
����������
�������

Citation: Li, K.; Zhang, H.; Hu, C.

Learning-Based Pose Estimation of

Non-Cooperative Spacecrafts with

Uncertainty Prediction. Aerospace

2022, 9, 592. https://doi.org/

10.3390/aerospace9100592

Academic Editor: Jules Simo

Received: 5 August 2022

Accepted: 7 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Learning-Based Pose Estimation of Non-Cooperative
Spacecrafts with Uncertainty Prediction
Kecen Li 1, Haopeng Zhang 1,2,3,* and Chenyu Hu 4

1 Department of Aerospace Information Engineering, School of Astronautics, Beihang University,
Beijing 102206, China

2 Beijing Key Laboratory of Digital Media, Beijing 102206, China
3 Key Laboratory of Spacecraft Design Optimization and Dynamic Simulation Technologies,

Ministry of Education, Beijing 102206, China
4 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
* Correspondence: zhanghaopeng@buaa.edu.cn; Tel.: +86-10-6171-6978

Abstract: Estimation of spacecraft pose is essential for many space missions, such as formation flying,
rendezvous, docking, repair, and space debris removal. We propose a learning-based method with
uncertainty prediction to estimate the pose of a spacecraft from a monocular image. We first used
a spacecraft detection network (SDN) to crop out the rectangular area in the original image where
only spacecraft exist. A keypoint detection network (KDN) was then used to detect 11 pre-selected
keypoints with obvious features from the cropped image and predict uncertainty. We propose a
keypoints selection strategy to automatically select keypoints with higher detection accuracy from all
detected keypoints. These selective keypoints were used to estimate the 6D pose of the spacecraft with
the EPnP algorithm. We evaluated our method on the SPEED dataset. The experiments showed that
our method outperforms heatmap-based and regression-based methods, and our effective uncertainty
prediction can increase the final precision of the pose estimation.

Keywords: pose estimation; uncertainty prediction; keypoint detection; non-cooperative spacecrafts;
deep learning

1. Introduction

For the demands of some space missions, such as maintenance for spacecrafts [1],
on-orbit docking [2] and removing space debris [3], the pose estimation for non-cooperative
spacecrafts has been a hot topic. Non-cooperative spacecrafts generally refer to spacecrafts
that do not provide effective cooperative information, including malfunctioning or failed
satellites, space debris, and opposing spacecrafts. In the past, the pose of spacecrafts
was usually estimated by high-precision sensors [4–6]. However, due to the high costs
and power consumption of these sensors, this solution of pose estimation is not appli-
cable to many low-cost spacecrafts [7]. Monocular images can provide the key position
and orientation information required by the navigation system for spacecraft under low
power [8].

In this paper, we mainly focus on how to estimate the 6D pose of a spacecraft from a
monocular image. The main difficulty of this task is the limited amount of available pose
information. Moreover, the complex shooting environment in space, such as illumination
and backgrounds, also brings more challenges. Dhome proposed a closed model-based
6D pose image recognition method [9]. This method corresponds all possible 3D model
edges to the captured 2D image edges one by one and uses soft assign to avoid the
computational overload caused by exhaustive enumeration. Following Dhome, Kanani
and Petit made partial improvements to improve its computational speed and reduce
data dependence [10,11]. These methods were initially applied to ground-based robotic
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navigation algorithms and later to satellite-based monocular navigation. However, model-
based methods require a large amount of feature matching before solving the positional
pose, which is difficult to apply in real time [12]. Therefore, some people proposed a
non-model-based method to estimate the 6D pose. Augenstein and Rock proposed to use
SIFT-based SLAM for pose solution of spacecrafts [13]. Nevertheless, non-model-based
approaches have the possibility of losing target features due to large changes in image
conditions or perspective relationships [14]. The pose estimation methods have been
further developed with the further development of image recognition algorithms. D’Amico
proposed a perceptual organization of detected edges in images using the Sobel algorithm
and the Hough algorithm to solve the pose-initialization problem [15]. For the first time,
pose estimation of a fully non-cooperative spacecraft has been achieved. However, this
method is computationally expensive, difficult to use in real-time on onboard hardware,
and lacks robustness to illumination conditions [15]. Sharma improved D’Amico’s research
by proposing Sharma-Ventura-D’Amico (SVD) architecture and introducing the weak
gradient elimination (WEG) to reduce the search space [12]. Sharma’s method reduces the
computation time and improves the detection accuracy, but has the drawback of generating
spurious edges when the image condition is bad.

In recent years, due to the development of deep learning algorithms, especially the
neural networks, there have been new advances in pose estimation for spacecrafts from
monocular images. It has been shown that feature detected by CNNs has more accuracy and
stability than traditional methods for computer vision domain tasks [16]. Therefore, many
learning-based methods have been proposed to solve the pose estimation problem [17–23].
Recently, Chen and Park proposed a similar pipeline to estimate the 6D pose of spacecrafts
from a monocular image [18,19]. They used CNNs to automatically crop out the part of
image where the spacecraft exists and predicted the 2D pixel coordinates of keypoints
from the cropped image. They used the 2D pixel coordinates of keypoints and a wireframe
model of the spacecraft obtained in advance to estimate the 6D pose. Following their work,
we propose a learning-based 6D pose estimation method for spacecrafts, with effective
uncertainty prediction enabling automatic selection of keypoints for pose estimation. Our
main contribution can be concluded as follows:

• We introduce the idea of region detection into the keypoint detection of spacecrafts,
which can capture the feature of keypoints better;

• We achieve effective uncertainty prediction for the detected keypoints, which can be
used to automatically eliminate keypoints with low detection accuracy;

• We conduct sufficient experiments on SPEED dataset [17]. Compared with previous
methods, our method can reduce the average error of pose estimation by 53.3% while
reducing the number of model parameters.

The rest of this paper is organized as follows. First, in Section 2 we briefly introduce
previous works on learning-based 6D pose estimation of spacecraft and the keypoints
detection. Second, the proposed methods are detailed in Section 3. Third, the experimental
results will be benchmarked in Section 4. Finally, Section 5 will conclude this work.

2. Related Work
2.1. Learning-Based Methods

Instead of handcrafting the image features to estimate the pose of spacecraft, learning-
based methods use deep learning to automatically extract the features to estimate the 6D
pose of the spacecraft. These methods can be divided into two categories, direct estimation
and indirect estimation. Sharma [22] used a CNN to extract the features in images and a
fully connected layer to output a 6-dimensional vector as the predicted 6D pose. In Gao’s
work [21], the prediction of the orientation vector was converted into the regression of a
heatmap. Sharma adopted multi-task learning [20,23] to estimate 6D pose. While predicting
the 6D pose, he completed the task of keypoints prediction, spacecraft detection and image
segmentation simultaneously. For the indirect estimation methods, Park [18] and Chen [19]
first used CNN to predict the position of keypoints and then took these keypoints to
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estimate pose with the EPnP algorithm [24]. They mainly differ in how to detect the
keypoints. Park [18] used light MobileNetv2 [25] as a backbone to extract features and
used a fully convolutional network (FCN) [26] to regress the pixel coordinates of keypoints.
Chen [19] predicted a heatmap for each keypoint, meaning the probability of keypoints
appearing at each pixel coordinate.

Our method also belongs to the method of indirect prediction. Different from [18,19],
we treat each keypoint as a square region to detect. Although Chen also treated each
keypoint as a square region, the size of the area he set is fixed. We replace three square
anchors of different sizes for each pixel on the feature map for the situation of different
relative distance to the spacecraft (Figure 1).

(a) (b)

Figure 1. Our advantage over Chen [19] on how to set the region of keypoints. (a) Chen [19], (b) Ours.
The blue box represents the box containing a keypoint, and the yellow box represents the anchor in
our Keypoint Detection Network. When the relative distance of the spacecraft is too small, the fixed
region ignores some key area of the keypoint. However, our adaptive region size can solve this
problem better, which is described in Section 2.2.

2.2. Keypoint Detection

Keypoint detection is a traditional task in computer vision, and there have been many
surveys that extensively discuss related methods [27]. We present related works in two
main categories: handcrafted and learned detector.

For handcrafted detectors, Harris [28] and Hessian [29] detectors used first and second
order image derivatives to find corners or blobs in images. The more refined keypoint fea-
ture can be calculated through some engineered algorithms [30–33], which seek alternative
structures within images to represent the keypoint. MSER [32] segmented and selected
stable regions as keypoints, and SIFT [30] looked for blobs over multiple scale levels.

For learned detectors, the improvement of learned methods in object detection help to
explore similar techniques for keypoint detectors. FAST [34] was one of the first attempts to
use machine learning to design a keypoint feature descriptor, and then some people made
improvements on this method [31,35,36]. Recently, many methods have been proposed to
utilize CNNs to detect keypoints. TILDE [37] trained multiple patch-wise linear regression
models to detect keypoints that are robust under severe weather and illumination changes.
Georgakis [38] proposed a pipeline to automatically sample positive and negative pairs
of patches from a region proposal network to optimize jointly point detections and their
representations. LF-Net [39] estimated the position, scale and orientation of features by
jointly optimizing the detector and descriptor.

For the keypoint detection of spacecrafts, Park [19] directly used CNN to regress
the 2D coordination of keypoints. Sharma [23] and Park [23] improved it by introducing
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multitask learning. Chen used HRNet [40], a CNN proposed to predict the pose of the
human body, to predict the heatmap of the monocular image. However, he assigned the
same region for all the keypoints, which is not rational for different relative distances.
We introduce the idea of region detection into the keypoint detection task of spacecraft,
where anchors of different sizes can fit different relative distances (Figure 1). At the same
time, an effective uncertainty prediction is introduced for detected keypoints, enabling
end-to-end accurate keypoint selection.

3. Method

The overall pipeline of our method is shown in Figure 2. We first selected 22 images
from multiple views to manually obtain the 2D coordinates of each keypoint, and used the
simulated annealing (SA) algorithm [41] to obtain the spacecraft’s 3D wireframe model.
For each input image, we first used a spacecraft detection network (SDN) to find the
location and the area where the spacecraft exists. Then, the cropped image of the spacecraft
was put into a keypoint detection network (KDN) to detect the position of keypoints. KDN
simultaneously estimates the uncertainty of detection for each keypoint. We developed a
strategy to select more accurate keypoints as candidate keypoints. The reconstructed 3D
coordinate and predicted 2D coordinates of all the candidate keypoints were used to solve
the 6D pose of spacecrafts through EPnP [24].

SDN

416×416
224×224

KDN

High Uncertainty

Low Uncertainty

Visible KeyPoints

SA EPNP

6D PoseWireframe Model

Figure 2. The pipeline of our proposed method to estimate the 6D pose of a spacecraft from a
monocular image. SDN: Spacecraft Detection Network. KDN: Keypoint Detection Network. SA:
Simulated Annealing.

3.1. 3D Wireframe Model Recovery

Given the internal parameter matrix Kc and the external parameter matrix R and
T of the monocular camera, if the 3D coordinate p3D,k of the k-th keypoint in the world
coordinate system is known, we can obtain its 2D coordinate in the image. We selected
11 keypoints with great visibility. For each keypoint, we obtained its 2D coordinate manu-
ally from 22 images. For each k-th keypoint, the sum of the reprojection error was minimized
over a set of images in which the k-th keypoint was visible. The optimal 3D coordinate of
each keypoint can be obtained by minimizing the following objective function,

min
p3D,k ,{λi,k}N

i=1

∑
i

∥∥∥λi,k ph
2D,i,k − Kc[Ri|Ti ]ph

3D,k

∥∥∥
2
, (1)

where Ri and Ti represent the known camera extrinsic parameters. ph
2D,i,k represents the

2D coordinate of the k-th keypoint in the i-th image and ph
3D,k represents the according

3D coordinate. The superscript h indicates that the point is expressed in homogenous
coordinates. λi,k represents the scaling factor, which is also needed to solve. N is the
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number of selected images for k-th keypoint. We define the symbols in Equation (1) in more
detail as:

Kc[Ri|Ti ] = Pi =

 p11
i p12

i p13
i p14

i
p21

i p22
i p23

i p24
i

p31
i p32

i p33
i p34

i

, ph
2D,i,k =

 ui,k
vi,k
1

, ph
3D,k =


Xk
Yk
Zk
1

. (2)

where p∗∗i represents the element in matrix Pi. The (ui,k, vi,k) represents the pixel coordinate
of the k-th keypoint in the i-th image. The (Xk, Yk, Yk) represents the 3D coordinate of the
k-th keypoint in the world coordinate system.

Due to the presence of noise, the optimal solution cannot make the Equation (1) zero.
The most general way is to use the least square (LS) method to obtain the optimal solution.
According to Equation (1), we can construct N linear equations with N images as:{

(ui,k p31
i − p11

i )Xk + (ui,k p32
i − p12

i )Yk + (ui,k p33
i − p13

i )Zk = p14
i − ui,k p34

i
(vi,k p31

i − p21
i )Xk + (vi,k p32

i − p22
i )Yk + (vi,k p33

i − p23
i )Zk = p24

i − vi,k p34
i

. (3)

Thus, we can construct over-determined linear equations for s = (Xk, Yk, Zk)
T as:

As = b, (4)

where A is a 2N × 3 matrix and b is a 2N × 1 matrix, i.e.,

A =


u1,k p31

1 − p11
1 u1,k p32

1 − p12
1 u1,k p33

1 − p13
1

v1,k p31
1 − p21

1 v1,k p32
1 − p22

1 v1,k p33
1 − p23

1
...

uN,k p31
N − p11

N uN,k p32
N − p12

N vN,k p33
N − p23

N
vN,k p31

N − p21
N vN,k p32

N − p22
N vN,k p33

N − p23
N

, b =


p14

1 − u1,k p34
1

p24
1 − v1,k p34

1
...

p14
N − uN,k p34

N
p24

N − vN,k p34
N

 . (5)

The optimal solution can be obtained by the LS as:

s = (AT A)−1 ATb. (6)

In this paper, we mainly consider that the manually chosen 2D coordinates of the
keypoints may have different degrees of error in different images. We selected only 12 out
of 22 images for each keypoint to obtain its 3D coordinates, which makes Equation (1) reach
the least value. We used SA [41] to obtain the 3D ordinates ph

3D,k and the scaling factors
λi,k, and calculated the value of Equation (1) to select the best 12 images for each keypoint.
In Section 4.6, we show that compared to obtaining the optimal solution directly through
LS, the SA method can achieve a better solution.

After obtaining the wireframe model of spacecraft, we can obtain the 2D coordi-
nates of keypoints in each image without manually labeling a large number of images for
subsequent tasks.

3.2. Spacecraft Detection Network (SDN)

We used a Spacecraft Detection Network (SDN) to automatically find the location of
the spacecraft. Considering the smaller model consumes less, we took the tiny version
of YOLOX [42] as our SDN. The 2D bounding boxes were obtained by projecting the
3D keypoints onto the image using the ground-truth poses. In order to ensure that the
bounding boxes could contain the whole spacecraft, we enlarged the boxes by 10% in the
center as our final labels.

3.3. Keypoints Detection Network (KDN)

We treated each keypoint as a square region and used anchor-based methods to detect
them. Different from the general object detection method, where we needed to replace
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rectangular boxes of different sizes for each pixel, since our detection area was square, we
only replaced three square boxes with different sizes for each pixel to adapt to the different
relative distances of the spacecraft from the camera. The framework of the KDN is shown
in Figure 3. We used CSPDarknet [43] as the backbone to extract features of three scales
from the input image. We used the feature pyramid network (FPN) [44] to complement the
features between different scales to obtain refined features. Finally, all features were input
to the detection head for keypoint detection.

224×224

CSPDarknet

28×28×128

14×14×256

7×7×512

Detection Head

Upsampling

Conv

Upsampling

Concat+Conv

Downsampling

Concat+Conv

Concat+Conv

Downsampling

Concat+Conv

28×28×128

14×14×256

7×7×512

Anchor

High Uncertain Box

Low Uncertain Box

High Uncertain Keypoint

Low Uncertain Keypoint

BoxToPoint

Figure 3. The framework of our KDN.

For the detection and classification, we minimized the following loss function, com-
monly used in object detection [43], i.e.,

Ldet =
1
N

N

∑
i=1

(
Lreg(bi, b̃i) + Lcls(ci, c̃i) + Lcon f (Ci, C̃i)

)
, (7)

where bi, ci and Ci represent the box, keypoint class and confidence predicted by the KDN
for the i-th image, respectively. b̃i, c̃i and C̃i represent the corresponding labels. Lreg(•)
represents the MSE loss function, Lcls(•) and Lcon f (•) represent the cross entropy loss
function, and N represents the number of images in each batch.

We define the predicted box bi and label b̃i as:{
bi = [ xi yi wi hi ]
b̃i = [ x̃i ỹi w̃i h̃i, ]

(8)

where (xi, yi) represent the pixel coordinates of the center point of the predicted box on
the image, and wi and hi represent the width and height of the predicted box, respectively.
The symbols with superscript ∼ represents the corresponding label. The Lreg(bi, b̃i) can be
written as:

Lreg(bi, b̃i) = (xi − x̃i)
2 + (yi − ỹi)

2 + (
√

wi −
√

w̃i)
2 + (

√
hi −

√
h̃i)

2. (9)

For Lcls(ci, c̃i), both the predicted keypoint class ci and label c̃i are 11-dimensional
column vectors. For ci, each element ci,k represents the probability that the k-th keypoint
exists in the box. Each element c̃i,k in c̃i represents the corresponding label. The Lcls(ci, c̃i)
can be written like cross entropy loss function as:

Lcls(ci, c̃i) = −
K

∑
k=1

[c̃i,k log2(ci,k) + (1− c̃i,k) log2(1− ci,k)]. (10)
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For the uncertainty prediction, we minimized the following loss function,

Luncertain =
1
N

N

∑
i=1

Luncertain(Ui, Ũi), (11)

where Ui represents predicted uncertainty, i.e., the probability of whether there is a target
for each keypoint, and Ũi represents the corresponding label. Luncertain(Ui, Ũi) can be
written as:

Luncertain(Ui, Ũi) =
1
K

K

∑
k=1

[−Ũi,k log2 Ui,k − (1− Ũi,k) log2(1−Ui,k)], (12)

where Ui,k represents predicted uncertainty for the k-th keypoint, and Ũi,k represents the
corresponding label. The uncertainty label for the k-th keypoint can be calculated as:

Ũi,k =

 1 Lcls(ci,k ,c̃i,k)
log K > 1

1−IOU(bi,k ,b̃i,k)+
Lcls(ci,k ,c̃i,k)

log K
2 else,

(13)

where IOU(•) is the intersection ratio of the predicted box bi and the ground truth box b̃i.
K is the number of keypoint classes. The subscript k indicates that the variable is related to
the k-th keypoint.

In order to guide KDN to achieve the joint prediction of classification uncertainty and
regression uncertainty, the loss function of our KDN is defined as:

L = Ldet + Luncertain. (14)

3.4. Pose Estimation

After obtaining the 3D coordinates and 2D coordinates of the keypoints, we used the
EPnP [24] to solve the 6D pose of the spacecraft. To increase the accuracy of pose estimation,
we developed a strategy to select more accurate keypoints by the predicted uncertainty.
We divided the selection strategy into two separate sub-strategies, Top K and uncertainty
threshold selection (UTS).

For each category of keypoints, the keypoint with the lowest uncertainty was used
as the final detected keypoint of this category. In UTS strategy, for these eleven detected
keypoints, we selected the keypoints whose uncertainty was less than a given threshold µ
as candidate keypoints. In Top K strategy, if the number of candidate keypoints was less
than five, we directly used the five keypoints with the lowest uncertainty among the eleven
detected keypoints as candidate keypoints, since four keypoints may be coplanar, which is
detrimental to the pose estimation. If the number of candidate keypoints was more than
Kn, we took the Kn keypoints with the lowest uncertainty as candidate keypoints. All the
candidate keypoints were used to solve the 6D pose with EPnP [24]. The above architecture
is described in Algorithm 1.
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Algorithm 1 Keypoints selection strategy

Require: Keypoints with predicted uncertainty
{

p2D,i,k, Ui,k
}

, uncertainty threshold µ,
candidate keypoints set C, detected keypoints set D and Kn.
C ← ∅.
D ← ∅.
for m = 1 to 11 do
{p2D,m, Um} ← {p2D,i,m, Ui,m} with the smallest Ui,m.
Add {p2D,m, Um} into D.

end for
N ← 0.
# Conduct UTS strategy.
for m = 1 to 11 do

if Um < µ then
Add {p2D,m, Um} into C from D.
N ← N + 1.

end if
end for
# Conduct Top K strategy.
while N > Kn do

Remove {p2D,m, Um} with the biggest Um from C.
N ← N − 1.

end while
while N < 5 do

Add {p2D,m, Um} with the smallest Um from D into C.
N ← N + 1.

end while
return C.

4. Experiments
4.1. Datasets and Implementation Details

We evaluated our method using the SPEED dataset [17] with 12,000 synthetic satellite
images and five real satellite images provided by the Advanced Concepts Team (ACT)
at European Space Agency (ESA) in the pose estimation challenge 2019 [45,46]. Each
image was annotated with the extrinsic parameter matrices R and T corresponding to
the camera. The difficulty of pose estimation varied from image to image. They had
varying degrees of light intensity, relative distance to spacecraft, perspective occlusion,
and background complexity (Figure 4). From the synthetic images of SPEED dataset, we
randomly selected 10,000 images as the training set and 1000 images as the validation set.
The rest 1000 synthetic images were used as the test set, as well as five real images.

We took the methods of Park [18] and Chen [19] as our baselines. Their methods share
a similar pipeline with ours, and the main difference is how to predict the 2D coordinates of
keypoints. Park [18] used CNNs to directly regress the 2D coordinates of keypoints, which
belong to the regression-based method. Chen [19], however, predicted a heatmap for each
keypoint, indicating the probability of each keypoint appearing at different positions, which
is a heatmap-based method. We introduce the idea of region detection for the prediction
of keypoint positions. We hope to prove the superiority of our method for improving the
accuracy of 6D pose estimation by comparing it with the above methods. In order to ensure
the fairness of the comparison, all three methods used the data augmentation method used
by Park and were trained with the Adaptive Momentum Estimation (Adam) optimizer for
300 epochs with a 0.001 learning rate, 48 batch-size, momentum of 0.9, and weight decay of
5× 10−4.

In Section 4.3, we set Kn and µ as 7 and 0.5, following Algorithm 1.
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Figure 4. Images with Different Conditions in 12,000 Synthetic Images. They vary in light intensity,
relative distance to spacecraft, perspective and background complexity.

4.2. Evaluation Metrics

In order to quantitatively evaluate our final pose estimation results, we adopt the
evaluation metrics provided by ESA to define the errors of estimation of translation,
orientation and 6D pose.

For the i-th image, the error of the pose estimation is calculated as the sum of the
orientation error ER,i and the translation error ET,i, i.e.,

Ei = ER,i + ET,i. (15)

The translation error and orientation error can be calculated as:

ET,i =
‖ti − t̃i‖2
‖ti‖2

, ER,i = 2 arccos(< q̃i, qi >), (16)

where ti and t̃i represent the predicted and real translation vectors, and qi and q̃i represent
the predicted and real orientation vectors, respectively. ‖•‖2 is to calculate the two-norm
of a vector and 〈•, •〉 is to calculate the angle between two vectors. The mean error of the
pose estimation for the test set is calculated as:

meanE =
1
N

N

∑
i=1

Ei, (17)

where N is the number of images in the test set. Similarly, we can calculate the mean and
median of other errors on the test set. We take the above six metrics, medianET , medianER,
medianE, meanET , meanER and meanE, to evaluate the pose estimation results.
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4.3. Comparison
4.3.1. Comparison in Synthetic Images

In this section, we compare three methods in 1000 synthetic images (Table 1). In
order to prove that our method can maintain high accuracy while reducing the number
of parameters, we reduced the size of the feature map output by the backbone 25% and
50% to obtain ours-small version and ours-nano version respectively. It can be seen from
Table 1 that our method performs much better than Park [18] and Chen [19] in six metrics,
except for the nano version. However, the number of parameters of our nano version is only
about one-tenth of Chen’s [19], and the nano version is only slightly worse than Chen on
medianET and medianE. It means that our nano version can achieve considerable accuracy
of estimation with obviously less memory space. Notably, compared with Chen [19], all
three versions of our method achieve reductions in both the estimation error and number
of parameters, up to 53.3% and 89.6% respectively at most.

Table 1. The performance of three methods on 1000 synthetic images. Ours-small means that we
reduce the size of the feature maps by 25%. Ours-nano means that we reduce the size of the feature
maps by 50%.

Method Size [MB] medianET medianER medianE meanET meanER meanE

Park 22.8 0.0198 0.0539 0.0783 0.0287 0.0929 0.1216
Chen 36.6 0.0047 0.0118 0.0172 0.0083 0.0299 0.0383
Ours 35.2 0.0036 0.0073 0.0116 0.0049 0.0129 0.0178
Ours-small 19.9 0.0041 0.0088 0.0138 0.0057 0.0235 0.029
Ours-nano 3.8 0.0048 0.0118 0.0175 0.0069 0.0270 0.0338

4.3.2. Comparison in Real Images

In this section, we compare three methods in five real images (Figure 5 and Table 2).
Due to the large gap in the field between the training set and the test set, the accuracy of all
three methods has declined. Some estimation results of Chen’s [19] have been especially
unacceptably bad (Figure 5c). Table 2 shows that the estimation error of our method is still
much smaller than that of the other two methods, which proves that the generalization
ability of our method is stronger. Ours-small and ours-nano do worse than Park [18] in
three metrics in Table 2. We consider the reason that the small number of parameters limits
their generalization ability. However, both ours-small and ours-nano still achieve better
estimation than Chen [19].

Table 2. Performance in five Real Images.

Method meanET meanER meanE

Park 0.1135 0.1350 0.2485
Chen 0.1793 0.5457 0.7250
Ours 0.0414 0.0909 0.1323

Ours-small 0.1120 0.3689 0.4809
Ours-nano 0.1031 0.4883 0.5914
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(a) (b) (c)

Figure 5. Pose Estimation Performance in five real images. (a) Ours, (b) Park [18], (c) Chen [19].

4.4. Different Conditions for Pose Estimation
4.4.1. Performance with Different Background

In this section, we compare three methods in images with different backgrounds
(Figure 6c,d). Among the 1000 synthetic images, 506 have Earth backgrounds with different
degrees of complexity (Figure 4). We divided the test set images into two groups with Earth
backgrounds (EB) and pure black backgrounds (BB) to test the estimation errors of three
methods. Figure 6c,d shows that our method achieves better pose estimation than Park [18]
and Chen [19] in either EB or BB.

4.4.2. Performance in Different Relative Distance

In this section, we compare three methods in images with different relative distances
to the spacecraft (Figure 6a,b). In the 1000 test images, we took 100 images as a group to
divide the images of the test set into 20 groups in the order of relative distance. We draw
the translation error and orientation error curves at different relative distances respectively.
Figure 6a,b show that our method can maintain a very high prediction accuracy in each
distance segment. Park’s [18] method has a greater estimation error in both too short
and long distances. This is reasonable for when the spacecraft is very close, a part of the
spacecraft often falls out of the camera’s field of view, called occlusion, a common challenge
for object detection and segmentation [47]. When the spacecraft is far, its features in the
image will become coarse, making it more difficult for the keypoints detection module
to work well. Chen’s method [19] has good accuracy of translation estimation in each
distance segment, but the error of orientation estimation is still affected by the too-long or
short relative distance. Our method achieves stable translation and orientation estimation
accuracy over the full range segment, proving that our method is more capable of resisting
target occlusion and recovering the feature of small spacecraft.
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Figure 6. Performance in Different Relative Distance and Background. (a,b) show the change of
meanET and meanER respectively with the relative distance between the spacecraft and the camera.
(c,d) show the change of meanET and meanER respectively with the different backgrounds. EB
represents the 506 images with the earth background in the test set, as shown in the bottom row in
Figure 7. BB represents the 494 images with black background in the test set, as shown in the top row
in Figure 7.

4.5. Effective Uncertainty Prediction

We conducted an ablation study to prove the effectiveness of our uncertainty prediction
and keypoints selection strategy. According to Algorithm 1, we can only take UTS strategy
or Top K strategy to select keypoints. If both strategies were not taken, we directly chose
all eleven keypoints to estimate the pose with EPnP [24]. Here, we set µ and Kn as 0.5 and
7 (Top 7) for the analysis in Section 4.7. Table 3 shows that both strategies can improve
the accuracy of pose estimation of our method separately, and our complete keypoints
selection strategy helps our method achieve the best estimation.

Table 3. Ablation study to evaluate the effectiveness of our UTS and Top 7 strategy.

Method UTS Top 7 meanET meanER meanE

Ours

0.0074 0.0216 0.0290
X 0.0056 0.0151 0.0207

X 0.0059 0.0179 0.0238
X X 0.0049 0.0129 0.0178

We show four cases that demonstrate the effectiveness of our uncertainty prediction
and keypoints selection strategy in Figure 7. The lower right corner marks the percentage
reduction in the three-class estimation errors after removing the detection points in red.
Our selection strategy succeeded in selecting accurate keypoints with effective uncertainty
prediction to reduce the error of pose estimation.
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Figure 7. Uncertainty Prediction Helps Reduce Pose Estimation Error. The blue points represent
the key points that we retained for pose estimation, the red points represent the key points that we
eliminated due to the high uncertainty, the yellow points represent the true positions of the eliminated
keypoints, and we used the green dotted line Connect the corresponding yellow and red points.

Although Chen [19] proposed an iterative trial-and-error method to remove some
detected keypoints, they did not consider that this method would increase the time cost of
the entire pose estimation process. Our method performs this by the uncertainty prediction
of the network.

4.6. Comparison between SA and LS

In order to verify the superiority of using SA to solve the optimal problem in Equa-
tion (1), we recovered a new 3D wireframe model through LS for all the 22 images and
analyzed the changes in the accuracy of the three versions of our method. Table 4 shows
that all six error metrics for the three versions have increased when using LS to recover the
wireframe model. Our SA method can help to obtain a more accurate 3D wireframe model
under the noise from manual selection of images.

Table 4. The performance of three versions of our method on 1000 synthetic images with different 3D
wireframe models from SA or Least Square LS.

Method SA/LS medianET medianER medianE meanET meanER meanE

Ours SA 0.0036 0.0073 0.0116 0.0049 0.0129 0.0178
LS 0.0058 0.0325 0.0407 0.0083 0.0422 0.0505

Ours-small SA 0.0041 0.0088 0.0138 0.0057 0.0235 0.0292
LS 0.0065 0.0334 0.0419 0.0093 0.0535 0.0628

Ours-nano SA 0.0048 0.0118 0.0175 0.0069 0.0270 0.0338
LS 0.0070 0.0364 0.0445 0.0095 0.0541 0.0636

4.7. Hyperparameters Analysis

We conducted a hyperparameters analysis to study how Kn and µ in Algorithm 1
affect the pose estimation of our method.

We analyzed how the choice of Kn affects the performance of our method. Although the
EPnP algorithm [24] only requires more than three keypoints, since our detection result may
have four coplanar points, which is fatal to the EPnP algorithm, we separately analyzed the
change of three estimation errors when Kn changes from five to eleven (Figure 8). Here we
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set the µ as 0.5. All three versions of our method show the same pattern of changes. As Kn
changes from five to seven, the estimation error decreases gradually, which is reasonable for
larger point sets to introduce redundancy and reduce the sensitivity to noise [24]. However,
when Kn changes from seven to eleven, the estimation errors of three versions increases.
We consider that compared with the top seven keypoints, the errors introduced by the last
four keypoints are too large to improve the accuracy, which also proves the validity of our
uncertainty prediction.
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Figure 8. Performance with different Kn. (a–c) show the change of three kinds of error with the
selection of Kn. (d) shows the change of MSE error of detected keypoints with the selection of Kn.

We took our version to analyze how the µ affects the pose estimation of our method.
Here, we set Kn as 7, which works best. Figure 9 shows that all three errors decrease as
the µ decreases, proving that the uncertainty our KDN predicts for each keypoint has a
certain positive correlation with its detection error. We call the keypoints screened out
by our keypoints selection strategy as refused keypoints. When the µ changes from 1.0
to 0.4, the average number of refused keypoints remains generally unchanged. When it
changes to 0.2, this number begins to rise rapidly, which means that our method fails to
complete the pose estimation from the corresponding images, since the number of available
keypoints does not meet the acquirement of the EPnP algorithm [24]. Therefore, in practical
applications, it is necessary to consider the trade-off between the continuity and accuracy
of 6D pose estimation.
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5. Conclusions

In this paper, we proposed a monocular pose estimation framework for space-borne
objects, such as spacecraft. Our main contribution is to introduce the idea of area detec-
tion into the task of spacecraft keypoints detection and use the uncertainty of keypoints
predicted by our KDN to automatically select keypoints with higher prediction accuracy
to estimate the 6D pose of the spacecraft. Our method achieves a 53.3% reduction in pose
estimation error with the reduction of the number of network parameters.

In future work, we will study how to adaptively choose the k value of the Top k
strategy to achieve a more effective trade-off between estimation precision and computa-
tional efficiency.
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Nomenclature
The following nomenclature are used in this manuscript:

Symbols
ph

2D,i,k 2D homogenous coordinate of the i-th keipoint in the k-th image
ph

3D,i 3D homogenous coordinate of the i-th keipoint
Kc Internal parameter matrix of monocular camera
Rk Extrinsic matrix for rotation in the k-th image
Tk Extrinsic matrix for translation in the k-th image
λk Scaling factor in the k-th image
bi Predicted box in the k-th image

https://kelvins.esa.int/satellite-pose-estimation-challenge/
https://kelvins.esa.int/satellite-pose-estimation-challenge/
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b̃i Ground-truth box in the k-th image
ci Predicted category in the k-th image
c̃i Ground-truth category in the k-th image
Ci Predicted confidence in the k-th image
C̃i Ground-truth confidence in the k-th image
Ui Predicted uncertainty in the k-th image
Ũi Ground-truth uncertainty in the k-th image
K The number of keypoint categories
µ Uncertainty threshold
C Candidate keypoints set
D Detected keypoints set
Kn The number of keypoints used for pose estimation
qi Predicted orientation in the k-th image
q̃i Ground-truth orientation in the k-th image
ti Predicted translation in the k-th image
t̃i Ground-truth translation in the k-th image
E Error of pose estimation
ET Error of translation prediction
ER Error of orientation prediction
meanET Average error of translation prediction
meanER Average error of orientation prediction
medianET Median error of translation prediction
medianER Median error of orientation prediction

Acronyms
SDN Spacecraft Detection Network
KDN Keypoint Detection Network
CNN Convolutional Neural Network
FCN Fully Convolutional Network
SA Simulated Annealing
EB Earth Background
BB Black Background
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