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Abstract: This paper aims at identifying a validated risk model for the cryptocurrency market.
We propose a stochastic volatility model with co-jumps in return and volatility (SVCJ) to highlight
the role of jumps in returns and volatility in affecting Value-at-Risk (VaR) and Expected Shortfall
(ES) in cryptocurrency market. Validation results based on backtesting show that SVCJ model is
superior in terms of statistical accuracy of VaR and ES estimates, compared to alternative models
such as TGARCH (Threshold GARCH) volatility and RiskMetrics models. The results imply that for
the cryptocurrency market, the best performing model is a stochastic process that accounts for both
jumps in returns and volatility.

Keywords: stochastic volatility with co-jumps; threshold GARCH; RiskMetrics; validation;
cryptocurrency market
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1. Introduction

Forecasting volatility is pivotal for developing accurate and realistic risk management models that
perform well in good times and in bad. An accurate volatility forecast depends on the assumptions
made by the analyst and selection of proper statistical models that can provide a parsimonious
representation of the stylized features of the data. When risk management fails, the blame is squarely
placed on risk models. According to Bernanke (2008), “Those institutions faring better during the
recent turmoil generally placed relatively more emphasis on validation, independent review, and other
controls for models and similar quantitative techniques. They also continually refined their models
and applied a healthy dose of skepticism to model output”. Hence, a crucial task facing a risk manager
is to make sure the models are tested, back-tested, and validated to minimize expected losses.

Academics, practitioners, and regulators have commonly used risk models that were deemed
sophisticated in terms of forecasting risk. For instance, JPMorgan and Bank of America use historical
simulation to estimate their trading risk. Others rely on volatility forecasting models such as GARCH
family models, exponentially moving average, JPMorgan’s RiskMetrics, and extreme value theory
models. In this respect, academics provided various results of the reality checks of these models and
suggested different versions of the GARCH volatility models by alternating between Normal, Student-t,
and Skewed-t distributions in an attempt to better capture tail events and asymmetry of the data
generating process (see, for example, Bauwens and Laurent (2005), Danielsson and Morimoto (2000)).
Other scholars suggested hybrid models combining, for instance, filtered historical simulation with
GARCH models or assuming different error terms in the models. Nevertheless, such models require
assumptions about the stochastic processes of the underlying asset prices that are subject to validation

Int. J. Financial Stud. 2020, 8, 19; doi:10.3390/ijfs8020019 www.mdpi.com/journal/ijfs

http://www.mdpi.com/journal/ijfs
http://www.mdpi.com
https://orcid.org/0000-0001-8629-2654
http://dx.doi.org/10.3390/ijfs8020019
http://www.mdpi.com/journal/ijfs
https://www.mdpi.com/2227-7072/8/2/19?type=check_update&version=2


Int. J. Financial Stud. 2020, 8, 19 2 of 18

failure either because of misspecification or the latent characteristic of the parameters, especially during
economic downturns.

On a more macro level, it is now evident that the importance of risk models remains fundamental
for capital requirements as imposed by the Basel regulations. Decision-makers rely on these risk
models as long as they have passed some validation criteria adopted by financial institutions and
regulatory authorities. Three critical model-failures have been noted in the literature—1992 Deutsche
Bank loss of $500 million, the 1998 collapse of Long Term Capital Management (LTCM), and the 2012
“London Whale”1 debacle of JPMorgan Chase & Co. For the Deutsche bank loss, the culprit was the
assumption of flat volatility to price options and, in the case of the LTCM debacle, the blame was
placed on the model’s use of Gaussian copula and the assumption of no contagion (Jorion 2000).2

Finally, the 2012 loss of $6.2 billion, due to a spreadsheet error in calculating Value-at-Risk (VaR) and
operational risk at JPMorgan Chase, highlights why it is important to validate risk models.3

In light of some of these historical data, it is fitting that scholars shifted their approach to stochastic
volatility risk models, postulating that volatility is driven by its own stochastic process that accounts
for jump dynamics in the returns rather than skewness or excess kurtosis. Such an approach, when
pitted against other risk models, outperformed both in and out-of-sample backtesting results (see, for
example, Maheu and McCrudy (2005), Su and Hung (2011), and Ze-To (2012)). Their results supported
a consensus that jumps are causing extreme value in returns and taking them into consideration
provides better VaR forecasts for long and short positions at lower and higher VaR levels. Though
such models were successfully validated, they accounted for jumps in the return series and not in
volatilities. In addition, many of these risk models were validated in a portfolio context, and little has
been done with individual assets with a stochastic model that accounts for both jumps in returns and
volatilities (see, for example, Eraker et al. (2003)).

The challenge, therefore, is to identify the best risk model that has passed some validation criteria
using risk measures such as VaR and Expected Shortfall (ES), which remain the building-block of
market risk regulations. One typical means for identification of the best risk forecast model is by
analyzing violation ratios, which is better known as backtesting. Although some scholars argue that
risk model choice is the least concern for decision-makers (see, for example, Danielsson et al. (2016)),
the scenario takes a different path when dealing with individual financial assets and considering
economic events affecting financial markets.

Risk validation in any financial asset that trades on organized platforms is critical for national
and international regulatory bodies that are entrusted with providing a safe and sound financial
environment for financial transactions. To this extent, investor safety is paramount for an assessment
of risks of cryptocurrencies so that proper regulatory controls, if needed, can be designed and
implemented. The popular media have declared the cryptocurrencies as some of the most volatile assets
in the financial market worldwide. Such assertions must be validated using appropriate econometric
risk models that incorporate stylized features of the market to understand the evolution of risk and
the factors that are responsible for it. Most importantly, the structure of the market, transaction costs,
market microstructure, price formation, and the volatility should be studied within an appropriate
risk model. For the emerging cryptocurrencies market where governmental oversight and regulatory
structure is still evolving, model risk due to wrong assumptions can lead to wrong conclusions and
incorrect policy implementation.

Overall, cryptocurrencies have taken place in the financial markets and in portfolio management.
They may be useful in risk management and ideal for risk-averse investors in anticipation of negative

1 The term “London Whale” was based on the enormous size of the bet on credit default swaps made by the London office of
the bank’s risk management division.

2 In addition, the LTCM model made several critical mistakes, including assuming that returns were normally distributed,
and the time period to establish the risk parameters was rather short. See Jorion (2000) for more.

3 Interestingly, JPM CEO Jaime Dimon had initially described the problem as “a tempest in a teapot”.



Int. J. Financial Stud. 2020, 8, 19 3 of 18

shocks to the market. They are also considered as investment assets useful for portfolio diversification
and hedging against movements in other financial assets such as commodities. To sum up, for an
investor trying to manage tail risk in cryptocurrencies, choosing an appropriate model is critical for
forecasting volatility.

This paper aims at exclusively identifying a risk model that is valid for the cryptocurrency markets.
It also attempts to build up on the consensus that cryptocurrencies exhibit extreme volatility that
needs to be properly quantified for risk management purposes. The existing literature suggests that
both stochastic volatility and jumps in returns in the equity market are important components of
the returns. Hence, we consider theoretical and applied return models that require the specification
of a stochastic volatility component. The model that we select accommodates the persistence in
volatility, and volatility of a jump to address the unpredictable and large movements in the price
process. In essence, our objective is to examine if jumps in returns and volatility can help us predict
tail risk and expected shortfall more accurately. Furthermore, it also is important to determine if jumps
in returns and volatility can help us accurately predict and manage expected losses from investing
in cryptocurrencies. This particular focus on the volatility structure of the cryptocurrency market is
incomplete in the literature.

Our risk model validation approach starts with a nonparametric test to detect jumps in the
dynamics of the price process in the cryptocurrency market. Next, we introduce the price dynamics
as inputs in a stochastic model that allows for jumps in both returns and volatility, as well as their
correlation. We call this the Stochastic Volatility with Co-Jumps (SVCJ) model. We further study
how such a model could be appropriate for risk measurement and compare its Value-at-Risk and
Expected Shortfall predictions with competing models that are frequently applied to financial time
series. Backtesting criteria are implemented to test the statistical accuracy of the models, followed by
an examination of the statistical significance of the differences between the models.

Our results suggest that no one model universally fits all cryptocurrencies. We find that there are
jumps in the returns and volatility of returns in the cryptocurrency market, though jump probability
estimates vary across currencies. We find evidence of the leverage effect where volatility has an
asymmetric response to good news and bad news. Both the SVCJ and TGARCH models produce
accurate forecasts of tail risk and Expected Shortfall (ES) better than the popular RiskMetrics model.
Finally, the strongest result in the paper is that the proposed SVCJ model produces lower economic
losses than the TGARCH and RiskMetrics models. This implies real savings for an investor for dealing
with capital losses for investing in the cryptocurrency market.

The paper proceeds as follows. In Section 2, we discuss the proposed stochastic volatility model
with jumps and leverage. In Section 3, we offer empirical results. The final section concludes the paper.

2. Methodology

An understanding of the volatility process of financial assets is necessary for investors to manage
risks of investing in financial markets. Equally important is that regulators have a more informed
view of the underlying volatility structure of these assets so that appropriate regulatory policies can
be designed to attract investors and potential new issuers. To this extent, it is important to examine
if assets have time varying volatility, jumps, autocorrelation, extreme risk, and how the volatility
process responds to good news and bad news in the markets. These issues have been investigated in
the literature individually in a disparate manner when they should be addressed simultaneously in
an integrated model to allow interaction among these volatility parameters (see Ardia et al. (2019),
Barivera et al. (2017), and Segnon and Bekiros (2019), and references therein). Hence, we adopt a
model that can capture quick and persistent movements of the conditional volatility of returns as
in Eraker et al. (2003), which was an implementation of the model with jumps in both returns and
volatility by Duffie et al. (2000). Such models showed that, with jumps in returns and jumps in
stochastic volatility, the performance is better than competing models with different specification of
the volatility process. A number of papers have examined equity price models with jumps in returns
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and stochastic volatility (see, for example, Bakshi et al. (1997), Andersen et al. (2002), and Pan (2002))
and made it clear that both stochastic volatility and jumps in returns are important components of the
time series properties of financial assets.

Let us begin by defining logPt as the logarithmic price process with Vt as the stochastic variance.
Both processes are assumed to have a continuous path or happen to be discontinuous with the
occurrence of at least one jump:

dlogPt = µdt +
√

VtdWX
t + JXdZX

t
dVt = κ(θ −Vt)dt + σV

√
VtdWV

t + JV
t dZV

t ,
(1)

where the stochastic volatility Vt has parameters κ and θ that are the mean reversion rate and
mean reversion level, respectively. WX and WV are correlated standard Brownian motions with
Cov(dWX

t , dWV
t ) = ρdt. ZX

t = ZV
t are contemporaneous jump arrivals in both prices and volatility

and are assumed to follow a Poisson process with constant intensity λ. σV represents the volatility of
volatility and measures the variance responsiveness to diffusive volatility shocks.

Because data are observed in discrete time, it is common to use an Euler discretization of the
continuous time process in Equation (1). Assuming a time discretization of one day (dt = 1) and
Xt = logPt − logPt−1, the discrete model, labeled SVCJ, becomes:

Xt = µ +
√

Vt−1εX
t + JX

t ZX
t

Vt = κ(θ −Vt−1) + σV
√

Vt−1εV
t + JV

t ZV
t

(2)

where JX
t and JV

t are the correlated jump sizes with JV
t ∼ exp(µV) and JX

t |JV
t ∼ N(µX + ρJ JV , σ2

X),
and εX

t and εV
t are standard normal random variables with correlation ρ. We note that, when ρJ = 0

and µV = 0, the model turns to a stochastic volatility with jumps of Bates (1996), and, when ρJ = 0,
µV = 0, λ = 0, µX = 0, and σX = 0, the model is a stochastic volatility of Heston (1993).

We use a likelihood-based framework for estimating multivariate jump-diffusion models using the
Markov Chain Monte Carlo (MCMC) method. This method is based on Bayesian modeling that requires
using a likelihood, a priori distribution, and a posteriori distribution. Prior distributions are required
for the initial volatility state, V0, and for all parameters governing the dynamics of the volatilities.
Moreover, the prior contains information about both the parameters and the structure of the latent
processes: the stochastic specifications of the jump sizes, and jump times. As in Eraker et al. (2003),
the priors are always consistent with the intuition that jumps are “large” and infrequent. More
specifically, we choose a prior that places low probability on the jump sizes being small, say less than
one percent, and a prior that places low probability on the daily jump probability being greater than 10
percent. In this paper, we generate results with priors.

Next, the forecastability of the SVCJ model is compared to commonly adopted alternative volatility
models within the popular GARCH family. For this and to be in line with the stylized facts that financial
time series have leptokurtosis, heavy tail, and autocorrelation, we impose volatility dynamics within
the universe of GARCH specifications. We choose the TGARCH specification of Glosten et al. (1993) is
due to its ability to capture the so-called leverage effect, the tendency of volatility to increase more
with negative news rather than positive news. Brownlees and Engle (2012) argued that this volatility
model has superior forecasting performance than other known volatility models4. The model takes
into consideration any presence of autocorrelation of order p and is presented as follows:

4 Other volatility forecasting models would include ARCH, GARCH, I-GARCH, GARCH-M, GJR-GARCH, and TARCH,
for example. However, it is very tough to generalize the statement because results from the above models may vary due to
differences in assets, data, and time period under study. See, for example, Ali (2013).
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Xt = a0 +
p

∑
j=1

ajXt−1 + ut (3)

σ2
t = ω + αu2

t−1 + γu2
t−1 I−t−1 + βσ2

t−1,

with ut ∼ D(0, σ2
t ) representing independent and identically distributed shocks with zero mean and

time-varying variance, and I−t−1 = 1 if ut < 0, and zero, otherwise. In this model, the parameters α

and β are respectively the ARCH and GARCH coefficients, and the parameter γ captures the leverage
effect of the returns. In line with the stylized facts observed in the cryptocurrency market (see for
example Chan et al. (2017), Caporale and Zeokokh (2019), and Ardia et al. (2019)) and, because there is
a large departure of the cryptocurrencies returns from normality, we allow for the distribution D of
shocks to follow a Student-t or skewed Student-t with ν degrees of freedom.

We explore whether the forecasts generated from the two models are able to provide an investor
with a valid tool to hedge risk. Therefore, we derive VaR and ES using the simulated volatility series
when fixing the parameter estimates produced by the models. An n-day τ% VaR is defined as

VaRτ
t (X) = inf{x | Pr(Xt < −x) ≤ τ}, (4)

and, once X is below VaRτ , we define

ESτ(X) =
1
τ

∫ τ

0
VaRu(X)du. (5)

To concentrate on a specific return bracket, we adopt a non-parametric technique based on Filtered
Historical Simulation of Barone-Adesi et al. (1999) to simulate 5000 returns’ paths from both the SVCJ
and the AR(2)-TGARCH (1,1)∼ t models. For the latter, we first standardize returns by quantiles and
volatility estimates and then generate returns’ paths serving as the basis for calculating VaR and ES.

Next, we evaluate the accuracy of each model through backtesting the estimated VaR and ES.
The backtesting relies on comparing the risk measures estimated by the models under analysis with the
actual trading results. The cases in which the actual loss exceeds the VaR estimate are called exceptions.
According to Christoffersen (1998), the exception sequence is defined as:

Iτ
t =

{
1, if Xt < −VaRτ

t violation occurs

0, otherwise
(6)

for t = T + 1, . . . , T + n, where T is the number of return observations used to estimate the VaR of
the day T + 1, and n is the number of one-step-ahead estimates of that risk measure included in the
test. Consequently, Christoffersen’s conditional coverage test (LRcc) for VaR backtesting consists of
determining whether the probability of occurrence of an exception, p = Pr[Xt < VaRτ

t ] is significantly
different from the defined τ (unconditional coverage test LRuc) and whether the exception sequence is
serially independent (independence test LRind)5. The likelihood ratio statistics for the test of correct
conditional coverage is defined as:

LRcc = 2ln
[
(1− π01)

n00 π
n01
01 (1− π11)

n10 πn11
11
]
− 2ln [(1− τ)n0 τn1 ] (7)

where n0 and n1 are respectively the number of 0s and 1’s in the indicator series, nij is the number of
observations with value i followed by value j in the Iτ

t series. The value i, j = 0 denotes no violation,
while i, j = 1, denotes the opposite. The series Iτ

t are assumed to be a first-order Markov process

5 The probability of an exception does not depend on the previous day’s outcome.
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with transition probabilities πij =
nij

∑j nij
6. The likelihood function LRcc follows a χ2

(2) and tests the
independence of exceedance (loss) across time periods. If the sequence of losses is independent, then
π01 = π11 = p. Hence, this test can reject a model that generates too many or too few violations.

Given that VaR passes this test, we then proceed with backtesting the excess loss component,
L = ESτ −VaRτ , using the McNeil et al. (2005) ‘zero mean test’ and the bootstrap method of Efron and
Tibshirani (1994), which requires no assumption on the distribution of S = (L− ESτ)1L>VaRτ .

Lastly, we test the superiority of a model vis-à-vis a competing model with respect to the loss
function of Angelidis et al. (2004) and using Sarma et al. (2003) ‘zero median test’. The loss function is
defined as:

Ct =

(Xt − (−VaRτ
t ))

2 , if violation occurs(
qτ [Xt]

T+n
T+1 − (−VaRτ

t )
)2

, otherwise
(8)

where qτ [Xt]
T+n
T+1 is the quantile of the out-of-sample returns used for backtesting. At each time t, Ct

increases either by excess loss, if a violation occurs, or by the difference between VaRτ
t forecast and the

future quantile. It follows that choosing the best accurate model i over model j, which will minimize
the total loss ∑T

t=1 Ct, can be decided by testing the hypothesis that the median of the distribution
Bt = Cit − Cjt is equal to 0. Here, Bt is known as the loss differential between model i and model j at
time t, and a negative value indicates the superiority of model i over j. This loss function is of practical
interest to investors seeking to reduce market risk and avoiding allocating more money than needed.

3. Data and Empirical Results

In this section, we describe the details of the procedures for the comparison of the previously
discussed risk models for the matter of validation, and, for a better understanding of our results,
we divide this section in three parts. In the first part, we describe the stylized facts of the
sample and conduct preliminary diagnostics. The second part presents the details of the in-sample
estimation of the risk models, namely SVCJ, TGARCH, and RM. In the third part, we evaluate the
out-of-sample forecasting ability of the models in terms of VaR and ES, and then perform backtesting
for validation purposes.

3.1. Data

Over the last few years, the most important aspect of cryptocurrencies which has gained
prominence in the media is the realized market volatility. To be fair, the media’s infatuation with
cryptocurrencies is manifested in the actual market data. Between 26 April 2013 and 16 May 2019,
the daily average return from the largest cryptocurrency Bitcoin (BTC) was 0.3% with 4.34% standard
deviation. There were 174 days with daily returns falling by more than 5%, and 178 days with daily
returns increasing by more than 5%. The maximum daily return during this period was 43.58% (19
November 2013) and the largest one-day change was –23.43% (12 December 2013). On 18 December
2017, the market cap for BTC was $320 billion and the price soared to $19,783 (17 December 2017).
One year later, the market cap for the currency declined to $63 billion (28 December 2018). As of this
writing (23 May 2019), BTC had a market cap of $138.5 billion. Such large, unprecedented swings in
the market value can be terrifying for some investors, while others see opportunities. In more recent
days, however, there is a lot more emphasis on avoiding volatility and promoting the stability of the
cryptocurrencies to bring some sense of calm in the market. For example, companies like Google, IBM,
and Facebook7 have announced their plans to introduce newer coins and each one is claiming that
their currency will be a more stable asset than the others (Forbes, 16 April 2019).

6 π01 = Pr[Iτ
t = 1 | Iτ

t+1 = 0), and π11 = Pr[Iτ
t = 1 | Iτ

t+1 = 1].
7 In fact, Facebook is planning to introduce a cryptocurrency, appropriately named as ’Stablecoin’ for its “WhatsApp” platform.
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We use daily prices of seven successful8 cryptocurrencies: Bitcoin (BTC), Ripple (XRP),
Litecoin (LTC), Stellar (XLM), Monero (XMR), Dash (DASH), and Bytecoin (BCN), all collected
from cryptocompare.com9. The data span the period 5 August 2014 to 24 March 2019, with a total
of 1693 daily observations. Table 1 reports the summary statistics including the mean, standard
deviation, minimum, maximum, skewness, kurtosis, and the p-values of the Ljung–Box test for
first-order autocorrelation for all cryptocurrencies. Ripple has the highest mean of 0.24% and Bytecoin
has the highest standard deviation of 11.44%. All cryptocurrencies display excess kurtosis and the
Ljung–Box test shows that data exhibit first and second-order autocorrelation except for Stellar at the
5% confidence level.

Table 1. Descriptive statistics of daily log-returns of cryptocurrencies.

Mean StDev Min Max Skewness Kurtosis AR1 AR2

BTC 0.010 0.166 −0.146 1.788 3.609 22.78 0.091 0.117
XRP 0.037 0.355 −0.309 6.190 5.546 65.93 0.421 0.048
LTC 0.016 0.248 −0.136 4.789 9.196 130.18 0.880 0.766
XLM 0.015 0.213 −0.206 3.808 5.532 68.53 0.037 0.039
XMR 0.007 0.134 −0.147 1.306 2.998 15.12 0.733 0.423
DASH 0.012 0.175 −0.196 1.595 2.705 12.23 0.671 0.180
BCN 0.009 0.163 −0.157 3.049 6.775 95.30 0.234 0.117

Data spans from 5 August 2014 until 24 March 2019. AR1 and AR2 display the p-values of the Ljung–Box for
autocorrelation of first and second order. p-values below the 1% significance level indicate rejection of the
null hypothesis of no autocorrelation.

3.2. In-Sample Estimation

Table 2 provides posterior summaries for parameter estimates from the stochastic volatility with
co-jumps (SVCJ) model for all cryptocurrency series. For the MCMC framework, there were 10,000
iterations with a burn-in of 2000 iterations to minimize the influence of the initial values. The initial
values were as follows: µ ∼ N(0, 1), κ ∼ N(0, 1), κθ ∼ N(0, 1), ρ ∼ u(−1, 1), σ2

V ∼ IG(2.5, 0.1),
µX ∼ N(0, 100), ρJ ∼ N(0, 4), σ2

X ∼ IG(5, 20), µV ∼ G(20, 10), and λ ∼ B(2, 40). The SVCJ model
appears to be an ideal candidate for the cryptocurrencies, as indicated by the low MSE. The results
show that the jump intensity λ is significant for all cryptocurrencies and is high for XRP and LTC,
respectively 10.6% and 9.3%, and low for BCN and BTC, respectively 2.5% and 3.8%. The jump
correlation ρJ is insignificant for all cryptocurrencies, similarly to the findings of Eraker et al. (2003)
with stock prices.

The results also show a positive correlation, ρ, between the Brownian motions of returns and
volatility for all cryptocurrencies except for XRP and DASH, where it is negative. This shows that
a negative shock to returns increases volatility, and we can infer that the leverage effect contributes
to the effectiveness in fitting the volatility of cryptocurrency returns. Figure 1 displays the jumps in
returns and volatility for selected cryptocurrencies with high and low intensity of jumps. XRP and
LTC have high intensity, and BTC and BCN have low intensity jumps.

8 Our sample of cryptocurrencies captures market dynamics for various market capitalizations, ranging from high to low.
Among the largest market caps (22 May 2019), we have Bitcoin ($136.13 billion) and XRP ($15.88 billion), in the middle
market cap category, we have Litecoin ($5.44 billion), and Bytecoin ($0.169 billion) represents the small market cap category.

9 It is important to acknowledge that there are significant differences in the quality of data that are available at multiple sites
including CoinAPI, Cryptodatadownload, Cryptocompare, Coinmarketcap, and Coingecko. According to Alexander and
Dakos (2019), some of these data are traded prices while others are non-traded prices issued by the exchanges, leading to
questionable results in empirical studies.

cryptocompare.com
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Table 2. Parameter estimates of stochastic volatility with co-jumps (SVCJ).

BTC XRP LTC XLM XMR DASH BCN

µ 0.023 −0.042 −0.003 −0.046 −0.009 −0.020 −0.032
(0.007) (0.023) (0.009) (0.016) (0.018) (0.014) (0.042)

κ 0.088 0.162 0.055 0.309 0.356 0.188 0.108
(0.003) (0.016) (0.002) (0.006) (0.015) (0.005) (0.230)

θ 0.091 0.314 0.165 0.168 0.132 0.186 0.505
(0.009) (0.025) (0.010) (0.012) (0.016) (0.016) (0.138)

µX −0.002 −0.003 0.004 0.003 0.001 0.000 0.002
(0.031) (0.050) (0.040) (0.030) (0.030) (0.028) (0.048)

σ2
X 2.37 1.83 7.05 1.92 1.92 1.51 1.76

(0.068) (0.065) (0.105) (0.065) (0.067) (0.050) (0.062)
λ 0.038 0.106 0.093 0.050 0.061 0.079 0.025

(0.007) (0.017) (0.010) (0.009) (0.012) (0.011) (0.011)
µV 0.732 2.509 1.079 3.787 1.583 1.796 2.747

(0.110) (0.383) (0.107) (0.531) (0.240) (0.224) (11.747)
σV 0.011 0.029 0.010 0.041 0.034 0.021 0.162

(0.003) (0.008) (0.002) (0.007) (0.011) (0.004) (0.046)
ρ 0.012 −0.016 0.002 0.006 0.005 −0.020 0.007

(0.021) (0.041) (0.026) (0.023) (0.023) (0.022) (0.040)
ρJ 0.000 0.003 0.001 0.000 0.001 0.001 0.000

(0.001) (0.013) (0.024) (0.005) (0.012) (0.010) (0.001)
MSE 0.854 0.853 0.869 0.837 0.878 0.853 0.826

Parameter estimates of SVCJ model are displayed along with the posterior means and the posterior standard
deviations (in parentheses). The posterior sampling was carried out with 10,000 MCMC iterations and 2000
burn-in iterations.
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Figure 1. Jumps in returns (left columns) and jumps in volatilities (right columns).
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We have also estimated several AR(2) return models with various volatility specifications namely,
asymmetric GARCH, IGARCH, TARCH, and GJR-GARCH, and by alternating between Student-t and
Skewed Student-t errors. Table A1 (see Appendix A) displays the estimation results of these models
for the cryptocurrencies. Each model was ranked on the basis of the log-likelihood function (higher
the better) and the AIC (lower the better). Overall, the TGARCH with skewed t-distributed errors
turns out to be the best volatility fitting model for the cryptocurrencies considered in this paper. These
results contradict the findings of Chan et al. (2017) that IGARCH and GJR-GARCH models provide
the best fits for the most popular and largest cryptocurrencies.

Table 3 summarizes these results by reporting the AR(2)-TGARCH(1,1)∼Skewed t estimated
parameters. The parameters α and β, which represent short-run dynamics, are all significant for all
cryptocurrencies. This suggests that the volatility is intensively reacting to market movements and that
shocks to the conditional variance take time to die out. The leverage effect γ is statistically significant
for all series except for XRP, DASH, and BCN. There were no remaining autocorrelations in both the
standardized residuals and the squared standardized residuals.

Table 3. Parameter estimates of AR(2)-TGARCH(1,1)∼Skewed t volatility model.

BTC XRP LTC XLM XRM DASH BCN

a0 0.093 −0.117 0.046 −0.098 0.218 0.103 0.308
(0.040) (0.041) (0.054) (0.040) (0.106) (0.069) (1.002)

a1 −0.055 −0.098 −0.081 −0.157 −0.053 −0.062 −0.235
(0.018) (0.028) (0.022) (0.041) (0.025) (0.020) (0.026)

a2 −0.061 −0.042 −0.072 −0.048 −0.027 −0.064 −0.036
(0.024) (0.025) (0.021) (0.019) (0.023) (0.017) (0.143)

ω 0.066 0.632 0.125 0.474 0.569 0.448 0.794
(0.032) (0.201) (0.059) (0.158) (0.177) (0.130) (0.244)

α 0.271 0.634 0.421 0.271 0.193 0.268 0.167
(0.061) (0.139) (0.095) (0.054) (0.035) (0.042) (0.039)

β 0.852 0.620 0.859 0.775 0.794 0.755 0.810
(0.020) (0.053) (0.021) (0.043) (0.038) (0.038) (0.038)

γ −0.136 −0.061 −0.169 −0.222 −0.183 0.066 −0.197
(0.071) (0.064) (0.087) (0.089) (0.093) (0.073) (0.161)

Shape 2.473 2.383 2.117 2.852 3.487 3.246 3.398
(0.218) (0.026) (0.038) (0.244) (0.371) (0.313) (0.363)

Skewness 0.930 1.057 1.056 1.145 1.104 1.118 1.078
(0.027) (0.026) (0.028) (0.033) (0.036) (0.035) (0.117)

LogLikelihood −3315.8 −3757.8 −3586.5 −4230.5 −4321 −4064 −4735.8
AIC 5.007 5.672 5.419 6.389 6.523 6.138 7.151

Summary of the estimation results of the AR(2)-TGARCH(1,1)∼Skewed t for the cryptocurrencies. Standard
errors are in parentheses and bold indicates insignificance at 5% and 1% levels.

The estimated volatility from these three distinctly different models are reported in Figure 2 for
BTC, as an example. A visual examination shows that the volatility graphs are markedly different
across models. The SVCJ model produces the smoothest plot because it includes all parameters of the
volatility series. The plots generated from the remaining models are substantially jagged and show
significant structural breaks, which can impede our estimation of tail risk.
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Figure 2. Estimated Volatility from SVCJ, TGARCH, and RiskMetrics Models

3.3. Out-of-Sample Validation

We proceed with an out-of-sample comparison of the risk measures and forecasting ability of the
two models, SVCJ and TGARCH. Our benchmark model is the RiskMetrics (RM) of J.P.Morgan (1996).
The risk measures VaR and ES were estimated with a rolling window of T − 365 = 1328 daily
log-returns, and the remaining 365 days (24 March 2018 to 24 March 2019) are kept for out-of-sample
forecasts and accuracy checks. We then simulate 5000 returns paths from both models. For the
AR(2)-TGARCH(1,1)∼Skewed t model, we used the Filtered Historical Simulation by first extracting
the standardized residuals using the volatilities to form a new set of innovations, which are then
utilized to obtain the conditional mean. For each return, these steps are repeated recursively to obtain
different simulated pathways, with 5000 draws from the standardized residuals to generate 1328 (same
as in-sample size) replicates of the returns.

Table 4 reports the out-of-sample backtesting results. The Christoffersen (1998) conditional
coverage test confirms that the two models SVCJ and TGARCH accurately forecast the VaR as the
p-values are greater than 5%. There is an exception for XRP where TGARCH performs better for 1%
VaR. Although the RiskMetrics model displays forecasting accuracy, it occasionally fails to perform
accordingly for LTC and XLM cryptocurrencies. Speculative investors taking either a long or short
position in a cryptocurrency can generate accurate VaR forecasts using these two models.
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Table 4. Value-at-Risk backtesting results.

SVCJ TGARCH RM

LRcc VaR (%) ES (%) LRcc VaR (%) ES (%) LRcc VaR (%) ES (%)

1% Level
BTC 0.660 6.89 9.41 0.499 9.23 13.96 0.017 8.91 13.24
XRP 0.047 11.34 16.74 0.993 9.62 12.36 0.476 12.90 19.53
LTC 0.177 11.45 17.05 0.407 12.74 19.80 0.017 11.72 19.00
XLM 0.053 15.99 22.43 0.408 10.13 12.60 0.047 14.38 21.35
XMR 0.289 10.76 15.13 0.289 10.94 14.67 0.940 15.11 21.96

DASH 0.083 9.42 13.67 0.452 11.91 15.85 0.256 13.57 19.77
BCN 0.098 17.79 24.78 0.365 18.10 20.75 0.630 24.62 37.38

5% Level
BTC 0.401 2.49 5.09 0.998 4.38 7.52 0.181 4.67 7.55
XRP 0.623 4.34 8.65 0.499 4.85 7.70 0.913 6.94 11.07
LTC 0.446 5.04 9.10 0.842 5.74 10.25 0.001 5.88 10.06
XLM 0.239 5.38 11.57 0.457 5.17 7.87 0.150 7.99 12.40
XMR 0.296 3.49 7.89 0.159 5.94 8.96 0.163 8.37 12.94

DASH 0.404 3.66 7.13 0.235 6.78 9.85 0.649 7.54 11.69
BCN 0.050 5.75 12.61 0.348 10.20 14.50 0.256 13.02 21.04

Christofersen’s test p-values and average values of the VaR and ES forecasts are displayed under SVCJ,
AR(2)-TGARCH(1,1)∼Skewed t, and RiskMetrics (with a decay factor of 0.94). Bold p-values below 5% rejects
the null hypothesis of correct exceedances and independence of violation sequences, and hence represents
inaccurate VaR estimates.

Given the accuracy of the models, Table 5 reports the zero mean test of excess loss provided
that the model first passes the test for VaR. The results indicate that the predictive power of SVCJ
model is better than TGARCH and RM models at the 5% level (many of the p-values are less than
5%). One possible explanation of such a finding is that TGARCH and RM models’ forecasting have
less significant gains over the forecasts of the SVCJ model. This particular evidence supports our
prior that accounting for jumps in returns and volatility is a reason for the SVCJ model’s superior
predictive power.

Table 5. Expected Shortfall backtesting results.

1% Level 5% Level

SVCJ TGARCH RM SVCJ TGARCH RM

BTC 0.334 0.798 Fail 0.137 0.610 0.703
XRP Fail 0.999 0.999 0.701 0.871 0.708
LTC 0.996 0.999 Fail 0.881 0.998 Fail
XLM 0.685 0.999 Fail 0.984 0.940 0.390
XMR 0.753 0.509 0.923 0.281 0.788 0.896
DASH 0.539 0.533 0.920 0.000 0.982 0.234
BCN 0.546 0.865 0.957 0.571 0.971 0.907

Results of the zero mean test for the excess loss, provided that the model generates accurate VaR estimates.
p-values are reported at 1% and 5% risk levels for the cyptocurrencies. p-values below 5% indicate inadequacy
of the model for estimating ES.

Table 6 summarizes the test of the best performing model with respect to the quantile loss function
of Angelidis et al. (2004). For each cryptocurrency and confidence level, we present the loss differential
B and the p-values of the zero median test of Sarma et al. (2003). When p-values are less than 5%,
it implies that two competing models are significantly different from each other in terms of estimating
risk. The opposite implies that the two competing models are not significantly different from each other,
with respect to the quantile loss function. Hence, regulators and risk managers remain indifferent
between these two models. The results suggest that, at the 5% level, the SVCJ model is better than
TGARCH and RiskMetrics models because it produces lower economic losses. At the 1% level, some of
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the results show that a risk manager is indifferent between the models for VaR estimation. For instance,
for Bitcoin and Stellar, SCVJ and TGARCH models are not significantly different from each other, with
respect to the quantile loss function. For the same cryptocurrencies, these two models are performing
better than the RiskMetrics model. Therefore, as far as loss is concerned, a risk manager would prefer
either SVCJ or TGARCH model over RiskMetrics.

Table 6. Quantile Loss Function test for the best model for VaR estimates

SVCJ vs. TGARCH SVCJ vs. RM TGARCH vs. RM

B p-Value B p-Value B p-Value

1% Level
BTC 277 1.0000 SVCJ TGARCH
XRP TGARCH RM 4 0.0000
LTC 155 0.0023 SVCJ TGARCH
XLM 287 1.0000 SVCJ TGARCH
XMR 176 0.2480 100 0.0000 8 0.0000

DASH 147 0.0001 105 0.0000 56 0.0000
BCN 234 1.0000 162 0.0159 12 0.0000

5% Level
BTC 93 0.0000 209 0.9975 147 0.0001
XRP 86 0.0000 85 0.0000 2 0.0000
LTC 131 0.0000 112 0.0000 157 0.0034
XLM 185 0.6030 SVCJ TGARCH
XMR 95 0.0000 27 0.0000 0 0.0000

DASH 77 0.0000 40 0.0000 46 0.0000
BCN 130 0.0000 96 0.0000 43 0.0000

B statistic and p-values, at 1% and 5% risk levels are reported for the cyptocurrencies. p-values below 5%
indicate that the difference in the performance of models is significant. If one model fails the previous backtest,
we then report the other prevailing model.

Overall, as noted earlier in Table 5, there is a gap between the quantities of risk measured by
VaR and ES at the 1% and 5% confidence levels. This suggests that ES gives a more accurate measure
of risk than the traditional VaR measure. This finding seems to support the recommendation from
the Basel Committee on Banking Supervision (2013) that banks use ES in lieu of VaR, and that there
should be a recalibration of the confidence level for consistency and accuracy of the risk measure.
In terms of the forecast accuracy, our results show that SVCJ and TGARCH generate better forecasts at
the 1% level then RM. This evidence clearly supports the notion that fat-tailed volatility models can
predict risk more accurately than non-fat-tailed models. In summary, the combination of jumps in
returns and volatility in a stochastic model yields the most accurate VaR forecasts for the majority of
the cryptocurrencies studied in this paper.

4. Conclusions

It is now a widely accepted view that risk models should account for the stylized facts of the
data in order to be successfully validated. Estimating risk was mainly performed on many financial
asset markets but not on the emerging cryptocurrency market, which has been proven to be extremely
volatile. Typical volatility models may not adequately provide an accurate representation of the
cryptocurrencies volatility process for successful risk management purposes. In particular, risk models
must be able to capture the cryptocurrencies volatility process that includes stochastic volatility,
persistence in volatility, and jump process. All these stylized features are critical for capturing
unpredictable and large movements in the price process and for accurately predicting tail risk and
expected shortfall. There is limited research on this topic despite the fact that investors are exploring
how cryptocurrencies can be integrated into a portfolio along with other traditional assets such as
stocks, bonds, currencies, and commodities. Choosing a proper model that provides a parsimonious
representation of the distribution of the return-generating process is the first step.
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In this paper, we identified risk models for the cryptocurrency market and evaluated their
performance for validation purposes. We evaluated models based on stochastic volatility with co-jumps
in returns and volatility (SVCJ), threshold GARCH volatility (TGARCH), and RiskMetrics. Backtesting
methods using the conditional and unconditional coverage were performed to test the validity of the
models, and the regulatory loss function was applied to choose the most accurate model.

The validation results reveal that, although the models considered in this paper are effective for
fitting the cryptocurrency returns, the SVCJ model more accurately forecasts risk in a VaR and ES
sense, and the reality check proves its superiority over TGARCH and RiskMetrics models. Therefore,
incorporating jumps in the cryptocurrency volatility model improves the forecasting ability of risk
in terms of VaR and ES. This is important for risk-averse investors and for speculative investors who
are particularly interested in hedging their risk in a VaR sense. It is, therefore, recommended to use a
model that accounts for jumps, leptokurtosis, and leverage effects when dealing with cryptocurrency
market data. Such a model improves risk forecasting in terms of VaR and Expected Shortfall.

The results in this study have several implications for applying the SVCJ model to other assets
including commodities, foreign currencies, and stock market indices, especially in times of stress.
The global financial market has seen unprecedented volatility in recent days, given falling oil prices
and concerns related to the COVID-19 pandemic. It would be interesting to see if such wild swings in
the market can be studied using the SVCJ model to incorporate the co-jumps in returns and volatility
affecting the measurement of VaR and Expected Shortfalls in the contagion like period that we now
have. We leave that for a future study.
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Appendix A

Table A1. Volatility estimates.

GARCH GARCH IGARCH IGARCH TGARCH TGARCH GJR-GARCH GJR-GARCH
∼ t ∼ Skewed t ∼ t ∼ Skewed t ∼ t ∼ Skewed t ∼ t ∼ Skewed t

Bitcoin (BTC)
a0 0.191 (0.048) 0.140 (0.058) 0.191 (0.048) 0.140 (0.057) 0.175 (0.032) 0.093 (0.040) 0.197 (0.050) 0.149 (0.056)
a1 −0.021 (0.026) −0.021 (0.026) −0.022 (0.026) −0.021 (0.026) −0.051 (0.023) −0.055 (0.018) −0.031 (0.031) −0.032 (0.027)
a2 −0.043 (0.025) −0.044 (0.025) −0.043 (0.025) −0.044 (0.025) −0.059 (0.014) −0.061 (0.024) −0.048 (0.023) −0.050 (0.025)
ω 0.205 (0.090) 0.210 (0.089) 0.203 (0.077) 0.207 (0.077) 0.063 (0.030) 0.066 (0.032) 0.169 (0.175) 0.173 (0.085)
α 0.171 (0.024) 0.173 (0.024) 0.171 (0.023) 0.173 (0.023) 0.254 (0.053) 0.271 (0.061) 0.195 (0.032) 0.197 (0.030)
β 0.827 (0.025) 0.825 (0.025) 0.828 (NA) 0.826 (NA) 0.857 (0.021) 0.852 (0.020) 0.839 (0.049) 0.837 (0.027)
γ −0.141 (0.073) −0.136 (0.071) −0.073 (0.041) −0.073 (0.032)
shape 3.385 (0.240) 3.401 (0.242) 3.377 (0.191) 3.393 (0.193) 2.517 (0.216) 2.473 (0.218) 3.417 (0.284) 3.441 (0.246)
skewness 0.951 (0.030) 0.951 (0.030) 0.930 (0.027) 0.951 (0.030)
LogLikelihood −3333.9 −3332.6 −3333.7 −3332.4 −3315.8 −3313.3 −3331.4 −3330.2
AIC 5.035 5.034 5.033 5.033 5.009 5.007 5.033 5.032
Ripple (XRP)
a0 −0.256 (0.067) −0.161 (0.083) −0.256 (0.067) −0.162 (0.082) −0.220 (0.054) −0.117 (0.041) −0.250 (0.068) −0.156 (0.083)
a1 0.001 (0.028) 0.001 (0.029) 0.001 (0.028) 0.001 (0.028) −0.011 (0.028) −0.098 (0.028) 0.004 (0.028) 0.005 (0.028)
a2 −0.040 (0.023) −0.035 (0.025) −0.040 (0.022) −0.035 (0.025) −0.047 (0.017) −0.042 (0.025) −0.041 (0.023) −0.035 (0.025)
ω 1.940 (0.776) 1.843 (0.766) 1.932 (0.671) 1.834 (0.663) 0.617 (0.196) 0.632 (0.201) 2.033 (0.806) 1.933 (0.808)
α 0.375 (0.072) 0.364 (0.073) 0.374 (0.071) 0.364 (0.072) 0.640 (0.140) 0.634 (0.139) 0.425 (0.092) 0.411 (0.095)
β 0.623 (0.080) 0.634 (0.081) 0.624 (NA) 0.635 (NA) 0.625 (0.051) 0.620 (0.053) 0.615 (0.081) 0.627 (0.084)
γ −0.055 (0.064) −0.061 (0.064) −0.083 (0.041) −0.077 (0.032)
shape 3.025 (0.184) 3.036 (0.187) 3.023 (0.152) 3.034 (0.154) 2.370 (0.163) 2.383 (0.165) 3.014 (0.184) 3.021 (0.187)
skewness 1.062 (0.032) 1.062 (0.032) 1.057 (0.026) 1.062 (0.032)
LogLikelihood −3778.7 −3776.7 −3778.6 −3776.6 −3759.5 −3757.8 −3778.1 −3776.2
AIC 5.705 5.704 5.704 5.702 5.678 5.672 5.706 5.705
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Table A1. Cont.

GARCH GARCH IGARCH IGARCH TGARCH TGARCH GJR-GARCH GJR-GARCH
∼ t ∼ Skewed t ∼ t ∼ Skewed t ∼ t ∼ Skewed t ∼ t ∼ Skewed t

Litecoin (LTC)
a0 −0.027 (0.034) 0.043 (0.055) −0.027 (0.044) 0.043 (0.055) −0.028 (0.040) 0.046 (0.054) −0.021 (0.044) 0.054 (0.055)
a1 −0.084 (0.024) −0.083 (0.022) −0.084 (0.022) −0.083 (0.022) −0.086 (0.021) −0.081 (0.022) −0.086 (0.022) −0.083 (0.022)
a2 −0.057 (0.021) −0.076 (0.021) −0.075 (0.021) −0.076 (0.021) −0.071 (0.021) −0.072 (0.021) −0.075 (0.021) −0.074 (0.020)
ω 0.181 (0.087) 0.182 (0.085) 0.179 (0.081) 0.180 (0.081) 0.126 (0.058) 0.125 (0.059) 0.139 (0.070) 0.146 (0.071)
α 0.115 (0.027) 0.115 (0.020) 0.116 (0.018) 0.116 (0.019) 0.448 (0.066) 0.421 (0.095) 0.139 (0.024) 0.143 (0.026)
β 0.883 (0.036) 0.883 (0.020) 0.883 (NA) 0.883 (NA) 0.859 (0.021) 0.859 (0.021) 0.900 (0.017) 0.900 (0.017)
γ −0.158 (0.086) −0.169 (0.087) −0.083 (0.023) −0.086 (0.024)
shape 2.677 (0.119) 2.679 (0.118) 2.670 (0.075) 2.672 (0.075) 2.102 (0.006) 2.117 (0.038) 2.639 (0.114) 2.631 (0.114)
skew 1.063 (0.030) 1.063 (0.030) 1.056 (0.028) 1.067 (0.031)
LogLikelihood −3610.6 −3608.4 −3610.4 −3608.1 −3588.6 −3586.5 −3604.0 −3601.5
AIC 5.452 5.450 5.450 5.448 5.420 5.419 5.444 5.441
Stellar (XLM)
a0 −0.407 (0.089) −0.162 (0.111) −0.407 (0.089) −0.162 (0.111) −0.385 (0.074) −0.098 (0.040) −0.384 (0.090) −0.140 (0.113)
a1 −0.156 (0.028) −0.162 (0.028) −0.156 (0.028) −0.162 (0.028) −0.157 (0.025) −0.157 (0.041) −0.154 (0.028) −0.156 (0.028)
a2 −0.061 (0.025) −0.056 (0.024) −0.061 (0.025) −0.056 (0.024) −0.062 (0.028) −0.048 (0.019) −0.057 (0.025) −0.050 (0.025)
ω 3.069 (1.197) 3.046 (1.101) 3.057 (1.127) 3.037 (1.071) 0.490 (0.179) 0.474 (0.158) 3.395 (1.246) 3.377 (1.174)
α 0.272 (0.058) 0.267 (0.056) 0.272 (0.055) 0.268 (0.051) 0.305 (0.065) 0.271 (0.054) 0.341 (0.080) 0.332 (0.080)
β 0.726 (0.058) 0.731 (0.052) 0.727 (NA) 0.731 (NA) 0.760 (0.048) 0.775 (0.043) 0.711 (0.056) 0.718 (0.051)
γ −0.195 (0.086) −0.222 (0.089) −0.106 (0.074) −0.097 (0.073)
shape 3.073 (0.215) 3.090 (0.224) 3.069 (0.167) 3.086 (0.170) 2.738 (0.225) 2.852 (0.244) 3.043 (0.217) 3.046 (0.224)
skew 1.141 (0.039) 1.141 (0.039) 1.145 (0.033) 1.138 (0.039)
LogLikelihood −4243.1 −4235.6 −4243.1 −4235.5 −4237.9 −4230.5 −4241.9 −4243.5
AIC 6.405 6.395 6.404 6.394 6.399 6.389 6.405 6.395
Monero (XMR)
a0 −0.064 (0.127) 0.153 (0.154) −0.067 (0.126) 0.152 (0.155) −0.021 (0.127) 0.218 (0.106) −0.031 (0.130) 0.183 (0.156)
a1 −0.044 (0.025) −0.044 (0.024) −0.044 (0.026) −0.044 (0.026) −0.054 (0.027) −0.053 (0.025) −0.044 (0.026) −0.043 (0.028)
a2 −0.024 (0.026) −0.023 (0.026) −0.024 (0.026) −0.023 (0.025) −0.031 (0.026) −0.027 (0.023) −0.024 (0.025) −0.021 (0.026)
ω 3.852 (1.275) 3.633 (1.232) 3.810 (1.271) 3.570 (1.228) 0.601 (0.181) 0.569 (0.177) 3.838 (1.265) 3.655 (1.235)
α 0.235 (0.053) 0.224 (0.051) 0.244 (0.042) 0.236 (0.042) 0.199 (0.036) 0.193 (0.035) 0.265 (0.064) 0.255 (0.063)
β 0.754 (0.042) 0.762 (0.042) 0.755 (NA) 0.763 (NA) 0.785 (0.039) 0.794 (0.038) 0.756 (0.042) 0.764 (0.042)
γ −0.185 (0.094) −0.183 (0.093) −0.076 (0.058) −0.072 (0.056)
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Table A1. Cont.

GARCH GARCH IGARCH IGARCH TGARCH TGARCH GJR-GARCH GJR-GARCH
∼ t ∼ Skewed t ∼ t ∼ Skewed t ∼ t ∼ Skewed t ∼ t ∼ Skewed t

shape 3.420 (0.365) 3.486 (0.374) 3.358 (0.254) 3.395 (0.264) 3.432 (0.365) 3.487 (0.371) 3.448 (0.371) 3.503 (0.378)
skew 1.094 (0.039) 1.094 (0.039) 1.104 (0.036) 1.094 (0.039)
LogLikelihood −4324.1 −4320.9 −4326.7 −4322.9 −4324.1 −4321.0 −4323.2 −4320.1
AIC 6.527 6.524 6.533 6.529 6.526 6.523 6.527 6.524
Dash (DASH)
a0 −0.057 (0.094) 0.166 (0.116) −0.057 (0.044) 0.166 (0.166) −0.089 (0.063) 0.103 (0.069) −0.074 (0.095) 0.144 (0.116)
a1 −0.058 (0.028) −0.049 (0.028) −0.057 (0.028) −0.049 (0.028) −0.061 (0.024) −0.062 (0.020) −0.058 (0.027) −0.052 (0.027)
a2 −0.055 (0.026) −0.055 (0.026) −0.055 (0.026) −0.055 (0.026) −0.065 (0.020) −0.064 (0.017) −0.054 (0.026) −0.055 (0.026)
ω 2.779 (0.814) 2.616 (0.770) 2.777 (0.809) 2.615 (0.770) 0.481 (0.140) 0.448 (0.130) 2.680 (0.788) 2.486 (0.734)
α 0.290 (0.058) 0.275 (0.056) 0.291 (0.045) 0.276 (0.043) 0.292 (0.047) 0.268 (0.042) 0.244 (0.054) 0.227 (0.051)
β 0.708 (0.045) 0.723 (0.043) 0.708 (NA) 0.723 (NA) 0.741 (0.040) 0.755 (0.038) 0.711 (0.044) 0.725 (0.042)
γ −0.141 (0.073) −0.136 (0.071) −0.073 (0.041) −0.073 (0.032)
shape 3.313 (0.293) 3.342 (0.309) 3.309 (0.226) 3.336 (0.292) 3.147 (0.296) 3.246 (0.313) 3.367 (0.292) 3.419 (0.310)
skew 1.127 (0.039) 1.127 (0.039) 1.118 (0.035) 1.129 (0.039)
LogLikelihood −4071.2 −4065.3 −4071.2 −4070.6 −4069.1 −4064.0 −4070.3 −4064.3
AIC 6.145 6.139 6.145 6.140 6.145 6.138 6.146 6.139
Bytecoin (BCN)
a0 −0.015 (0.147) 0.184 (0.180) −0.011 (0.145) 0.199 (0.182) 0.049 (0.147) 0.308 (1.002) −0.009 (0.149) 0.203 (0.183)
a1 −0.221 (0.028) −0.220 (0.028) −0.221 (0.028) −0.220 (0.028) −0.240 (0.027) −0.235 (0.026) −0.221 (0.028) −0.219 (0.028)
a2 −0.034 (0.026) −0.033 (0.026) −0.034 (0.025) −0.034 (0.026) −0.038 (0.025) −0.036 (0.143) −0.034 (0.026) −0.033 (0.026)
ω 8.810 (2.772) 8.472 (2.630) 8.972 (3.038) 8.589 (2.891) 0.829 (0.255) 0.794 (0.244) 8.795 (2.754) 8.496 (2.610)
α 0.199 (0.052) 0.193 (0.050) 0.242 (0.045) 0.237 (0.044) 0.169 (0.034) 0.167 (0.039) 0.205 (0.059) 0.207 (0.059)
β 0.759 (0.046) 0.764 (0.044) 0.757 (NA) 0.762 (NA) 0.806 (0.039) 0.810 (0.038) 0.760 (0.045) 0.765 (0.043)
γ −0.159 (0.120) −0.197 (0.161) −0.016 (0.066) −0.033 (0.064)
shape 3.290 (0.336) 3.345 (0.350) 3.045 (0.198) 3.075 (0.204) 3.346 (0.340) 3.398 (0.363) 3.294 (0.337) 3.351 (0.352)
skew 1.065 (0.034) 1.064 (0.034) 1.078 (0.117) 1.067 (0.035)
LogLikelihood −4737.8 −4735.9 −4738.3 −4736.5 −4738.3 −4735.8 −4737.8 −4736.8
AIC 7.151 7.149 7.150 7.149 7.153 7.151 7.152 7.152

Estimation results of various GARCH volatility models with t and Skewed t errors for the cryptocurrencies are reported in this Table. For each parameter, we report the standard
errors in parentheses and bold indicates insignificance at 5% and 1% levels. Higher LogLikelihood and lower AIC indicate the best fit model for cryptocurrencies.



Int. J. Financial Stud. 2020, 8, 19 17 of 18

References

Ali, Ghulam. 2013. EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH models
for pathogens at marine recreational sites. Journal of Statistical and Econometric Methods 2: 57–73.

Andersen, Torben G., Luca Benzoni, and Jesper Lund. 2002. An empirical investigation of continuous-time equity
return models. Journal of Finance 57: 1239–84. [CrossRef]

Angelidis, Timotheos, Alexandros Benos, and Stavros Degiannakis. 2004. The use of GARCH models in VaR
estimation. Statistical Methodology 1: 105–28. [CrossRef]

Ardia, David, Keven Bluteau, and Maxime Rüede. 2019. Regime changes in Bitcoin GARCH volatility Dynamics.
Finance Research Letters 29: 266–71. [CrossRef]

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen. 1997. Empirical performance of alternative option pricing models.
Journal of Finance 52: 583–602 [CrossRef]

Bariviera, Aurelio F., Maria José Basgall, Waldo Hasperué, and Marcelo Naiouf. 2017. Some stylized facts of the
Bitcoin market. Physica A: Statistical Mechanics and Its Applications 484: 82–90. [CrossRef]

Barone-Adesi, Giovanni, Kostas Giannopoulos, and Les Vosper. 1999. VaR without Correlations for Nonlinear
Portfolios. Journal of Futures Markets 19: 583–602. [CrossRef]

Basel Committee on Banking Supervision. 2013. Fundamental Review of the Trading Book: A Revised Market Risk
Framework. Second Consultative Paper. Switzerland: Bank for International Settlement.

Bates, David. 1996. Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.
The Review of Financial Studies 9: 69–107. [CrossRef]

Bauwens, Luc, and Sébastien Laurent. 2005. A New Class of Multivariate Skew Densities, With Application to
Generalized Autoregressive Conditional Heteroscedasticity Models. Journal of Business & Economic Statistics
23: 346–54.

Bernanke, Ben S. 2008. Risk management in financial institutions. Presented at the Federal Reserve Bank of
Chicago’s Annual Conference on Bank Structure and Competition, Chicago, IL, USA, May 15.

Brownlees, Christian T., and Robert F. Engle. 2012. Volatility, Correlation and Tails for Systemic Risk Measurement.
Working Paper, NYU, New York, NY, USA. Available online: http://https://www.semanticscholar.org/
paper (accessed on 12 February 2019).

Caporale, Guglielmo, and Timur Zeokokh. 2019. Modelling volatility of cryptocurrencies using Markov-Switching
GARCH models. Research in International Business and Finance 48: 143–55. [CrossRef]

Chan, Stephen, Jeffrey Chu, Saralees Nadarajah, and Joerg Osterrieder. 2017. A statistical analysis of
cryptocurrencies. Journal of Risk Financial Management 10: 2–32. [CrossRef]

Christoffersen, Peter F. 1998. Evaluating Interval Forecasts. International Economic Review 39: 841–62. [CrossRef]
Danielsson, Jon, and Yuji Morimoto. 2000. Forecasting Extreme Financial Risk: A Critical Analysis of Practical

Methods for the Japanese Market. Monetary and Economic Studies 18: 25–48.
Danielsson, Jon, Kevin R. James, Marcela Valenzuela, and Ilknur Zer. 2016. Model risk of risk models. Journal of

Financial Stability 23: 79–91. [CrossRef]
Duffie, Darrell, Jun Pan, and Kenneth Singleton. 2000. Transform analysis and asset pricing for affine

jump-diffusions. Econometrica 68: 1343–76. [CrossRef]
Efron, Bradley, and Robert J. Tibshirani. 1994. An Introduction to the Bootstrap. New York: Chapman & Hall/CRC,

pp. 141–152.
Eraker, Bjørn, Michael Johannes, and Nicholas Polson. 2003. The impact of jumps in volatility and returns. Journal

of Finance 59: 227–60. [CrossRef]
Glosten, Lawrence R., Ravi Jaganathan, and David E. Runkle. 1993. On the relation between the expected value

and the volatility of the normal excess return on stocks. Journal of Finance 48: 1779–801. [CrossRef]
Heston, Steven L. 1993. A Closed-Form Solution of Options with Stochastic Volatility with Applications to Bond

and Currency Options. The Review of Financial Studies 6: 327–43. [CrossRef]
Jorion, Philippe. 2000. Risk Management Lessons from Long-Term Capital Management. European Financial

Management 6: 277–300. [CrossRef]
J.P.Morgan/Reuters. 1996. RiskMetrics—Technical Document, 4th ed. New York: J.P.Morgan/Reuters.
Maheu, John M., and Thomas H. McCurdy. 2004. News Arrival, Jump Dynamics, and Volatility Components for

Individual Stock Returns. The Journal of Finance 59: 755–93. [CrossRef]

http://dx.doi.org/10.1111/1540-6261.00460
http://dx.doi.org/10.1016/j.stamet.2004.08.004
http://dx.doi.org/10.1016/j.frl.2018.08.009
http://dx.doi.org/10.1111/j.1540-6261.1997.tb02749.x
http://dx.doi.org/10.1016/j.physa.2017.04.159
http://dx.doi.org/10.1002/(SICI)1096-9934(199908)19:5<583::AID-FUT5>3.0.CO;2-S
http://dx.doi.org/10.1093/rfs/9.1.69
http://https://www.semanticscholar.org/paper
http://https://www.semanticscholar.org/paper
http://dx.doi.org/10.1016/j.ribaf.2018.12.009
http://dx.doi.org/10.3390/jrfm10020012
http://dx.doi.org/10.2307/2527341
http://dx.doi.org/10.1016/j.jfs.2016.02.002
http://dx.doi.org/10.1111/1468-0262.00164
http://dx.doi.org/10.1111/1540-6261.00566
http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x
http://dx.doi.org/10.1093/rfs/6.2.327
http://dx.doi.org/10.1111/1468-036X.00125
http://dx.doi.org/10.1111/j.1540-6261.2004.00648.x


Int. J. Financial Stud. 2020, 8, 19 18 of 18

McNeil, Alexander J., Rúdiger Frey, and Paul Embrechts. 2005. Quantitative Risk Management. Princeton: Princeton
University Press.

Pan, Jun. 2002. The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of
Financial Economics 63: 3–50. [CrossRef]

Sarma, Mandira, Susan Thomas, and Ajay Shah. 2003. Selection of Value-at-Risk models. Journal of Forecasting 22:
337–58. [CrossRef]

Segnon, Mawuli, and Stelios Bekiros. 2019. Forecasting Volatility in Cryptocurrency Markets. CQE Working
Papers 7919. Münster: Center for Quantitative Economics (CQE), University of Muenster. Available online:
www.uni-munster.de (accessed on 12 February 2019).

Su, Jung-Bin, and Jui-Cheng Hung. 2011. Empirical analysis of jump dynamics, heavy-tails and skewness on
value-at-risk estimation. Economic Modelling 28: 1117–30. [CrossRef]

Ze-To, Samuel Y. M. 2012. Crisis, Value at Risk and Conditional Extreme Value Theory via the NIG + Jump Model.
Journal of Mathematical Finance 2: 225–37. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0304-405X(01)00088-5
http://dx.doi.org/10.1002/for.868
www.uni-munster.de
http://dx.doi.org/10.1016/j.econmod.2010.11.016
http://dx.doi.org/10.4236/jmf.2012.23025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Data and Empirical Results
	Data
	In-Sample Estimation
	Out-of-Sample Validation

	Conclusions
	
	References

