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Abstract: The failure analysis of a non-circular hole with an inclusion layer embedded in an infinite
cracked matrix under a remote in-plane uniform load is presented. In this study, a series solution of
stress functions for both the matrix and inclusion layer is obtained using the complex variable theory
in conjunction with the method of conformal mapping. The stress intensity factor (SIF) can then be
determined numerically by solving the singular integral equation (SIE) for the interaction among
different crack sites, material properties, and geometries of irregular holes with an inclusion layer. In
particular, the failure behavior of composite structures associated with an approximately triangular
hole and an approximately square hole with inclusion layers, such as those of oxides, nitrides, and
sulfides, is examined in detail. The results demonstrate that a softer layer would enhance the SIF and
a stiffer layer would restrain the SIF when a crack is near the inclusion layer. It can be concluded that
crack propagation would be suppressed by a stiffer layer even when a micro-defect such as a hole
resides in the inclusion layer.

Keywords: stress intensity factor; inclusion layer; conformal mapping; irregular shape

1. Introduction

The research on additive and casting manufacturing will inevitably leave a defect
in the workpiece. Defects, which include holes, pores, voids, inclusions, particles, pits,
and impurities, could become initial fracture sites owing to their hazardous effect on the
mechanical strength properties and fatigue strength. Based on experimentally obtained
images, defects with different geometries such as circle [1], triangle [2], and arbitrary
shape [3] are shown in Figure 1a, Figure 1b, and Figure 2a, respectively. Different defect
geometry affects stress concentration and crack propagation differently. Many experiments
obtained original results on the crack propagation mechanism. The multilayer coating
system is observed wherein the crack existing in CrN would propagate to the next interface
Cr/CrN [4] as shown in Figure 1c. For the casting process, pores should exist inside the
workpiece. If a crack tip exists near pores subject to a mechanical loading, crack propagation
is likely and would be directed toward the pores [2] as shown in Figure 1b. Manganese
sulfide (MnS) inclusion would initiate crack evolution because the high interfacial stress
around the boundary results in a decrease of the local fracture toughness and hastens the
crack propagation [5].
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Figure 1. Micro-defects revealed by scanning electron microscopy (SEM) images (a) Reprinted with 
permission from Ref. [1]. 2021 The Royal Society, (b) Reprinted from Ref. [2], (c) Reprinted with 
permission from Ref. [4]. 2021 Elvesier. 

 
Figure 2. (a) Observation of macrostructure of hole, iron oxide, and steel matrix after the process of 
whole thermal treatment. Reprinted from Ref. [3]; (b) outlined photograph for illustrating the in-
teraction between a line crack in the steel matrix and an irregular hole with inclusion layer under 
an in-plane remote uniform tensile loading. 

The fundamental studies on failure analysis of circular inclusion have been carried 
out [6–8] based on linear elasticity and complex variable theory [9]. The thermoelastic 
and elastic problems of an arbitrary hole with a coating layer [10–12] or without a coating 
layer [13,14] have been investigated using the conformal mapping function. To obtain the 
SIF, the singular integral equation could be employed to perform numerical calculation 
by addressing a discrete segment of a crack. The superposition for the solution of a ho-
mogeneous plate under external loading and the solution of a plate under a dislocation 
are applied to solve the SIE. Once the equation is established, the SIE could be solved 
numerically using the Gaussian–Chebyshev method. For a multilayered composite sys-
tem, both stress and displacement continuity conditions must be forcibly satisfied 
through analytical continuation. It should be noted that divergent terms would exist in a 
stress field when analytical continuation and conformal mapping are applied to the ir-
regular hole problem. It becomes tremendously difficult to identify the corrector terms in 
continuity equations to prevent singularity points, particularly for problems with an ir-
regular inclusion or hole. 

The interaction problems between inclusion and crack have been studied exten-
sively by many researchers. For example, the interaction between a crack and a circular 
inclusion or multiple circular inclusions under anti-plane shear loading has been inves-
tigated [15–18]. The studies indicated that a stiffer inclusion would have a lower SIF. This 
implies that a stiffer inclusion has a shielding effect on crack propagation [19]. Wikarta 

Figure 1. Micro-defects revealed by scanning electron microscopy (SEM) images (a) Reprinted with
permission from Ref. [1]. 2021 The Royal Society, (b) Reprinted from Ref. [2], (c) Reprinted with
permission from Ref. [4]. 2021 Elvesier.
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Figure 2. (a) Observation of macrostructure of hole, iron oxide, and steel matrix after the process
of whole thermal treatment. Reprinted from Ref. [3]; (b) outlined photograph for illustrating the
interaction between a line crack in the steel matrix and an irregular hole with inclusion layer under
an in-plane remote uniform tensile loading.

The fundamental studies on failure analysis of circular inclusion have been carried
out [6–8] based on linear elasticity and complex variable theory [9]. The thermoelastic
and elastic problems of an arbitrary hole with a coating layer [10–12] or without a coating
layer [13,14] have been investigated using the conformal mapping function. To obtain the
SIF, the singular integral equation could be employed to perform numerical calculation by
addressing a discrete segment of a crack. The superposition for the solution of a homo-
geneous plate under external loading and the solution of a plate under a dislocation are
applied to solve the SIE. Once the equation is established, the SIE could be solved numeri-
cally using the Gaussian–Chebyshev method. For a multilayered composite system, both
stress and displacement continuity conditions must be forcibly satisfied through analytical
continuation. It should be noted that divergent terms would exist in a stress field when
analytical continuation and conformal mapping are applied to the irregular hole problem.
It becomes tremendously difficult to identify the corrector terms in continuity equations to
prevent singularity points, particularly for problems with an irregular inclusion or hole.

The interaction problems between inclusion and crack have been studied extensively
by many researchers. For example, the interaction between a crack and a circular inclusion
or multiple circular inclusions under anti-plane shear loading has been investigated [15–18].
The studies indicated that a stiffer inclusion would have a lower SIF. This implies that a
stiffer inclusion has a shielding effect on crack propagation [19]. Wikarta observed that
the thickness of a coating layer also has a substantial influence on the SIF [20]. It is highly



Aerospace 2022, 9, 17 3 of 17

challenging to solve an in-plane crack problem because the number of undermined stress
functions is larger than that for the anti-plane problem. The problem of the interaction of
an in-plane crack with an elliptical inclusion was investigated by Chen [21]. Chao et al.
considered the problem of a crack interacting with a three-phase composite and fibrous
composite [22–24]. Based on homogenization techniques and failure criteria, Greco et al.
investigated the interaction problem between micro-crack and fiber-reinforced composite
material [25].

The failure analysis of an irregular hole with an inclusion layer embedded in a cracked
matrix is a challenging problem that has not been investigated analytically. The aim of the
present study is to analyze the failure of a flawed material with different geometries and
elastic mismatch between the inclusion layer and the matrix using the conformal mapping
and analytical continuation theorem. To comprehensively examine the theoretical failure
analysis, some practical experiments such as steel and titanium matrix are introduced.
Initially, a steel matrix subject to a hot cross-wedge-rolled loading wherein an oxide layer
would be formed around the hole during the metal composite preparation process [3]
as shown in Figure 2a. In this study, the steel matrix with a non-circular geometry of
inclusion layer and hole under the tensile loads is considered. However, the effects of
heat treatment and time are ignored due to the limitation of the theoretical method. An
outlined photograph for illustrating the interaction between a line crack in the steel matrix
and irregular holes with inclusion layers under an in-plane remote uniform tensile loading
is displayed in Figure 2b. To obtain the solution, in this study, either an approximately
triangular hole or an approximately square hole is used to replicate an irregular hole
with inclusion layers embedded in an infinite cracked plate using the corresponding
mapping function (see Figure 3). Based on the continuation theorem in conjunction with
the method of conformal mapping, a series solution of stress functions for a non-circular
hole embedded in a cracked matrix with an inclusion layer under a remote uniform load is
obtained. Moreover, the Mode-I SIF at the crack tip is determined numerically by solving
the singular integration equation for the interaction among different crack sites, material
properties, and geometries of irregular holes with inclusion layer. The results of the fracture
behavior of an irregular hole with an inclusion layer are presented for different shear
moduli and shape factors.
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Figure 3. (a) Approximately triangular hole with inclusion layer on physical plane (z-plane); (b) ap-
proximately square hole with inclusion layer on physical plane (z-plane); (c) irregular hole with
inclusion layer on mathematical plane (ζ-plane).

2. Problem Formulation

The interaction between a line crack in a steel matrix and an irregular hole with an
inclusion layer under a remote uniform tensile load is shown in Figure 2b. To simplify
this complex problem, an approximately triangular hole and an approximately square hole
are used to replicate an irregular hole with an inclusion layer embedded in an infinite
cracked plate subject to a remote mechanical tensile load parallel to the y-axis. This is
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illustrated schematically in Figure 3. Let Ω a and Ωb represent the matrix and inclusion
layer, respectively. The interface between the inclusion layer and the matrix is denoted
by Γ1, whereas the interface between the inclusion layer and a hole is denoted by Γ2 (see
Figure 3). Note that the inclusion layer is assumed to be perfectly bonded to the matrix
and that the hole is under traction-free condition. According to the two-dimensional
elasticity theory, the components of the displacement and resultant force in the physical
plane (z-plane) can be expressed in terms of the two stress functions φ(z) and ψ(z). The
mapping function is used as follows to solve an irregular hole problem:

z = m(ζ) = (ζ +
w
ζn )(0 ≤ w <

1
n
) (1)

where w is the shape factor. The integer n represents the number of corners of a hole.
For example, n = 2, n = 3, and n = 4 for a triangle, square, and pentagon, respectively.
The conformal mapping function can map an irregular hole with an inclusion layer in the
z-plane as shown in Figure 3a,b, onto two circles with a common origin. In addition, the
inner and outer radii are unity and r, respectively, in the ζ-plane (see Figure 3c). In the
ζ-plane, Sa and Sb represent the matrix and inclusion layer, respectively. L1 represents
the interface between these, and L2 represents the interface between Sb and a hole (see
Figure 3c). The geometric configurations of an approximately triangular hole with an
inclusion layer (n = 2) and an approximately square hole with an inclusion layer (n = 3)
for different values of w are shown in Figures 4 and 5, respectively.
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ζ ζ
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Figure 4. Configuration of approximately triangular holes with different shape factors.
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The components of the displacement, resultant force, and stress can be defined as
follows:

2G(ux + iuy) = κφ(ζ)− m(ζ)

m′(ζ)
φ′(ζ)− ψ(ζ) (2)

σxx + σyy = 2

[
φ′(ζ)

m′(ζ)
+

φ′(ζ)

m′(ζ)

]
(3)

σyy − σxx + 2iσxy = 2

[
m(ζ)

m′(ζ)
d

dζ

{
φ′(ζ)

m′(ζ)

}
+

ψ′(ζ)

m′(ζ)

]
(4)

− Fy + iFx = φ(ζ) +
m(ζ)

m′(ζ)
φ′(ζ) + ψ(ζ) (5)
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where G is the shear modulus. κ = (3− ν)/(1 + ν) for the plane stress condition, and
κ = (3− 4ν) for the plane strain condition. ν is Poisson’s ratio. The prime symbol (′)
represents the derivative with respect to ζ, and the bar () denotes the complex conjugate.

3. Stress Field

To simplify the derivation process, we introduce an auxiliary stress function ω(ζ) as
follows:

ω(ζ) =
m( r2

ζ )

m′(ζ)
φ′(ζ) + ψ(ζ) (6)

where r is the radius of a mapped circle of an inclusion layer.

3.1. Homogeneous Solution

The homogeneous solutions of an isotropic infinite plate under a remote tensile load
T at an inclined angle γ between the x-axis and direction of tensile loading can be given
as [9]:

φ0 =
T
4

z (7)

ω0 =
T
4

z− Te−2iγ

2
z (8)

3.2. Stress Functions for the Triangular and Square Hole with Inclusion Layer

To solve the two-phase composite system, the stress functions are assumed to be of
the following forms:

φ(ζ) =


φ0(ζ) +

∞
∑

n=1
φan(ζ) ζ ∈ Sa

∞
∑

n=1
φbn(ζ) +

∞
∑

n=1
φn(ζ) ζ ∈ Sb

(9)

ω(ζ) =


ω0(ζ) +

∞
∑

n=1
ωan(ζ) ζ ∈ Sa

∞
∑

n=1
ωbn(ζ) +

∞
∑

n=1
ωn(ζ) ζ ∈ Sb

(10)

With regard to an approximately triangular hole with an inclusion layer, the mapping
function in Equation (1) becomes:

z = m(ζ) = (ζ +
w
ζ2 )(0 ≤ w <

1
2
) (11)

The homogenous solutions for the problem of an approximately triangular hole with
an inclusion layer under an edge dislocation at ζ = ζ0 can be obtained as follows using the
above mapping function:

φ0a(ζ) = Q log(ζ − ζ0) (12)

φ0b(ζ) = Q log(1− w(ζ0 + ζ)

ζ2ζ02 ) (13)

ω0a(ζ) =
Qwζ2

r4(ζ−ζ0)
+

Q(r6+2w2)
3r4(ζ−ζ0)

(
1

(ζ0−t1)
+ 1

(ζ0−t2)
+ 1

(ζ0−t3)

)
+ Q log(ζ − ζ0)

−Q(ζ0 +
w

ζ0
2
)
(

ζ0
3

(ζ−ζ0)(ζ0
3−2w)

) (14)

ω0b(ζ) =
Q(2wζ0+wζ)

ζ(ζ2ζ0
2−wζ0−wζ)

{
wζ2

r4 + r6+2w2

3r4

(
1

ζ−t1
+ 1

ζ−t2
+ 1

ζ−t3

)}
+

Q(r6+2w2)
3r4

(
1

(ζ−t1)
1

(t1−ζ0)
+ 1

(ζ−t2)
1

(t2−ζ0)
+ 1

(ζ−t3)
1

(t3−ζ0)

)
+Q(1− w(ζ0+ζ)

ζ2ζ0
2 ) + Q(ζ0 +

w
ζ0

2
) (2wζζ0

2+wζ0
3)

(ζ2ζ0
2−w(ζ0+ζ))(ζ0

3−2w)

(15)
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ψ0a(ζ) = Q log(ζ − ζ0)−Q(ζ0 +
w

ζ02
)

(
ζ0

3

(ζ − ζ0)(ζ03 − 2w)

)
(16)

ψ0b(ζ) = Q(1− w(ζ0 + ζ)

ζ2ζ02 ) + Q(ζ0 +
w

ζ02
)

(2wζζ0
2 + wζ0

3)

(ζ2ζ02 − w(ζ0 + ζ))(ζ03 − 2w)
(17)

where

t1 = (2w)
1
3 , t2 =

−(1 +
√

3i)(2w)
1
3

2
, t3 =

(−1 +
√

3i)(2w)
1
3

2
, φ0 = φ0a + φ0b, ψ0 = ψ0a + ψ0b, ω0 = ω0a + ω0b

and Q = G(b1+ib2)
iπ(κ+1) . b1 and b2 are the components of the Burgers vector for the dislocation.

The analytical continuation would be used to determine the remaining stress functions
in Equations (9) and (10). First, the stress functions at the interface L1 need to satisfy
the perfectly bonded condition such that both resultant force and displacement must be
continuous at L1. Second, the traction-free condition must be satisfied at the hole boundary
L2. After performing the analytical continuation in conjunction with the alternation method,
the final expressions of the stress functions for the problem of an approximately triangular
hole with an inclusion layer under an edge dislocation at ζ = ζ0 can be obtained as follows:

φa1(ζ) = −φ0b(ζ) + Πbaω0a(
r2

ζ
) (18)

ωa1(ζ) = Λbaφ0a(
r2

ζ )−ω0b(ζ)

−(1 + Πab)

 C11[
r2
ζ −r2(2w)−1/3

] − C12[
r2
ζ + (1+

√
3i)r2(2w)−1/3

2

] − C13[
r2
ζ + (1−

√
3i)r2(2w)−1/3

2

]
 (19)

φb1(ζ) = (1 + Λba)φ0a(ζ)

−Πab

 C11[
ζ−r2(2w)−1/3

] − C12[
ζ+ (1−

√
3i)r2(2w)−1/3

2

] − C13[
ζ+ (1+

√
3i)r2(2w)−1/3

2

]
 (20)

ωb1(ζ) = (1 + Πba)ω0a(ζ)

− C11[
r2
ζ −r2(2w)−1/3

] + C12[
r2
ζ + (1+

√
3i)r2(2w)−1/3

2

] + C13[
r2
ζ + (1−

√
3i)r2(2w)−1/3

2

] (21)



φan(ζ) = (1 + Λab)φn−1(ζ)

ωbn(ζ) = Λabφn−1(
r2
ζ )− u1(

r2
ζ )Cn1 + u2(

r2
ζ )Cn2 + u3(

r2
ζ )Cn3

φbn(ζ) = Πabωn−1(
r2
ζ ) + Πab [−u1(ζ)Cn1 + u2(ζ)Cn2 + u3(ζ)Cn3]

ωan(ζ) = (1 + Πab)ωn−1(ζ) + (1 + Πab)
[
−u1(

r2
ζ )Cn1 + u2(

r2
ζ )Cn2 + u3(

r2
ζ )Cn3

] n = 2, 3, 4, 5 . . . (22)

{
φn(ζ) = −ω∗bn(

1
ζ )− h1(ζ)C∗n1 + h2(ζ)C∗n2 + h3(ζ)C∗n3

ωn(ζ) = −φbn(
1
ζ )− h1(

1
ζ )C

∗
n1 + h2(

1
ζ )C

∗
n2 + h3(

1
ζ )C

∗
n3

n = 1, 2, 3, 4 . . . (23)

where

Πba =
Gb−Ga

Gbκa+Ga
, Πab = Ga−Gb

Gaκb+Gb
, Λba =

Gbκa−Gaκb
Gaκb+Gb

, and Λab = Gaκb−Gbκa
Gbκa+Ga

ω∗n−1(ζ) =
m( r2

ζ )−m( 1
ζ )

m′(ζ) φ′n−1(ζ) + ωn−1(ζ),

ω∗bn(ζ) =
m( 1

ζ )−m( r2
ζ )

m′(ζ) φ′bn(ζ) + ωbn(ζ)

u1(ζ) =
1

ζ−r2(2w)−1/3 , u2(ζ) =
1

ζ+ (1−
√

3i)r2(2w)−1/3
2

, u3(ζ) =
1

ζ+ (1+
√

3i)r2(2w)−1/3
2

h1(ζ) =
1

ζ−(2w)−1/3 , h2(ζ) =
1

ζ+ (1−
√

3i)(2w)−1/3
2

, h3(ζ) =
1

ζ+ (1+
√

3i)(2w)−1/3
2
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It should be noted that the corrected terms in Equations (19)–(23) should be introduced
to remove singularity points. The coefficients of the corrected terms in Equations (19)–(23)
are (see Appendix A).

Cn1 = (2w4)
1/3

3r2 (1 + r6

2w2 )φ
′
bn

[
(2w)1/3

]
, Cn2 = (1+

√
3i)(2w4)

1/3

6r2 (1 + r6

2w2 )φ
′
bn

[
−(1+

√
3i)(2w)1/3

2

]
Cn3 = (1−

√
3i)(2w4)

1/3

6r2 (1 + r6

2w2 )φ
′
bn

[
(−1+

√
3i)(2w)1/3

2

]
, C∗n1 = (2w4)

1/3

3 (1 + 1
2w2 )φ

′
bn

[
(2w)1/3

]
C∗n2 = (1+

√
3i)(2w4)

1/3

6 (1 + 1
2w2 )φ

′
bn

[
−(1+

√
3i)(2w)1/3

2

]
C∗n3 = (1−

√
3i)(2w4)

1/3

6 (1 + 1
2w2 )φ

′
bn

[
(−1+

√
3i)(2w)1/3

2

]
With regard to an approximately square hole with an inclusion layer, the mapping

function in Equation (1) becomes:

z = m(ζ) = (ζ +
w
ζ3 )(0 ≤ w <

1
3
) (24)

The homogenous solution pertaining to the problem of an approximately square hole
with an inclusion layer under an edge dislocation at ζ = ζ0 can be obtained as follows:

φ0a(ζ) = Q log(ζ − ζ0) (25)

φ0b(ζ) = Q log(1− w(ζ0
2 + ζ0ζ + ζ2)

ζ3ζ03 ) (26)

ω0a(ζ) =
Qwζ3

r6(ζ−ζ0)
+ Qw2ζ4

r6(ζ3ζ0
3−wζ0

2−wζ2−wζζ0)

+
Q(r8+3w2)
4r6(ζ−ζ0)

(
1

(ζ0−t1)
+ 1

(ζ0−t2)
+ 1

(ζ0−t3)
+ 1

(ζ0−t4)

)
+Q log(ζ − ζ0)−Q(ζ0 +

w
ζ0

2
)
(

ζ0
4

(ζ−ζ0)(ζ0
4−3w)

) (27)

ω0b(ζ) =
Qw2(3ζ2ζ0

2+2ζ3ζ0)
r6(ζ3ζ0

3−wζ0
2−wζ2−wζζ0)

+ r8+3w2

4r6

(
1

ζ−t1
+ 1

ζ−t2
+ 1

ζ−t3
+ 1

ζ−t4

)
Q(3wζ0

2+wζ2+2wζζ0)
ζ(ζ3ζ0

3−wζ0
2−wζ2−wζζ0)

+
Q(r8+3w2)

4r6

(
1

(ζ−t1)
1

(t1−ζ0)
+ 1

(ζ−t2)
1

(t2−ζ0)
+ 1

(ζ−t3)
1

(t3−ζ0)
+ 1

(ζ−t4)
1

(t4−ζ0)

)
+Q log(1− w(ζ0

2+ζ0ζ+ζ2)
ζ3ζ0

3 ) + Q(ζ0 +
w

ζ0
3
) 3wζ0

3ζ2+2wζ0
4ζ+wζ0

5

(ζ3ζ0
3−w(ζ0

2+ζζ0+ζ2))(ζ0
4−3w)

(28)

ψ0a(ζ) = Q log(ζ − ζ0)−Q(ζ0 +
w

ζ03
)

(
ζ0

4

(ζ − ζ0)(ζ04 − 3w)

)
(29)

ψ0b(ζ) = Q log(1− w(ζ0
2+ζ0ζ+ζ2)
ζ3ζ0

3 )

+Q(ζ0 +
w

ζ0
3
) 3wζ0

3ζ2+2wζ0
4ζ+wζ0

5

(ζ3ζ0
3−w(ζ0

2+ζζ0+ζ2))(ζ0
4−3w)

(30)

where t1 = (3w)
1
4 t2 = (3w)

1
4 it3 = −(3w)

1
4 t4 = −(3w)

1
4 i

The analytical continuation would be used to determine the remaining stress functions
in Equations (9) and (10). Similar to the previous approach, the final expressions of the
stress functions for the problem of a square hole with an inclusion layer under an edge
dislocation at ζ = ζ0 can be obtained as follows:

φa1(ζ) = −φ0b(ζ) + Πbaω0a(
r2

ζ
) (31)

ωb1(ζ) = (1 + Πba)ω0a(ζ)

− C11[
r2
ζ −r2(3w)−1/4

] + C12[
r2
ζ +r2(3w)−1/4i

] − C13[
r2
ζ +r2(3w)−1/4

] + C14[
r2
ζ −r2(3w)−1/4i

] (32)
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φb1(ζ) = (1 + Λba)φ0a(ζ)

−Πab

{
C11[

ζ−r2(3w)−1/4
] − C12[

ζ−r2(3w)−1/4i
] + C13[

ζ+r2(3w)−1/4
] − C14[

ζ+r2(3w)−1/4i
]
}

(33)

ωa1(ζ) = Λbaφ0a(
r2

ζ )−ω0b(ζ)

−(1 + Πab)

{
C11[

r2
ζ −r2(3w)−1/4

] − C12[
r2
ζ +r2(3w)−1/4i

] + C13[
r2
ζ +r2(3w)−1/4

] − C14[
r2
ζ −r2(3w)−1/4i

]
}

(34)

φan(ζ) = (1 + Λab)φn−1(ζ)

ωbn(ζ) = Λabφn−1(
r2
ζ )− u1(

r2
ζ )Cn1 + u2(

r2
ζ )Cn2 − u3(

r2
ζ )Cn3 + u4(

r2
ζ )Cn4

φbn(ζ) = Πabωn−1(
r2
ζ ) + Πab [−u1(ζ)Cn1 + u2(ζ)Cn2 − u3(ζ)Cn3 + u4(ζ)Cn4]

ωan(ζ) = (1 + Πab)ωn−1(ζ) + (1 + Πab)
[
−u1(

r2
ζ )Cn1 + u2(

r2
ζ )Cn2 − u3(

r2
ζ )Cn3 + u4(

r2
ζ )Cn4

] n = 2, 3, 4, 5 . . . (35)

{
φn(ζ) = −ω∗bn(

1
ζ )− h1(ζ)C∗n1 + h2(ζ)C∗n2 − h3(ζ)C∗n3 + h4(ζ)C∗n4

ωn(ζ) = −φbn(
1
ζ )− h1(

1
ζ )C

∗
n1 + h2(

1
ζ )C

∗
n2 − h3(

1
ζ )C

∗
n3 + h4(

1
ζ )C

∗
n4

n = 1, 2, 3, 4 . . . (36)

where

u1(ζ) =
1

ζ−r2(3w)−1/4 , u2(ζ) =
1

ζ−r2(3w)−1/4i
, u3(ζ) =

1
ζ+r2(3w)−1/4 , u4(ζ) =

1
ζ+r2(3w)−1/4i

h1(ζ) =
1

ζ−(3w)−1/4 , h2(ζ) =
1

ζ−(3w)−1/4i
, h3(ζ) =

1
ζ+(3w)−1/4 , h4(ζ) =

1
ζ+(3w)−1/4i

The coefficients of the corrected terms in Equations (31)–(36) are obtained as (see
Appendix A).

Cn1 = (3w3)
1/2

4r4 (1 + r8

3w2 )φ
′
bn

[
(3w)1/4

]
, Cn2 = (3w3)

1/2

4r4 (1 + r8

3w2 )φ
′
bn

[
−(3w)1/4i

]
Cn3 = (3w3)

1/2

4r4 (1 + r8

3w2 )φ
′
bn

[
−(3w)1/4

]
, Cn4 = (3w3)

1/2

4r4 (1 + r8

3w2 )φ
′
bn

[
(3w)1/4i

]
C∗n1 = (3w3)

1/2

4 (1 + 1
3w2 )φ

′
bn

[
(3w)1/4

]
, C∗n2 = (3w3)

1/2

4 (1 + 1
3w2 )φ

′
bn

[
−(3w)1/4i

]
C∗n3 = (3w3)

1/2

4 (1 + 1
3w2 )φ

′
bn

[
−(3w)1/4

]
, C∗n4 = (3w3)

1/2

4 (1 + 1
3w2 )φ

′
bn

[
(3w)1/4i

]
It should be noted that the stress functions of an irregular hole with n ≥ 4 can be

obtained in a similar manner. Owing to the limitation of space, only the stress functions
with n = 2 associated with an approximately triangular hole and the stress functions with
n = 3 associated with an approximately square hole are presented.

4. Singular Integral Equations

Consider a crack in an infinite matrix where the corresponding complex potentials are
given by

φ(ζ) = φ0(ζ) + φa1(ζ) + φa2(ζ) ζ ∈ Sa (37)

ω(ζ) = ω0(ζ) + ωa1(ζ) + ωa2(ζ) ζ ∈ Sa (38)

The resultant force along the crack surface can be calculated by substituting φ(ζ) and
ω(ζ) from Equations (37) and (38) into Equation (5) and integrating along the crack surface.
The singular integral equation with logarithmic kernels can be obtained as follows by
employing the superposition method:

∫
2a

K(ζ, ζ, ζ0, ζ0)Q(s)ds +
∫
2a

Kcon(ζ, ζ, ζ0, ζ0)Q(s)ds + c1 + ic2 = −Fy + iFx (39)

where
K(ζ, ζ, ζ0, ζ0) = L0(ζ, ζ, ζ0, ζ0) + La1(ζ, ζ, ζ0, ζ0) + La2(ζ, ζ, ζ0, ζ0) (40)

Kcon(ζ, ζ, ζ0, ζ0) = L0con(ζ, ζ, ζ0, ζ0) + La1con(ζ, ζ, ζ0, ζ0) + La2con(ζ, ζ, ζ0, ζ0) (41)
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L0Q + L0conQ = φ0 +
m(ζ)

m′(ζ)
φ′0(ζ) + ψ0(ζ) (42)

La1Q + La1conQ = φa1 +
m(ζ)

m′(ζ)
φ′a1(ζ) + ψa1(ζ) (43)

La2Q + La2conQ = φa2 +
m(ζ)

m′(ζ)
φ′a2(ζ) + ψa2(ζ) (44)

with L0,La1,La2 and L0con,La1con, La2con are the coefficients of Q and Q, respectively, from
Equations (42)–(44).

For the problem of an infinite matrix under a remote uniform tensile load, the re-
sultant force −Fy + iFx can be calculated by substituting the homogeneous solution from
Equations (7) and (8) into Equations (22) and (23) as well as Equations (35) and (36) for an
approximately triangular hole and approximately square hole, respectively:

−Fy(ζ) + iFx(ζ) = φ0 +
m(ζ)

m′(ζ)
φ0′(ζ) + ψ0(ζ)

+φa1 +
m(ζ)

m′(ζ)
φa1′(ζ) + ψa1(ζ)

+φa2 +
m(ζ)

m′(ζ)
φa2′(ζ) + ψa2(ζ)

(45)

The single-value condition of the dislocation density function along the crack border
must be satisfied such that: ∫

2a

[b1(s) + ib2(s)] ds = 0 (46)

By separating the singular integral equation (Equation (39)) into real and imaginary
parts, we obtain the following two singular integral equations:∫

Re
[
K(ζ, ζ, ζ0, ζ0) + Kcon(ζ, ζ, ζ0, ζ0)

]
b1(s)ds

+
∫

Im
[
−K(ζ, ζ, ζ0, ζ0) + Kcon(ζ, ζ, ζ0, ζ0)

]
b2(s)ds + C1 = −Fy(ζ0)

(47)

∫
Im
[
K(ζ, ζ, ζ0, ζ0) + Kcon(ζ, ζ, ζ0, ζ0)

]
b1(s)ds

+
∫

Re
[
K(ζ, ζ, ζ0, ζ0)− Kcon(ζ, ζ, ζ0, ζ0)

]
b2(s)ds + C2 = Fx(ζ0)

(48)

The coefficients of the dislocation density function bi(s) can then be solved numerically
by Equations (45)–(48).

5. Stress Intensity Factors

To determine the coefficients of the dislocation density function bi(s), we divide the
crack into N line segments. The crack surface is composed of three parts: left tip, middle
segments, and right tip. To approximate the singular solution of the dislocation density
function along the crack, the dislocation density function at the right and left tips should
be treated as a square-root singularity, whereas the dislocation density function along
the middle segments would be considered as a linear interpolation relationship. The
formulations of the dislocation density function in terms of the local coordinate system
sj(1 ≤ j ≤ N) are defined as follows [26]:

bi(s1) = bi,1

(√
2d1

d1+s1
− 1
)
+ bi,2 le f t tip o f the crack

bi(sN) = bi,N+1

(√
2dN

dN−sN
− 1
)
+ bi,N right tip o f the crack

bi(sj) = bi,j
dj−sj

2dj
+ bi,j+1

dj+sj
2dj

middle segments

(49)

where i = 1 or 2, bi,j is the coefficient of the dislocation density function, and dj(1 ≤ j ≤ N)
represents half of the length of each line segment. N + 2 algebraic equations are established
for solving N + 2 coefficients of the dislocation density function by substituting the above
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relationship of the dislocation density function into the singular integral Equations (47)
and (48) and satisfying the single-value condition Equation (46). Certain exact integration
formulae are used to solve a system of algebraic equations [26]:

I1 =
2d∫
0

(√
2d√
r − 1

)
log(r)dr = 2d(log(2d)− 3)

I2 =
2d∫
0

log(r)dr = 2d(log(2d)− 1)

I3 =
2d∫
0

(√
2d√
r − 1

)
log(2d− r)dr = 2d(log(2d)− 3 + 4 log(2d))

I4 =
2d∫
0

2d−r
2d log(r)dr = d(log(2d)− 1.5)

I5 =
2d∫
0

r
2d log(r)dr = d(log(2d)− 0.5)

(50)

and the Gauss–Chebyshev integration rule is used:

∫ d

−d
G(s)ds =

πd
M

M

∑
m=1

G(sm) sin
(

2m− 1
M

π

)
with sm = d cos

(
2m− 1

2M
π

)
; m = 1, 2, . . . , M (51)

After obtaining the coefficients of the dislocation density function, the stress intensity
factors can be determined as follows [26]:

KA = KIA − iKI IA = −e−iγ(2π)
3
2 lim

s→0

√
sb(s) = −(2π)

3
2
√
(2d1)e−iλ(b1,1 + ib2,1)

KB = KIB − iKI IB = e−iγ(2π)
3
2 lim

s→l

√
(a− s)b(s) = (2π)

3
2
√
(2dN+1)e−iλ(b1,N+1 + ib2,N+1)

(52)

where b(s) = b1(s) + ib2(s). The inclined angle γ is defined as the angle between the x-axis
and the direction of the tensile load.

6. Results

This study is aimed at investigating the failure behavior of a non-circular hole with an
inclusion layer embedded in an infinite crack matrix under an in-plane remote uniform
load. The SIF depends on the distance between a crack and the non-circular hole with an
inclusion layer, material properties, and geometry of the non-circular hole. To prevent
certain singular points in the continuity equations, the corrected terms, Equations (A6)
and (A10), should be introduced. The contribution of these corrected terms is displayed in
Figure 6.
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3 3
2 2
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(2 ) lim ( ) ( ) (2 ) (2 ) ( )

i i
A IA IIA s

i i
B IB IIB N N Ns l
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Figure 6. (a) Real parts of the constants (Cn2 and Cn3); (b) imaginary parts of the constants (Cn2 and
Cn3); (c) constants (Cn1) for a triangular hole problem (w = 0.15, Gb/Ga = 2, r = 1.05).

Note that the coefficient of the corrected term Cn1 is a real number and those of the
corrected terms Cn2 and Cn3 are two conjugate complex numbers. It is noteworthy that
the coefficients gradually decrease to zero when the distance between the dislocation and
the non-circular hole increases, as shown in Figure 6. Furthermore, the contribution of
the corrected terms reduces with the increasing number of iterations, as shown in Table 1.
According to this Table, the contribution of the corrected terms from the first to third
iterations for a triangular hole problem is 72.7%, 18.7%, and 8.6%, respectively. The first
two terms contribute >90%, which shows the rapid convergence of the proposed method.

Table 1. Value of corrected constant (Cn1) and its contribution for a triangular hole problem.

Corrected Constant Value Contribution

C11 −1.1171 72.7%
C21 −0.2866 18.7%
C31 −0.1327 8.6%

(w = 0.15, Gb/Ga = 2, r = 1.05, z0 = 2.

In the first part of this section, an approximately triangular hole with an inclusion layer
(n = 2) and a line crack (2a = 1) is considered. To verify the correctness of the presented
analytical results, the calculated stress intensity factors at Tip A for an approximately
triangular hole problem are compared with the results obtained using the finite element
method, as shown in Figure 7. The analytical solutions of the SIF agree well with the results
obtained using the finite element method.
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The results show that the contribution of the inclusion layer becomes significant
when the crack and inclusion layer approach each other. In addition, the stiffer inclusion
(Gb/Ga = 4, 3, 2) layer would decrease the SIF when the crack approaches the inclusion
layer. In contrast, the softer inclusion layer (Gb/Ga = 0.9) would increase the SIF when
the crack approaches the inclusion layer, except when the crack is sufficiently close to the
inclusion layer. This can be explained by the fact that the presence of the inclusion layer
could suppress the crack propagation when the crack tip is adequately close to the inclusion
layer. In general, crack propagation would be enhanced when the crack is close to the softer
inclusion layer and suppressed when it is close to the stiffer inclusion layer. The Mode-I SIF
at Tip B is less affected by the inclusion layer than that at Tip A. This is because the distance
between Tip B and a triangular hole is larger than that between Tip A and a triangular hole.
It is noteworthy that the softer inclusion (Gb/Ga = 0.9) could decrease the SIF at Tip A
when a crack is adequately close to the hole as mentioned above. Meanwhile, the softer
inclusion (Gb/Ga = 0.9) increases the SIF at Tip B when the crack approaches a hole. From
the experimental observation regarding the evolution of Cr/CrN multilayer coatings on
the titanium Ti6Al4V alloy during indentation [4], it is determined that the cracks exist only
in the CrN layers after the indentation test (see Figure 1c). The micro-crack initiates at the
interface Cr/CrN and grows toward the CrN layer. This is because the shear modulus of
Cr and CrN is 115 GPa and 76.6 GPa, respectively [27]. This indicates that the Cr and CrN
could be regarded as the stiffer and softer inclusion layer, respectively. This phenomenon
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demonstrates that crack propagation occurs in the region of the CrN inclusion layer (softer),
whereas the Cr inclusion layer (stiffer) can be regarded as a blocking layer to suppress the
crack propagation (see Figure 1c). A similar phenomenon of failure behavior can also be
observed in the thermal barrier coatings produced after hot corrosion [28]. When the crack
is farther from a triangular hole with increasing the distance h/2a, the contribution of the
triangular hole to the SIF reduces [29].

The stiffer inclusion layer would exert a retardation effect on crack propagation. The
retardation effect can be explained by the trapping mechanism of the dislocation problem.
For the interaction problem associated with a coated approximately triangular hole under
an edge dislocation [10], the dislocation would be initially attracted by a hole and then
repelled by the stiffer coating layer when an edge dislocation approaches the stiffer coating
layer. This is the so-called trapping mechanism.

In the second part, an approximately square hole having an inclusion layer with n = 3
in Equation (1) is considered. The dimensionless Mode-I SIFs at Tip A and Tip B versus the
dimensionless h/2a with different material properties are shown in Figure 9.
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The Mode-I SIF of an approximately square hole with an inclusion layer has a tendency
similar to that of an approximately triangular hole with an inclusion layer, as shown in
Figure 8. The softer inclusion layer would increase the SIF when the crack is in front of
the inclusion layer whereas the stiffer inclusion layer would decrease the SIF. Thus, the
stiffer inclusion layer can restrict the crack propagation and generate a retardation effect.
In the second section, different configurations of an irregular hole with an inclusion layer
obtained by controlling the shape factor are shown in Figures 4 and 5. The effect of the
shape factor on the SIF for an approximately triangular hole with a stiffer inclusion layer is
shown in Figure 10. The result indicates that the retardation mechanism is stronger for an
approximately triangular hole with a stiffer inclusion layer when the shape factor is larger.
This is because the inclusion layer becomes shaper when the shape factor increases.
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layer (a) at Tip A (b) at Tip B (r = 1.05, Gb/Ga = 4).

Similar results are observed for an approximately square hole with a stiffer inclusion
layer as shown in Figure 11. In this study, an approximately triangular hole with an
inclusion layer (n = 2) and an approximately square hole with an inclusion layer (n = 3) are
demonstrated as representations of an irregular hole with an inclusion layer. From these
two cases, both an approximately triangular hole and an approximately square hole, with
stiffer inclusion layers would exert a retardation effect on crack propagation depending on
the shape factor and material properties.
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7. Conclusions

The failure analysis of an interaction problem of a non-circular hole with an inclu-
sion layer embedded in an infinite crack matrix under a remote in-plane uniform load
is presented in this study. The solution to the stress functions that are holomorphic in
different regions is derived in a series form by the conformal mapping method and ana-
lytical continuation with an alternating method. Based on the superposition method, a
system of singular integral equations is established. Furthermore, the coefficients of the
dislocation density functions are obtained numerically and can be related to the SIFs. The
theoretical results have a good agreement with the simulation method. In addition, the
fracture behavior of the crack is strongly influenced by a non-circular hole when the crack is
far away from the non-circular inclusion layer, whereas the contribution of the non-circular
inclusion layer becomes more significant when the crack and non-circular inclusion layer
approach each other. Owing to the larger shape factor, the effect of geometry would be
more intensified. In addition, the corrected terms and SIF would be rapidly convergent
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when the number of iterations becomes larger. It is important to note that crack propagation
would be prevented by the stiffer inclusion layer even when a defect such as a hole resides
in the inclusion layer.
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Appendix A. Determination of Corrected Constants

The potential function ωbn(ζ) in Equation (21) contains certain divergent terms owing
to the presence of the mapping function as follows:

ωbn(ζ) =
m( r2

ζ )

m′(ζ)
φ′bn(ζ) + ψbn(ζ) (A1)

For an approximately triangular hole,

m( r2

ζ )

m′(ζ)
=

( r2

ζ + wζ2

r4 )

(1− 2w
ζ3 )

=
wζ2

r4 +
1
r4 (r6 + 2w2)ζ2

(ζ3 − 2w)
(A2)

For an approximately square hole,

m( r2

ζ )

m′(ζ)
=

(
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r6

)
(1 − 3w

ζ4

) =
wζ2

r6 +
1
r6 (r8 + 3w2)ζ3

(ζ4 − 3w)
(A3)

When continuity conditions are employed, three singular terms in ωbn(
r2

ζ ) for an

approximately triangular hole problem and four singular terms in ωbn(
r2

ζ ) for an approxi-
mately square hole problem are observed in Equations (A4) and (A5), respectively:
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To remove these singular terms, three corrected constants (Cn1, Cn2, and Cn3) for an
approximately triangular hole case and four corrected constants (Cn1, Cn2, Cn3, and Cn4)
for an approximately square hole case are introduced as follows:

For an approximately triangular hole,

ωbn(
r2

ζ
) =


ψbn(

r2

ζ ) +
w
ζ2 φbn

′( r2

ζ )
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ζ− r2

(2w)
1
3
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ζ+ (1+
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3i)r2(2w)
− 1

3
2

+ Cn3

ζ+ (1−
√

3i)r2(2w)
− 1

3
2

(A6)

where

Cn1 =
(2w4)

1/3

3r2 (1 +
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For an approximately square hole,
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where
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