
the abrupt change of state is more obvious, the residual sequences react more quickly,
and the errors are adjusted more quickly, but the process changes more drastically. As
shown in sub-graph (a) of Figures 3–5, when the amplitude of the maneuver increases, the
acceleration estimation curve changes more drastically and converges to the true value
curve faster after the maneuver starts or ends (at 1000 s and 2000 s). For time-varying
maneuvering, the influence produced by the change of maneuver amplitude is consistent
with the constant maneuvering. However, the acceleration curve estimated can track
the true curve stably when the acceleration phase executed by the target is 0; that is, the
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maneuvering acceleration changes continuously from zero with no mutation, just as shown
in Figure 5b for Condition 3.
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5. Conclusions

In this paper, an adaptive IMM algorithm based on RCSJF is proposed to track non-
cooperative spacecraft with continuous thrusts. The CSJerk-based EKF filter typically
has poor estimation accuracy when an unknown maneuver occurs or ends with no prior
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information. To address this problem, this study applies the idea of residual-normalized
orthogonalization to the EKF based on the CSJerk model, by which the RCSJF algorithm is
obtained. On the other hand, there is no idea for the maneuvers performed by the target,
so it is difficult to determine the parameters of the CSJerk model. Therefore, an IMM
algorithm that takes the RCSJF with different levels of maneuvering parameters as the
model set is designed to adapt to the uncertain maneuvers of the target. Simulation results
show that the CSJerk-based EKF filtering algorithm improved by the residual-normalized
orthogonalization (i.e., RCSJF) can enhance the robustness of the single-model algorithm,
and the proposed IMM algorithm based on RCSJF can effectively estimate the maneuvering
acceleration of the target that executes different levels of maneuvers, even for time-varying
maneuvers with different amplitudes and frequencies. Moreover, the proposed adaptive
tracking method has potential benefit to accurately distinguish the control regulation of a
maneuvering target, which is of great significance for improving the survivability of the
on-orbit spacecraft.

Several limitations of the proposed method are observed. First, since the jerk infor-
mation of the non-cooperative target is unknown, the maneuvering parameters (jmax and
α) for the CSJerk-based EKF filtering algorithm may not be in accordance with the actual
situation. Second, although the IMM method with three CSJerk-based EKF filters deals
with the problem of parameter uncertainty to some extent, more model components will be
required, and the computational complexity will increase as the uncertainty in maneuver
magnitude (or other parameters) becomes larger. Consequently, the ability to deal with
parameters with very large uncertainties may be computationally extensive. Therefore, our
next research direction will focus on solving these problems.
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Appendix A

According to Section 2.1, the derivations of CSJerk model in y and z directions are
the same as those in the x direction, as shown in Equation (6). In this case, the full
12-dimensional motion function can be described as follows:

.
X(t) = AX(t) + G1 + G2 (A1)

where
X =

[
x y z

.
x

.
y

.
z

..
x

..
y

..
z

...
x

...
y ...

z
]T

is the state vector, and

A =


03×3 I3×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3
03×3 03×3 03×3 Σ

, Σ =

 −αx 0 0
0 −αy 0
0 0 −αz



G1 =
[

01×9 αx jx αy jy αz jz
]T

, G2 =
[

01×9 wx(t) wy(t) wz (t)
]T
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03×3 denotes the zero matrix of 3 by 3, I3×3 denotes the identity matrix of 3 by 3.
Discretizing Equation (A1), then

X(k + 1, k) = Φ(k + 1, k)X(k) + U(k) + W(k) (A2)

where Φ(k + 1, k) = eAT , U(k) =
∫ tk+1

tk
eA(tk+1−τ)G1dτ . Specifically

Φ(k + 1, k) =


I3×3 T × I3×3 T2/2× I3×3 Σ

p
3×3

03×3 I3×3 T × I3×3 Σv
3×3

03×3 03×3 I3×3 Σa
3×3

03×3 03×3 03×3 Σ
j
3×3

 (A3)

Σp =


2−2αxT+α2

xT2−2e−αx T

2α3
x

0 0

0
2−2αyT+α2

yT2−2e−αyT

2α3
y

0

0 0 2−2αzT+α2
z T2−2e−αzT

2α3
z



Σv =


e−αx T−1+αxT

α2
x

0 0

0 e−αyT−1+αyT
α2

y
0

0 0 e−αzT−1+αzT
α2

z



Σa =


1−e−αx T

αx
0 0

0 1−e−αyT

αy
0

0 0 1−e−αzT

αz

, Σj =

 e−αxT 0 0
0 e−αyT 0
0 0 e−αzT



U(k) =
[

Λ
p
1×3 Λv

1×3 Λa
1×3 Λ

j
1×3

]T
(A4)

Λ
p
3×1 =


jx

2α2
x
(2T − αxT2 + α2

x
3 T3 − 2 1−e−αx T

αx
)

jy
2α2

y
(2T − αyT2 +

α2
y

3 T3 − 2 1−e−αyT

αy
)

jz
2α2

z
(2T − αzT2 + α2

z
3 T3 − 2 1−e−αzT

αz
)

, Λv
3×1 =


jx
αx
(−T + αxT2

2 + 1−e−αx T

αx
)

jy
αy
(−T +

αyT2

2 + 1−e−αyT

αy
)

jz
αz
(−T + αzT2

2 + 1−e−αzT

αz
)



Λa
3×1 =


jx(T − 1−e−αx T

αx
)

jy(T − 1−e−αyT

αy
)

jz(T − 1−e−αzT

αz
)

, Λ
j
3×1 =

 jx(1− e−αxT)
jy(1− e−αyT)

jz(1− e−αzT)


W(k) is the white noise with covariance Q(k)

Q(k) = E
[
W(k)W(k)T

]
=
∫ tk+1

tk

∫ tk+1

tk

eA(tk+1−τ)E
[
G2(k)G2(k)

T
]
(eA(tk+1−ζ))dτdζ = [qij]12×12 (A5)

Specifically,

q1,1 =
1

60αx7 σ2
jxe−2αxT(−30 + 60eαxT(2 + αx

2T2) + e2αxT(−90 + αxT(60 + αxT(−60 + αxT(40 + 3αxT(−5 + αxT))))))

q1,4 = q4,1 =
σ2

jx(2− 2e−αxT + αxT(−2 + αxT))2

8αx6
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q1,7 = q7,1 =
σ2

jxe−2αxT(−3 + 3eαxT(4 + αx
2T2) + e2αxT(−9 + αxT(6 + αxT(−3 + αxT))))

6αx5

q1,10 = q10,1 =
σ2

jx(1 + e−2αxT − e−αxT(2 + αx
2T2))

2αx4

q2,2 =
σ2

jye−2αyT(−30 + 60eαyT(2 + αy
2T2) + e2αyT(−90 + αyT(60 + αyT(−60 + αyT(40 + 3αyT(−5 + αyT))))))

60αy7

q2,5 = q5,2 =
σ2

jy(2− 2e−αyT + αyT(−2 + αyT))2

8αy6

q2,8 = q8,2 =
σ2

jye−2αyT(−3 + 3eαyT(4 + αy
2T2) + e2αyT(−9 + αyT(6 + αyT(−3 + αyT))))

6αy5

q2,11 = q11,2 =
σ2

jy(1 + e−2αyT − e−αyT(2 + αy
2T2))

2αy4

q3,3 =
1

60αz7 σ2
jze−2αzT(−30 + 60eαzT(2 + αz

2T2) + e2αzT(−90 + αzT(60 + αzT(−60 + αzT(40 + 3αzT(−5 + αzT))))))

q3,6 = q6,3 =
σ2

jz(2− 2e−αzT + αzT(−2 + αzT))2

8αz6

q3,9 = q9,3 =
σ2

jze−2αzT(−3 + 3eαzT(4 + αz
2T2) + e2αzT(−9 + αzT(6 + αzT(−3 + αzT))))

6αz5

q3,12 = q12,3 =
σ2

jz(1 + e−2αzT − e−αzT(2 + αz
2T2))

2αz4

q4,4 =
σ2

jxe−2αxT(−3− 12αxeαxTT + e2αxT(3 + 2αxT(3 + αxT(−3 + αxT))))

6αx5

q4,7 = q7,4 =
σ2

jxe−2αxT(1 + eαxT(−1 + αxT))2

2αx4 , q4,10 = q10,4 =
σ2

jxe−αxT(−αxT + sinh[αxT])

αx3

q5,5 =
σ2

jye−2αyT(−3− 12αyeαyTT + e2αyT(3 + 2αyT(3 + αyT(−3 + αyT))))

6αy5

q5,8 = q8,5 =
σ2

jye−2αyT(1 + eαyT(−1 + αyT))2

2αy4 , q5,11 = q11,5 =
σ2

jye−αyT(−αyT + sinh
[
αyT

]
)

αy3

q6,6 =
σ2

jze−2αzT(−3− 12αzeαzTT + e2αzT(3 + 2αzT(3 + αzT(−3 + αzT))))

6αz5
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q6,9 = q9,6 =
σ2

jze−2αzT(1 + eαzT(−1 + αzT))2

2αz4 , q6,12 = q12,6 =
σ2

jze−αzT(−αzT + sinh[αzT])

αz3

q7,7 = −
σ2

jx(3 + e−2αxT − 4e−αxT − 2αxT)

2αx3 , q7,10 = q10,7 =
σ2

jxe−2αxT(−1 + eαxT)
2

2αx2

q8,8 = −
σ2

jy(3 + e−2αyT − 4e−αyT − 2αyT)

2αy3 , q8,11 = q11,8 =
σ2

jye−2αyT(−1 + eαyT)
2

2αy2

q9,9 = −
σ2

jz(3 + e−2αzT − 4e−αzT − 2αzT)

2αz3 , q9,12 = q12,9 =
σ2

jze−2αzT(−1 + eαzT)
2

2αz2

q10,10 = −
σ2

jx(−1 + e−2αxT)

2αx
, q11,11 = −

σ2
jy(−1 + e−2αyT)

2αy
, q12,12 = −

σ2
jz(−1 + e−2αzT)

2αz

Other components of Q(k) are zero.
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