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Abstract: At alpine regional airports, aircraft are covered with frozen ice when they encounter
extreme weather such as heavy snow or frost. The movement parts of aircraft cabin doors, flaps and
landing gear may be affected due to the infiltration of freezing ice, and the movement stagnation may
occur when the the accumulation of ice is more serious. This paper sets up a mechanical performance
test of frozen ice for this engineering problem to provide data that is beneficial to the selection of
the mechanism drive and the determination of ice-breaking loads. The test is conducted based on
the standard tensile shear test. In order to overcome problems such as the poor icing effect of the
traditional specimen or the easy damage of the specimen ice, we improved the structure of the
specimen and the method of the test. According to the characteristics of growth of frozen ice, we
introduced freezing time, type of water quality and adhesion materials as test variables. The results
show that: the ice adhesion strength of frozen ice increases and then decreases (−15 ◦C∼−55 ◦C).
At the ambient temperature of −15 ◦C∼−55 ◦C and freezing for 2 h∼6 h, the ice adhesion strength
of aluminum alloy surface ranges from 0.009 MPa to 0.568 MPa, and that of frozen ice on a silicone
rubber surface is 0.005 MPa∼0.147 MPa. The duration of freezing did not significantly affect the
adhesion strength of frozen ice. Among the three water qualities, the frozen ice from distilled water
has the greatest adhesion strength, the lake water is the most medium, and the sea water is the
smallest. The results of this test can be widely used in the determination of the ice-breaking load of
civil aircraft, amphibious aircraft, ships, and the design of anti-ice/de-icing systems.

Keywords: ice adhesion strength; frozen ice; ambient temperature; duration of freezing; type of
water quality; aviation materials

1. Introduction

Parking at airports in northern Heilongjiang province, the Qinghai-Tibet Plateau and
Xinjiang province, aircraft such as the ARJ21-700, which is well-selling in the Chinese
mainland, and the AG-600, for forest fire fighting and maritime rescue, will not take off
normally, and the surface of the aircraft could be covered with frozen ice for hours of
exposure in extreme weather such as heavy snow, frost drop and freezing rain. When
the ice on the surface of aircraft increases to a certain extent, it may cause the failure of
opening cabin doors, wings, flaps, seams and even engine blades can be frozen. In addition,
amphibious aircraft and ships sailing at high latitudes also face a heavy amount of work
over de-icing or ice-breaking for a long time.

Researchers have studied the influence of surface roughness of the adhesion surfaces,
environmental temperature, ice type, ice density and other factors on the ice adhesion
strength, and found that: the ice adhesion strength increases with the surface roughness;
the ice adhesion strength does not show a linear relationship with ambient temperature, the
liquid water content, the annealing time and other variables, the ice adhesion strength in-
creases flat with the section speed; and the ice adhesion strength decreases with the increase
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of the water contact angle [1–3]. Gagnon, Robert et al. [4] carried out ice adhesion tests that
were conducted on five substrates with differing ice-phobic coatings. Rectangular-plate ice
samples, freeze-bonded onto the surfaces, were pushed from one edge at 0.5 mm/s until
shear-detachment occurred. Test results at −12 ◦C showed a wide variation of ice adhesive
strength between the coatings (0.022∼0.216 MPa). At −22 ◦C, the preparation method
usually led to the contact region of ice samples that were only partially bonded to the outer
surface of the ice-phobic coatings of the substrates. For saline ice generated by spraying
at −12 ◦C and −22 ◦C, no freeze-bonding occurred on any of the surfaces. Rnneberg,
Sigrid et al. [5] investigated the effect of different types of ice on ice adhesion strength.
The ice adhesion strength is measured with a centrifugal adhesion test and varied from
0.78 ± 0.10 MPa for precipitation ice, 0.53 ± 0.12 MPa for in-cloud ice to 0.28 ± 0.08 MPa for
bulk water ice. Additionally, the results indicate that the ice adhesion strength inversely
correlates with the density of ice. Rebekah G. Douglass et al. [6] found that a higher
impact velocity and higher surface roughness would lead to a higher adhesion strength of
impact ice on isotropic metals. M.L.A. Pervier et al. [7] proposed a new shear test for ice
environment, forming ice on the fixture containing the sample material, and then forced
loading and damage. Taking the maximum test value, it was found that the adhesion shear
strength value of alloy impact on ice with a different surface finish was between 2∼14 MPa.
Matsushita, Hisao [8] performed the adhesion force and shear strength measurements on
the sea ice, with an adhesion strength of around 50 kPa and a shear strength of between 0.2
and 0.3 MPa. M.C. Chu et al. [9] found that the adhesion strength of frost and glaze ice was
0.12∼0.41 MPa, a weak statistical linear correlation between wind speed and droplet size,
and the shear strength of the ice was independent of the air temperature of the tunnel, the
thickness of the accumulation, and the material of the substrate. Chen, Tingkun et al. [10]
found that the ice bonding strength at aluminum alloy surfaces at room temperature was
twice that at cooler surfaces (e.g., 5 ◦C), because surface water droplets at a higher initial
temperature can be diffuse enough and can form a large contact area. Zhang, Y.J. [11] found
that the ice shear strength of fresh water first increases and then decreases as the ambient
temperature decreases; the ice adhesion shear strength of seawater decreases linearly as
the temperature decreases. Jin Jingfu et al. [12] found that the elastic modulus, elasticity
coefficient, and distribution of the coating all significantly affected the ice adhesion strength
on the substrate. The icing adhesion strength can be reduced by increasing the surface
elasticity of the material.

Furthermore, Dawood, Bishoy et al. [13] established a test framework using single
cantilever, straight shear and push shear tests to study the effect of test methods on ice
adhesion strength, and found that the apparent toughness of the zero-angle push-in test
was an order of magnitude higher than the straight shear test. Beeram, Prashanth et al. [14]
used the ice shear test mechanism to measure the ice adhesion strength, which studied
the effectiveness of different surface and superhydrophobic coatings, and verified the ice
adhesion test model. Pan Huan [15] used neural network technology to build an ice-type
prediction model. Zhang Yongjie [16] has summarized the common methods used to
measure the mechanical properties of ice. Dong, Yiqun [17] applies a deep neural network
to flight parameter identification to detect and characterize aircraft icing conditions. De-
icing technology is expensive and time-consuming. In order to reduce the cost, time and
physical labor related with deicing, researchers have conducted a lot of research on the ice
adhesion strength [18], but most of the experiments have focused on the impact ice in flight.
The ice type and consideration factors of the impact ice do not apply to the frozen ice, and
the lack of factors such as extreme environmental temperature, freezing time, water quality
type, and adhesive material are considered. In view of the above engineering problems,
this paper sets up the frozen ice mechanical performance test, and the test data can provide
data support for the drive type selection and ice-breaking load determination of the typical
aircraft mechanism.
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2. Test Design of the Adhesion Strength of the Frozen Ice
2.1. Experiment Design

The nature of this test is a component-level static test, and the basic information of the
test is shown in Table 1.

Table 1. Basic information of test.

Number Project Content

1 Test objective Measure the shear adhesion strength of the aviation material to the ice layer

2 Trial basis Outline of Mechanical Property of Civil Machine; GB/T 13936-2014 Methods for
Determination of Tensile Shear Strength of Rubber Rubber and Metal

3 Test item The ice adhesion strength test of aluminum alloy-ice-aluminum alloy (AL-Ice-AL);
The ice adhesion strength test of aluminum alloy-ice-silicone rubber (AL-Ice-SR)

4 Laboratory environment Temperature: 23 ◦C ± 3 ◦C; Humidity: 50% RH ± 10% RH

5 Proving time December 2021–March 2022

To calibrate the ice-breaking load at the separation surface of cabin doors, landing
gear and moving wing surface, the test extracts the materials of moving parts separation
surface (such as aluminum alloy, silicone rubber of sealing belt) to make test parts, studying
the adhesion strength of frozen ice to different materials under different environmental
temperatures, freezing times, and types of water quality.

Given that the ground atmospheric environment may contain impurities and the water
quality of amphibious aircraft is more complex, this test used three kinds of water quality
(distilled water, lake water and seawater), where the lake water is the surface water after the
rain moat used to simulate the frozen ice of the aircraft and the frozen ice of the amphibious
aircraft berthing. To verify the statement that “the longer the freezing time, the stronger the
freezing time is”, the duration of freezing is introduced as the test variable. In addition,
the test combines the ambient temperature of the civilian machine to freeze the ice. For the
parameters such as water droplet diameter, surface roughness of material, loading rate,
type of ice, etc., affecting the mechanical properties of frozen ice but not included in the
test variable study table, we assigned them fixed values according to the actual working
conditions of the aircraft.

At present, there are four universal test methods for the mechanical properties of
the ice block, namely: straight pull shear, direct push shear, cylindrical push shear and
cylindrical pull shear. Among them, the cylindrical push shear and the cylindrical pull
shear are beneficial to the formation of uniform impact ice, so it is mostly used to study the
impact ice, and the cost is high. The straight pull shear has the lowest cost and convenient
operation, which is also the choice of this test.

The test matrix elements include test items, test equipment, test implementation
method and test operation process. Among them, the test items are divided into two
categories according to the substrate materials of the test items, namely, aluminum alloy–
ice–aluminum alloy static test (test of AL-Ice-AL) and aluminum alloy–ice–silicone rubber
static test (test of AL-Ice-SR). The preparation, icing, insulation and tensile shear failure of
specimens are conducted according to the test items. The test piece information is shown
in Table 2, and the test breakdown item matrix is shown in Table 3.
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Table 2. Test piece information sheet.

Project AL-Ice-AL Static Test Piece AL-Ice-SR Static Test Piece

Sample composition Two aluminum alloy plates An aluminum alloy plate and
an silicone rubber board

Material of test piece 7050-T7451 7050-T7451/TX-FROL 50

Size of test piece 25 × 25 × 10 25 × 25 × 10

Use of test piece Test the ice adhesion strength
on the aluminum alloy surface

Test the ice adhesion strength
on the silicone rubber surface

Table 3. Test the subdivision item matrix table.

Test Item Sub-Items of the Experiment Freeze for 2 h Freeze for 4 h Freeze for 6 h

Distilled water at −15 ◦C 2 2 2
Distilled water at −25 ◦C 3 3 3

Lake water at −25 ◦C 3 3 3
Static test of AL-Ice-AL Sea water at −25 ◦C 3 3 3

Distilled water at −35 ◦C 3 3 3
Distilled water at −45 ◦C 3 3 3
Distilled water at −55 ◦C 2 2 2

Distilled water at −15 ◦C 2 2 2
Distilled water at −25 ◦C 3 3 3

Lake water at −25 ◦C 3 3 3
Static test of AL-Ice-SR Sea water at −25 ◦C 3 3 3

Distilled water at −35 ◦C 3 3 3
Distilled water at −45 ◦C 3 3 3
Distilled water at −55 ◦C 2 2 2

Note: The lake water is taken from the Xi’an moat river, and the sea water is taken from Bohai Bay, China.

2.2. Test Equipment

The equipment and instruments selected in the test are all calibrated and measured
within the validity period. The test equipment information is shown in Table 4.

Table 4. Test equipment and test instruments.

Number Device Unit Type Use

1 Temperature and humidity meter HTC-1 Measure ambient humidity

2 Number of vernier calipers 0∼150 mm Measure the ice specification

3 Damand heat test box for high and low
temperature alternating GDJS-1000 Make frozen ice specimens

4 Electronic universal test machine UTM5205HB Apply the load

5 Type S sensor BSS-200 kg Measure the ice-breaking load

6 Test machine environment box TS-160 Provide the test temperature environment for the
specimen

7 Camera - Take a picture

2.3. Implementation Method of the Test

The implementation method specifically includes two parts: specimen design and
production, specimen icing and thermal insulation.
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2.3.1. Test Piece Design and Production Principle

Because of the size effect of the ice itself, the larger the size, the lower the strength
of the ice [19], and the test uses the standard piece size of GB/T 13936-2014 test. The
specification of the test ice layer is 25 × 25 × 2 mm3.

The static test piece of each AL-Ice-AL consists of two pieces of aluminum alloy and
a piece of ice. The test piece requires a uniform roughness (Ra = 1.6) on the icing surface.
The Specimens in the experiment were formed in batches by a precision milling process,
and the roughness of each specimen was measured successively by TR200 roughness
tester (indicating value error ±10%, indicating value variability ±6%). Three points on the
adhesion surface of a specimen were randomly selected. If the mean roughness of the three
points was less than Ra = 1.6, the test piece was considered to be qualified. The specimen is
used to simulate the frozen ice adhesion conditions on the surface of the aircraft motion
mechanism. Additionally, the icing effect of the specimen in the beginning of the test shows
that the greater the mass of the metal block, the easier it is to adhere to the ice layer on
the specimen surface, and the stronger the ice layer adhesion relationship is. The test is to
let the test block reduce to the predetermined freezing temperature, and then through the
drop method between the metal or between the metal block and the silicone rubber block
to form ice in the process of water freezing, which will release a certain amount of heat. At
this point, the most direct and rapid way of heat dissipation is to the attached metal block,
while the heat dissipation through the environment is relatively slow. Therefore, on the
one hand, under the condition of certain thermal conductivity and other factors, the larger
the mass of the metal block, the easier it is to absorb the heat released by water freezing,
and the more beneficial it is to icing. On the other hand, the increase of the thickness of
the test block will also lead to the additional bending moment in the tensile shear test.
When the additional bending moment increases to a certain extent, the tangential failure
test may degenerate into a combined tangential and normal failure test, and the obtained
shear adhesion strength will no longer be reliable. After repeated attempts, we found that
the test piece under 10 mm thickness has a good ice effect relatively.

The static test piece of each AL-Ice-SR consists of a piece of aluminum alloy, a piece
of silicone rubber and a piece of ice. The test silicone rubber blocks are processed and
manufactured in accordance with the HG6-677-74 national defense industry silicone rubber
standard. The machine factory we are working with has a TR200 roughness detector and
other monitoring equipment to ensure that the surface quality of the test parts reaches
the level of the door sealing belt. The specimen is used to simulate the door with sealed
seal attached by frozen ice. Considering the relatively small stiffness of the silicone rubber,
a large deformation may occur in the test process, and the deformation will produce an
uneven stress in the frozen area and lead to the error of the shear test. Therefore, a raised
structure is designed on the upper and lower non-adhesion surfaces of the silicone rubber
block, and the structure is combined with the fixture, so as to prevent the large lateral
sliding of the silicone rubber block in the test process and ensure the test accuracy.

2.3.2. Method of Specimen Icing and Thermal Insulation

The ambient temperature of the outer field is combined by many factors such as
sunshine and atmospheric conditions, and the ambient temperature makes nonlinear
complex changes with time. Therefore, the simulation process of temperature change in
freezing environment is more complicated.

Janjua, Zaid A. [20], University of Nottingham, studied the effect of ambient tem-
perature and freezing temperature on adhesion strength, and found that the ambient
temperature was much greater than the effect of freezing temperature on icing adhesion
strength. Therefore, the secondary factor that is named the ice-making temperature can be
simplified as a fixed value that is set above the test temperature point (10 ◦C ± 3 ◦C), and
the cooling rate shall be less than or equal to 3 ◦C per minute. The experiment simulated
the formation process of freezing ice by a dropping method. When the mold is filled with
the frozen ice layer, move the specimen to the specified temperature point environment



Aerospace 2022, 9, 589 6 of 17

(−55 ◦C, −45 ◦C, −35 ◦C, −35 ◦C, −25 ◦C, −15 ◦C) for the specified duration (2 h, 4 h, 6 h).
Frozen ice specimens are shown in Figure 1.

(a) (b)

Figure 1. Ice diagram of specimens. (a) AL-Ice-AL specimen. (b) AL-Ice-SR specimen.

2.4. Process of the Test Operation

The test steps are as follows:
(1) Put the test piece into the icing mold, add the leakage-proof sealing glue in the

predetermined icing area, and then put it into the test box with high and low temperature
alternating humidity, and make the ice layer grow in the shear test area of the specimen
through the drop point ice method;

(2) Measure the actual ice thickness, width and length value of the ice test piece in the
incubator, which should be accurate to 0.1 mm;

(3) According to the information of the test items in Table 3, the specimens are kept
warm for the corresponding time and at the corresponding ambient temperature. The
temperature values of the test box and test fixture are also adjusted to the test temperature
of the specimen (−15 ◦C, −25 ◦C, −35 ◦C, −45 ◦C, −55 ◦C), and the test box will be kept
warm for half an hour after reaching the predetermined temperature;

(4) Install the specimen quickly on the fixture in the test box. Xiao, Z. [21] found
that the tensile strength of ice samples would basically not change. However, when the
strain rate exceeds 0.01/s and the brittle property of ice is still maintained, the tensile
strength of ice decreases with the increase of strain rate. Considering the experimental
efficiency and the possibility of obtaining a larger experimental value, the strain rate was
chosen as 0.01/s in this experiment. By multiplying the strain rate by the length of the
specimen and rounding the result, the tensile speed of the tensile machine is 0.3 mm/s
(18 mm/min), so the tensile machine needs to adjust the load at a rate of 18 mm/min until
a large displacement of more than 5 mm between the ice and the test piece, which can
obtain a relatively large ice adhesion strength value of the specimen. Figure 2a showed the
effect of the icing specimen mounted on the fixture and tension machine;

(5) Record the load curve of the S-type force sensor, observe the ice failure position of
the shear specimen, and record it;

(6) Return to the test machine and fixture, repeat steps 1∼5 to conduct the adhesion
strength test of the frozen ice in the next test piece until all the test pieces are completed.
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(a) (b)

Figure 2. Assembly and loading drawing of test parts and fixture. (a) Drawing of test parts and
fixtures. (b) Effect diagram of the tensile load destroying the adhesive ice layer.

3. Key Technique for the Adhesion Strength Test of Frozen Ice

The test of the shear adhesion strength of frozen ice is different from the test of the
shear adhesion strength of conventional materials. On the one hand, the ice layer is very
fragile and easily damaged, which brings many problems to the specimen ice making,
specimen handling and specimen card loading; on the other hand, the artificial freezing
into uniform ice on the aviation material surface (aluminum alloy and silicone rubber) is
difficult, and the ice structure is easily damaged during the mold removal stage. This test
has formed the key technique in overcoming the above-mentioned difficulties. That is: the
test technology of the adhesion strength of frozen ice on metal or non-metal.

In view of the experimental difficulties, such as forming ice on the surface of the
aircraft moving parts or the poor effect of ice, we have improved and designed the new test
parts, and the installation effect of the new test parts is shown in Figure 2a.

The structure of test piece is divided into the icing module and the support module,
and it is processed and installed separately. The contact installation method when pressed
in from the front side can effectively avoid the impact force during in the installation process
of the support module, and also greatly shorten the test time. The fixture is installed in the
test low temperature box in advance, the test piece is pressed into the cavity, the tensile
machine slowly breaks the ice and measures the ice-breaking load, then we throw out the
measured test piece, reset the fixture, complete a test, and wait for the next test piece to press
in. The design of loading the test piece abandons the repeated loading and dismantling
operation of the traditional fixture, which greatly accelerates the test speed and avoids the
damage of the ice layer during the installation of the fixture. In addition, turning the icing
module of the test piece into a compact cube structure is very beneficial for the ice making,
mold unloading and handling of the specimen.

4. Results and Analysis of the Adhesion Strength Test of Frozen Ice

The ice damage form of the adhesion surface of aviation material and the load value
of the ice-breaking can be tested. The adhesion strength of the frozen ice is obtained
by substituting the load of the ice-breaking and the shear surface size of the ice into the
physical formula. Analysis of variance (ANOVA) is used to investigate whether the effect of
test variables on the adhesion strength of frozen ice is significant, combining the adhesion
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strength of the frozen ice with the geometry of the ice shape of the separation surface of the
aircraft moving parts.

4.1. The Result of the Shear Destruction of Frozen Ice
4.1.1. Shear-Section Situation of the Ice Layer

The section of the frozen ice of aviation materials is shown in Figures 3 and 4.

(a) (b) (c)

Figure 3. Section view of tensile shear disruption of AL-Ice-AL specimens. (a) Experimental section
of specimen frozen for 6 h at −15 ◦C. (b) Experimental section of specimen frozen for 2 h at −25 ◦C.
(c) Experimental section of specimen frozen for 2 h at −55 ◦C.

(a) (b)

(c) (d)

Figure 4. Section view of tensile shear disruption of AL-Ice-SR specimens. (a) Experimental section
of specimen frozen (by distilled water) for 2 h at −55 ◦C. (b) Experimental section of specimen frozen
by distilled water for 2 h at −25 ◦C. (c) Experimental section of specimen frozen by lake water for 2 h
at −25 ◦C. (d) Experimental section of specimen frozen by sea water for 2 h at −25 ◦C.

Internal shear disruption inside the ice is shown in Figure 3a. However, its section
is not neat enough, so it cannot be ruled out that it is a mixed failure form composed of
cohesive failure and adhesive failure. Therefore, the value of icing adhesion strength and
ice shear strength at this time may be similar or comparable. However, Figure 3b shows
that the ice adhesion surface falls. It can be seen that the adhesion strength of frozen ice at
−15 ◦C is similar or comparable to the shear strength, and that of frozen ice at −25 ◦C is
less than the shear strength.
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4.1.2. Ice-Breaking Load of Frozen Ice of Aviation Material

The ice-breaking load is measured by the electronic universal test machine (GT-S-
17). The average and peak data have been extracted for the values under the single test
conditions. The specific test readings of the two types of trials are shown in Tables 5 and 6.

Table 5. Ice-breaking load of AL-Ice-AL specimens in shear tensile test.

Ambient
Temperature

(◦C)

Freeze Time
(h) The Form of Destruction

Average Value
of the

Ice-Breaking
Load (N)

Maximum
Value of the
Ice-Breaking

Load (N)

Frozen Area
(mm2)

2 Shear destruction inside the ice layer 235.0 267.0 620.38
−15 4 Shear destruction inside the ice layer 124.0 138.0 624.38

6 Shear destruction inside the ice layer 177.1 222.0 620.01
2 The adhesion surface falls off 110.2 150.0 622.25

−25 4 The adhesion surface falls off 189.1 369.1 620.92
6 The adhesion surface falls off 352.3 417.0 620.76

−25 (lake water) 2 The adhesion surface falls off 105.9 150.0 622.50
−25 (sea water) 2 The adhesion surface falls off 5.7 6.1 621.75

2 The adhesion surface falls off 82.0 110.0 622.25
−35 4 The adhesion surface falls off 30.7 62.8 620.92

6 The adhesion surface falls off 35.9 42.1 620.76
2 The adhesion surface falls off 46.6 89.2 622.25

−45 4 The adhesion surface falls off 28.7 39.7 620.92
6 The adhesion surface falls off 21.2 23.6 620.76
2 The adhesion surface falls off 5.8 6.0 620.38

−55 4 The adhesion surface falls off 37.4 38.4 624.38
6 The adhesion surface falls off 16.7 19.7 620.01

Table 6. Ice-breaking load of AL-Ice-SR specimens in shear tensile test.

Ambient
Temperature

(◦C)
Freeze Time (h) The Form of Destruction

Average Value
of the

Ice-Breaking
Load (N)

Maximum
Value of the
Ice-Breaking

Load (N)

Frozen Area
(mm2)

2 The adhesion surface falls off 18.7 19.6 623.13
−15 4 The adhesion surface falls off 18.1 20.6 623.50

6 The adhesion surface falls off 53.4 54.3 624.62
2 The adhesion surface falls off 88.2 99.8 623.25

−25 4 The adhesion surface falls off 51.3 78.1 624.25
6 The adhesion surface falls off 91.6 103.0 624.67

−25 (lake water) 2 The adhesion surface falls off 35.3 53.4 624.75
−25 (sea water) 2 The adhesion surface falls off 3.2 4.2 624.75

2 The adhesion surface falls off 32.1 45.0 623.25
−35 4 The adhesion surface falls off 46.3 72.2 624.25

6 The adhesion surface falls off 62.4 68.9 624.67
2 The adhesion surface falls off 51.8 80.0 623.25

−45 4 The adhesion surface falls off 56.5 63.5 624.25
6 The adhesion surface falls off 41.4 44.5 624.67

−50 2 The adhesion surface falls off 36.2 41.9 623.13
4 The adhesion surface falls off 37.4 38.4 624.38

−55 2 The adhesion surface falls off 16.7 19.7 620.01
Note: AL-Ice-SR specimens all fall off of the ice layer on the adhesion surface of silicone rubber. The adhesion
strength of −55 ◦C is so small that the mold cannot be removed, so the ice-breaking load is 0.
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4.2. Analysis of the Shear Adhesion Strength of Frozen Ice

This test measured the ice adhesion strength by direct shear test. The tensile shear
adhesion strength of AL-Ice-AL or AL-Ice-SR is calculated as the formula:

τ =
p

L× w
(1)

where: τ is adhesion strength in unit of MPa; p is the ice-breaking load of the sample in
units of Newton; L is the length of the sample adhesion surface in mm; and w is the width
of the adhesive surface of the sample in mm.

Note: The sample has two adhesive surfaces. The tensile shear strength was calculated
from the size of the frozen ice on one adhesive surface where the separation actually
occurred.

From the test data in Tables 5 and 6 to Equation (1), the adhesion strength value of the
frozen ice under different working conditions is shown in Tables 7 and 8, and the trend of
the adhesion strength of the frozen ice is shown from Figures 5–7.

As can be seen from Table 5, the ice failure form under −15 ◦C∼−25 ◦C changes from
internal shear failure to adhesion surface shedding, that is, when the ambient temperature
is between −15 ◦C∼−25 ◦C, the adhesion strength of the aluminum alloy specimen with
surface icing is equivalent to the shear strength of the ice layer itself. When the tempera-
ture is below −25 ◦C, the specimen adhesion strength is less than the ice shear strength.
According to Table 6, the shear strength of −15 ◦C∼−55 ◦C ice layer is greater than the ice
adhesion strength of silicone rubber specimens.

Compared with Table 5 and Table 6, we can see that the ice adhesion strength of the
aluminum alloy surface is much greater than that of the silicone rubber surface, so the ice
layer falls off from the side of the silicone rubber adhesion surface in Table 6. In addition,
the surface of −55 ◦C silicone rubber was found to be difficult to freeze ice.

Table 7. Ice-breaking load of AL-Ice-AL specimens in shear tensile test.

Ambient
Temperature (◦C) Freeze Time (h)

Mean Adhesion
Strength of Frozen

Ice (MPa)

Maximum Value of
Adhesion Strength

for Frozen Ice (MPa)

2 0.379 0.477
−15 4 0.199 0.221

6 0.285 0.358

2 0.177 0.243
−25 4 0.305 0.594

6 0.568 0.672

−25 (lake water) 2 0.170 0.241
−25 (sea water) 2 0.009 0.011

2 0.132 0.177
−35 4 0.049 0.101

6 0.058 0.068

2 0.075 0.143
−45 4 0.046 0.064

6 0.034 0.038

2 0.009 0.010
−55 4 0.060 0.062

2 0.027 0.032
Note: The mean value here refers to the mean value of frozen ice adhesion strength measured by repeated tests.
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Table 8. Ice-breaking load of AL-Ice-SR specimens in shear tensile test.

Ambient
Temperature (◦C) Freeze Time (h)

Mean Adhesion
Strength of Frozen

Ice (MPa)

Maximum Value of
Adhesion Strength

for Frozen Ice (MPa)

2 0.030 0.031
−15 4 0.029 0.033

6 0.085 0.087

2 0.142 0.160
−25 4 0.082 0.125

6 0.147 0.165

−25 (lake water) 2 0.057 0.085
−25 (sea water) 2 0.005 0.007

2 0.051 0.072
−35 4 0.074 0.116

6 0.100 0.110

2 0.083 0.128
−45 4 0.091 0.102

6 0.066 0.071

−50 2 0.058 0.067
4 0.085 0.103

−55 2 0.009 0.010

As can be seen from Figure 5, as the ambient temperature drops (−15 ◦C∼−55 ◦C ),
the freezing adhesion strength of aluminum alloy first increases and then decreases, and the
peak is about−25 ◦C. The results are consistent with the results of the ice adhesion strength
test designed by Ding Liang [22] (0.051 MPa∼0.255 MPa at −13 ◦C) and the test trend of
Zhang, Y.J. [16] that the shear strength of fresh water first increases and then decreases
with the ambient temperature decrease. Therefore, the test data are relatively reliable. In
this test, the frozen ice was artificially generated by the dripping method, and the shear
adhesion strength of the ice was measured by the tensile shear method. The high and
low temperature alternating damp-heat test chamber was used to create environmental
conditions for the specimens, and the tensile failure was carried out by the electronic
universal testing machine. The experimental results show that the mean adhesion strength
of the frozen ice ranges from 0.009 MPa to 0.568 MPa when the ambient temperature is
−55 ◦C to −15 ◦C for 2 h to 6 h and the adhesion surface roughness of aluminum alloy
is up to 1.6 microns, and the maximum value of ice adhesion strength test ranges from
0.010 MPa to 0.672 MPa.

As can be seen from Figure 6, the icing adhesion strength on the silicone rubber surface
with the ambient temperature decreasing (−15 ◦C∼−55 ◦C ) under the same freezing time
first increases and then decreases, reaching a peak at around−25 ◦C. The average test value
of silicone rubber icing adhesion strength is between 0.005 MPa and 0.147 MPa, and the
maximum test range is 0.007 MPa∼0.165 MPa.

As can be seen from Figure 7, the icing adhesion strength of aluminum alloy or silicone
rubber is affected by water quality. It has the largest icing adhesion strength of distilled
water, followed by lake water and the smallest sea water. At the same temperature, the
adhesion strength of lake ice is 78.41% of distilled water ice and seawater ice is 4.55% of
distilled water ice. The adsorption of impurity or salt on the grain surface on frozen ice
nucleation may cause such test phenomenon.
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Figure 5. Adhesion strength of frozen ice on the aluminum alloy surface.

Figure 6. Adhesion strength of frozen ice on the silicone rubber surface.
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Figure 7. Adhesion strength of frozen ice under different water quality and different materials.

4.3. Significance Analysis of the Influencing Factors

Let the influence factor A be the ambient temperature, with r different levels of A1,
A2, . . . , Ar. Factor B is the freezing duration, with s different levels of B1, B2, . . . , Bs. Three
trials were repeated at each combination level AB, measuring the test data as Xij. The
results are shown in Tables 9 and 10; let the influence factor C be the type water quality,
with 3 different levels of C1, C2, C3. Factor D is the type of material being adhered to, with
two different levels of D1, D2. Three trials were repeated at each combination level CD,
measuring the test data as Yij. The results are shown in Table 11.

Table 9. Adhesion strength of AL-Ice-AL test piece.

Project Freezing 2 h (B1) Freezing 4 h (B2) Freezing 6 h (B3)

−25 ◦C (A1) 0.175, 0.243, 0.113 0.148, 0.592, 0.172 0.592, 0.439, 0.639
−35 ◦C (A2) 0.122, 0.177, 0.096 0.017, 0.030, 0.102 0.057, 0.049, 0.068
−45 ◦C (A3) 0.143, 0.029, 0.052 0.064, 0.047, 0.028 0.032, 0.038, 0.032

Table 10. Adhesion strength of AL-Ice-SR test piece.

Project Freezing 2 h (B1) Freezing 4 h (B2) Freezing 6 h (B3)

−25 ◦C (A1) 0.135 0.130, 0.160 0.011, 0.125, 0.111 0.116, 0.164, 0.159
−35 ◦C (A2) 0.039, 0.043, 0.072 0.042, 0.116, 0.065 0.110, 0.090, 0.099
−45 ◦C (A3) 0.057, 0.064, 0.128 0.077, 0.102, 0.093 0.007, 0.071, 0.057

Table 11. Test data of the orthogonal relationship between water quality and material.

Project AL-Ice-AL (D1) AL-Ice-SR (D2)

Distilled water (C1) 0.175, 0.243, 0.113 0.135, 0.130, 0.160
Lake water (C2) 0.243, 0.100, 0.168 0.529, 0.031, 0.085
Sea water (C3) 0.009, 0.008, 0.011 0.007, 0.005, 0.003
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We used Equations (2) and (3) to analyze the test data from Tables 9–11, and the
analysis results are shown in Tables 12–14.

T =
r
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i=1

s
∑

j=1

t
∑

k=1
Xijk

P = 1
rst T2

U = 1
st

r
∑

i=1
(

s
∑

j=1

t
∑

k=1
Xijk)

2

V = 1
rt

s
∑

j=1
(

r
∑

i=1

t
∑

k=1
Xijk)

2

R = 1
t

r
∑

i=1

s
∑

j=1
(

t
∑

k=1
Xijk)

2

W =
r
∑

i=1

s
∑

j=1

t
∑

k=1
(Xijk)

2

(2)

where: r and s, respectively, represent the number of levels corresponding to the two factors
in ANOVA, and t represents the number of repeated trials.

QA = U − P, QB = V − P, QA×B = R−U −V + P, QE = W − R, QT = W − P (3)

where: QA is the sum of squares between groups for factor A, QB is the sum of squares
between groups for factor B, and QA×B is the sum of distance squares under the interaction
between factor A and factor B.

Table 12. Analysis of variance of adhesion strength test of frozen ice on aluminum alloy surface.

Source of Variance
The Sum Of
Squares of
Deviations

Degree of
Freedom

Mean of the Sum
of Squares of

Deviations
The Value of F Significance

Level

Factor A 0.4873 2 0.2437 24.71 Yes
Factor B 0.0480 2 0.0240 2.43 No

Interactions of A and B 0.2050 4 0.0513 5.20 Yes
Error 0.1775 18 0.0099

Total sum value 0.9178 26

Table 13. Analysis of variance of adhesion strength test of frozen ice on silicone rubber surface.

Source of Variance
The Sum of
Squares of
Deviations

Degree of
Freedom

Mean of the Sum
of Squares of

Deviations
The Value of F Significance

Level

Factor A 0.0127 2 0.0064 6.79 Yes
Factor B 0.0021 2 0.0011 1.12 No

Interactions of A and B 0.0100 4 0.0025 2.66 No
Error 0.0169 18 0.0009

Total sum value 0.0417 26



Aerospace 2022, 9, 589 15 of 17

Table 14. Analysis of variance for orthogonal tests of different water quality and materials.

Source of Variance
The Sum of
Squares of
Deviations

Degree of
Freedom

Mean of the Sum
of Squares of

Deviations
The Value of F Significance

Level

Factor C 0.0732 2 0.0366 21.22 Yes
Factor D 0.0117 1 0.0117 6.81 Yes

Interactions of C and D 0.0096 2 0.0048 2.79 No
Error 0.0207 12 0.0017

Total sum value 0.1152 17

In conclusion, the ambient temperature has a significant impact on the adhesion
strength of the frozen ice on the surface of the two materials (aluminum alloy or silicone
rubber). The duration of freezing did not significantly affect the adhesion strength of frozen
ice on the surface of both materials. The interaction of the ambient temperature and the
freezing duration had a significant effect on the adhesion strength of the frozen ice on the
aluminum alloy surface, but not on the frozen ice on the silicone rubber surface. Both the
type of water quality and the type of material significantly affected the adhesion strength of
the frozen ice, but the interaction between the two did not significantly affect the adhesion
strength of the frozen ice.

Deficiency in the test: the deformation and strength of the ice are not isotropic and
change with the thickness and lead orientation [23]. The reasons for the dispersion of some
test results are complex. First of all, ice has a granular ice structure, that is, ice crystals are
similar to particles, and its mechanical properties are isotropic. The other is a columnar ice
structure, whose crystal morphology is different in the direction of the parallel ice surface
and vertical ice surface, so the peak strength of horizontally loaded samples and vertically
loaded samples are also different. That frozen ice is manually generated in a mold by a
drip method is convenient to simulate the slow freezing process in nature, but has a certain
probability to create a certain amount of anisotropy of columnar ice. However, the tensile
shear direction of the ice was not distinguished during the test, which may be the reason
for the large dispersion of the test results under some working conditions. Therefore, it
is recommended to distinguish the direction of ice growth when performing mechanical
properties tests such as the formation of frozen ice by drop method or the impact of ice, so
that better test results may be obtained.

4.4. Analysis of Systematic Errors of the Test

When the specimen is shear inside the ice layer, the line of the tension is parallel to the
shear surface, so there is no systematic error and the test results are accurate. When the ice
layer of the adhesion surface falls off, there is a bias (1 mm) between the tension line and
the adhesion surface, so the measured of the ice-breaking load is affected by the additional
bending moment, so the system error needs to be analyzed.

Taking the test condition of distilled water freezing for 2 h at −25 ◦C as an example,
the shedding of the adhesion surface of the specimen is caused by the combination of
vertical shear force and additional bending moment.

The tensile force of the test:

max{F0} = 151 N (4)

The thickness of ice:
∆ = 2 mm (5)

Adhesion area:
A = 622.25× 10−6 m2 (6)
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Additional bending moment:

M = F0 ·
∆
2
= 0.151 N ·m (7)

Bending section coefficient:

W =
bh2

6
=

25× 252 × 10−9

6
m3 = 2.604× 10−6 m3 (8)

Bend positive stress:

σt,max =
M
W

=
0.151

2.604× 10−6 Pa = 0.058 MPa (9)

Check the tensile strength value of the frozen ice test designed by Xiao, Z. [21]:

σt0 = 0.46 MPa (10)

Obtain:
σt,max << σt0 (11)

That is, the additional bending moment caused by the deviation of the tension line
and the adhesion surface will not cause the ice damage, and the test can normally measure
the shear adhesion strength on the adhesion surface.

5. Conclusions

By summarizing the data of this test and combining them with the freezing condition
of the separation surface of the aircraft moving parts in the high and cold region, the
following conclusions can be given:

(1) The adhesion strength of the frozen ice at the separation surface of the plane is
studied, forming the test technology of metal/non-metal frozen ice adhesion strength.
Moreover, the improved test parts have good freezing and test effects, and the new test
operation is more rapid.

(2) The adhesion strength of the frozen ice of the aluminum alloy–ice–aluminum
alloy increases first and then decreases with the decrease of the ambient temperature. The
adhesion strength of the frozen ice of the aluminum alloy–ice–silicone rubber also increases
first and then decreases along with the decrease of the ambient temperature. The frozen
duration did not significantly affect the adhesion strength of the frozen ice on the surface of
both materials. Due to the water quality, the adhesion strength of the frozen ice decreases in
the order of distilled water, lake water and seawater, and the adhesion strength of seawater
is only 1/22 of that of distilled water.

(3) The test technology of the adhesion strength of metal/non-metallic frozen ice can
provide a reference for the test of other mechanical properties of ice. The test data of the
adhesion strength of the frozen ice can provide data support for the determination of the
ice-breaking load of the aircraft movement mechanism, the selection of the booster of the
motion parts and the design of the anti-icing/deicing system of the aircraft.
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