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Abstract: The Current Expected Credit Loss (CECL) revised accounting standard for credit loss 
provisioning is the most important change to United States (US) accounting standards in recent 
history. In this study, we survey and assess practices in the validation of models that support CECL, 
across dimensions of both model development and model implementation. On the development 
side, this entails the usual SR 11-7 aspects of model validation; however, highlighted in the CECL 
context is the impact of several key modeling assumptions upon loan loss provisions. We also 
consider the validation of CECL model implementation or execution elements, which assumes 
heightened focus in CECL given the financial reporting implications. As an example of CECL model 
development validation, we investigate a modeling framework that we believe to be very close to 
that being contemplated by institutions, which projects loan losses using time-series econometric 
models, for an aggregated “average” bank using Federal Deposit Insurance Corporation (FDIC) Call 
Report data. In this example, we assess the accuracy of 14 alternative CECL modeling approaches, 
and we further quantify the level of model risk using the principle of relative entropy. Apart from the 
illustration of several model validation issues and practices that are of particular relevance to CECL, 
the empirical analysis has some potentially profound policy and model risk management 
implications. Specifically, implementation of the CECL standard may lead to under-prediction of 
credit losses; furthermore, coupled with the assumption that we are at an end to the favorable phase 
of the credit cycle, this may be interpreted as evidence that the goal of mitigating the procyclicality 
in the provisioning process that motivated CECL may fail to materialize. 

Keywords: accounting rule change; current expected credit loss; allowance for loan and lease losses; 
credit provisions; credit risk; financial crisis; model risk 

JEL: Classification: G21; G28; M40; E47 
 

1. Introduction and Discussion 
In the United States (US), the Financial Accounting Standards Board (FASB) issues of the Generally 

Accepted Accounting Principles (US GAAP) are financial accounting standards intended to ensure the 
provision of useful information for corporate stakeholders. In this study, we focus on the Allowance 
for Loan and Lease Losses (ALLL), the financial reserves that firms exposed to credit risk set aside. The 
recent revision to these standards, the Current Expected Credit Loss (CECL; FASB, 2016) standard, is 
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expected to substantially alter the management, measurement, and reporting of loan loss provisions 
by financial institutions and other firms exposed to credit risk1. 

The prevailing principle governing the ALLL is that of incurred loss2, wherein credit losses are 
recognized only when materialized; otherwise, for performing loans, the credit risk is assessed at the 
point of financial reporting. The key feature of this construct is that future events are not considered, 
which impairs the capability of managing reserves proactively based upon the expected economic 
outlook. The static nature of this framework implies that provisions are likely to exhibit procyclicality, 
which means that provisions rise and regulatory capital ratios decrease prior to economic downturns. 
This inflation in the ALLL at the trough of an economic cycle that the incurred loss standard 
engenders is considered detrimental to a bank from a safety and soundness perspective. Furthermore, 
from a systemic risk perspective, this phenomenon represents a risk to the banking system and 
economy, as this could result in a contraction of credit in an environment of businesses and consumer 
vulnerability, resulting in a negative feedback loop adversely impacting the real economy. 

This phenomenon is illustrated in Figure 1 where we plot Net Charge-off Rates (NCORs), the 
Provision for Loan and Lease Losses (PLLL), and the ALLL for the period 4Q01 to 4Q17. These data 
represent all insured depository institutions in the US as made available by the Federal Deposit 
Insurance Company in the forms FR Y-9C, which are commonly termed the “Call Reports”. We show 
here an outstanding loan balance weighted average across all banks, or a depiction of an “average 
bank”. The figure shows that, as NCORs and PLLs both rise at the beginning of the downturn period 
starting in 2007, the ALLL lags this increase and persists in rising well into the economic recovery 
period to peak in 2010. This build-up in the ALLL occurred just as bank asset quality was in decline, 
with worsening capital ratios, resulting in both declining earnings and lending activity, thereby 
adding to the severity of the so-called Great Recession. 

The consensus view is that the motivation of FASB to consider the CECL standard was the 
procyclicality of the incurred loss standard, a narrative fortified by the severe consequences of the 
last downturn. This sentiment was rather broadly based, emanating from various corners of the credit 
risk community spanning accounting, risk audit, and supervision. The first mover in this initiative 
by the standard setters was by the International Accounting Standards Board (IASB) in with the 
International Reporting for Financial Statement Number 9 (IASB, 2014; IRFS9). IRFS9 represented a 
framework that was still based on expected loss (EL) for credit risk provisioning, as was the incurred 
loss standard, with a key difference being the incorporation of macroeconomic forecasts. FASB 
followed suit with the release of the new CECL (FASB, 2016), which not only had the forecasting 
element as with IRFS9, but also contained other fundamental differences from the legacy standard 
and IRFS9. In the case of performing loans, CECL prescribes a projection of EL over the anticipated 
tenor of the instrument, whereas, under IRFS9, this life-of-loan expectation is limited to impaired 
assets. In the case of performing loans, IRFS9 limits the forecasting horizon to one year, similarly to 
the EL approach under the incurred loss standard, albeit minus the forecasting component in the case 
of impaired assets. IRFS9 also differs from CECL in that, when the likelihood of impairment on an 
instrument increases materially, it contains conditions whereby the forecasting horizon switches 
from one year to the expected tenor of the instrument. 

 
1 The international counterpart to CECL is codified in International Accounting Standards Board (2014; IRFS9), 

which, while bearing similarities to CECL, in that the component for performing loans is an expected loss 
construct incorporating macroeconomic forecasts, has several fundamental differences. 

2 These are given by FASB (1975) and FASB (1993) for performing and impaired instruments, respectively. 
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Figure 1. Net Charge-off Rates (NCORs), Provision for Loan and Lease Losses (PLLL), and the 
Allowance for Loan and Lease Losses (ALLL) as a percentage of total assets—all insured depository 
institutions in the United States (US) (Federal Deposit Insurance Corporation Statistics on Depository 
Institutions Report—Schedule FR Y-9C). 

The scope of CECL spans all financial assets carried booked as held-for-investment (HFI) or held-
to-maturity (HTM), or on an amortized cost basis. This is colloquially known as the banking book and 
constitutes most of the assets held by insured depositories. As mentioned previously, an important 
difference in CECL from the incurred loss standard is that it is an EL methodology having a 
forecasting component that is applied to an expected life of instruments at the date of financial 
reporting. A final point to note on CECL details is that the ALLL in this framework is a valuation 
account, defined as a difference in the amortized cost basis versus the expected accounting income to be 
received on loans. Operationally, from an EL perspective this means that increases in expected 
lifetime credit losses imply a greater deduction from the amortized cost basis, and result in a build of 
reserves. 

CECL requires that forecasts of EL are conditioned spot portfolio characteristics, the 
corresponding historical data used to estimate credit risk models (exposures, risk ratings and 
loan/obligor risk factors that drive probability-of-default—PD, exposure-at-default—EAD, and loss-given-
default—LGD) mapped to the latter and macroeconomic forecasts. FASB further requires that the 
credit risk model and macroeconomic forecasts be formed over a horizon that is deemed to be a 
reasonable and supportable forecasting (RSF) period3, wherein it is expected that forecast errors would 
be tolerable and that institutions would be able to substantiate the quality of these forecasts. 

FASB does not prescribe the econometric methodologies for either the credit risk or 
macroeconomic models, nor what constitutes reasonable and supportable assumptions underlying 
these. There are similarities between this state of affairs and the supervisory guidance around 
Comprehensive Capital Analysis and Review (CCAR) or the Advanced Models Approach (AMA) for Basel. 

 
3 This is also called the R&S period. 
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A principle-based guidance is meant to provide scalability in the approaches used across a diversity 
of institutions with respect to size or complexity, which offers the flexibility to choose methodologies 
grounded in reasonableness and supportability, albeit at the cost of potentially sacrificing 
comparability across entities. A good example of such elements is the RFS period, which is left 
unspecified but needs to be empirically or conceptually supportable. While the main motivation for 
specifying that there be an RSF period is based upon the visibility of economic conditions, another 
consideration is that it is expected that the duration of the RSF period should reflect assets’ 
contractual tenors, and, in cases where these terms are not known a priori (e.g., revolving or 
unfunded commitments), they need to be estimated, which, from a model validation perspective, 
adds another potential source of model error to the process. On the flip side, when terms are known 
but there is empirical evidence that maturities will be extended (e.g., in periods of stress troubles, 
loans might be held on the books longer than anticipated), CECL strictures do not allow banks to 
include this information in their forecasts, which also creates a model validation challenge in terms 
of the conceptual soundness of this construct. 

The purpose of the ALLL is to provide information of use to critical stakeholders of an 
institution—such as investors, auditors, and supervisors—pertaining to instruments exposed to 
credit risk. The nature of this information differs between CECL and the legacy accounting standard, 
with the former being a forward-looking view and the latter a backward-looking perspective. As a 
result, under the incurred loss standard, we would expect changes in the provision to be driven by 
an exposure’s fundamental risk factors at the time of reporting (albeit with a one-year horizon if an 
EL approach is used for the performing book), such as credit risk parameters (e.g., PD or LGD) or the 
variables that enter those models. In contrast, additional elements enter to drive the variation in the 
ALLL for the CECL case, namely, the macroeconomic forecasting models. The practice adequately 
understands the modeling aspects that appear in both the CECL and the incurred loss settings. Such 
constructs include loan or obligor features that are inputs to credit risk parameter models, such as 
company financial information or exposure structure details, as well as segmentations by industry or 
geography, or qualitative characteristics defining management or the business environment. These 
models are calibrated to historical reference datasets and then applied on a static basis over the 
forecasting horizon, where the loss factors underlying the models are held fixed throughout the 
projection. 

Estimation of expected credit loss for CECL purposes features a critical difference from 
alternative settings (e.g., credit risk scorecards for underwriting or early warning, risk parameter 
development for regulatory or economic capita). A requirement of CECL is the estimation of EL over 
the expected tenor of instruments based upon reasonable and supportable forecasts of 
macroeconomic conditions. This in turn means that models have to be constructed to forecast 
macroeconomic scenarios, which are separate from the loss forecasting models incorporated into the 
CECL process. The model validation consideration in this regard is that this nested set of models in 
the CECL engine engenders several challenges. One is the attribution of changes to the ALLL (e.g., 
scenarios, portfolio composition, credit model changes, etc.). Another challenge is the introduction of 
additional elements of model risk through the compounding or model errors and the likely 
questioning of model results by third-party reviewers such as model validation, audit, or supervision. 
While such modeling choices around the macroeconomic scenarios, which can be subjective or 
idiosyncratic in nature, have analogues in current models supporting financial reporting (e.g., “Q-
factors” that are empirically supported but current or forecasted economic conditions), there are a 
unique set of challenges associated with using macroeconomic forecasting models directly in this 
process.4 We also note that, in other areas that incorporate macroeconomic forecasts such as CCAR, 
where projections are generally sourced from the regulators, such modeling considerations are not 
under scrutiny.  

In model validation of a CECL model, we have to consider the main elements that distinguish 
this exercise from either the legacy loan provisioning approach or other credit risk modeling 

 
4 Several challenges are associated with macroeconomic forecasting, related to changes in the structure of the 

economy, measurement errors in data, and behavioral biases (Batchelor and Dua 1990). 
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applications. The first consideration is the specification of the credit risk models that connect loan or 
obligor risk factors and macroeconomic variables to loan losses. The other key consideration is the 
scenario generation models that project macroeconomic forecasts and expected scenarios, which are 
as critical as the credit model specifications in driving outcomes. As it is known from related 
modeling exercises such as stress testing (“ST”), used by supervisors to assess the reliability of credit 
risk models in the revised Basel framework (Basel Committee on Banking Supervision 2006) or the 
Federal Reserve’s CCAR program (Board of Governors of the Federal Reserve System 2009), such 
models are subject to heightened supervisory scrutiny. A supervisory concern is that the complex 
models underlying these exercises may be subject to model risk, understood to be the danger that these 
constructs fail to quantify the risks that they were designed to model (Board of Governors of the 
Federal Reserve System 2011). In the case of CECL, it is expected that such reviews will be more 
rigorous as compared to other contexts such as Basel or CCAR, given the financial statement 
reporting implications of CECL. 

In this paper, we contribute to the literature by considering and illustrating a model validation 
framework in the CECL setting. Firstly, focusing on the model development dimension of model 
validation, we outline critical aspects of this set of activities, including the evaluation of conceptual 
soundness, theoretical framework, and assumptions testing for CECL models. Secondly, we discuss 
a framework for the assessment and verification of the implementation and execution of CECL 
models. Finally, we present an example of CECL model validation, in which we analyze the impact 
of model specification and scenario dynamics upon expected credit loss estimates in CECL, through 
implementing a stylized framework borrowed from the ST modeling practice. In this exercise, we 
perform a model selection of 14 alternative CECL specifications in a top-down framework, using Call 
Report data to construct an aggregate or average hypothetical bank, with the target variable being 
the NCOR and the explanatory variables constituted by Fed-provided macroeconomic variables, as 
well as bank-specific controls for idiosyncratic risk. Note that there are some severe limitations to 
using this non-loan-level data (i.e., it tells you nothing about origination dates, terms, or prepayment, 
nor does not distinguish between term loans and lines of credit), but this exercise still has some 
practical value with regard to cases where a bank does not have the ability to project loan-level data. 
In such cases, it would have to resort to segment or pool-level forecasting, other examples being a 
vintage or roll rate approach, which in fact is allowed under the rules, but admittedly far from a best 
practice. We also wish to highlight that, admittedly, the framework that we propose is rather 
expansive, and that, in practical settings and depending upon the context, it is necessary to rank the 
importance of validation aspects and different types of model weaknesses (e.g., is this an element 
that is nice to have, such as a literature review, or is this an element that would lead to model failure, 
such as biasedness or poor performance?). In light of this, we present our views on the criticality of 
various validation aspects of our framework as we describe this construct in detail. As a distinct and 
critical matter, which is indirectly related to the previous note, in presenting this holistic and rigorous 
framework, we are cognizant of the danger of the model validation process going too far and, in 
doing so, either compromises the model development process or leads to costs to the organization 
that outweigh the benefit of having such an expansive construct. Therefore, we stress the need for 
institutions to have robust risk governance processes in place in order to balance these considerations, 
and to avoid the potential politicization of the model validation process. We would also like to point 
out in this regard that our framework could apply to a first-line quality assurance function embedded 
in the model development area, as well as in an independent oversight function, and we view the 
existence of the former as a guard against overzealousness on the part of the latter. For example, if 
the first line of defense can better defend its methodologies, then it is less likely that the second line 
of defense could unfairly judge such a methodology. 

In the example of CECL model validation, we study not only the impact on the ALLL estimate 
under CECL for alternative model specifications, but also the impact of different frameworks for 
scenario generation: the Fed baseline assumption, a Gaussian vector autoregression (VAR) model and 
a Markov regime switching VAR (MS-VAR) model, following the studies of Jacobs et al. (2018) and 
Jacobs (2019). While the models all perform well (and similarly) by industry standards on an in-
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sample basis, the out-of-sample accuracy analysis exhibits severe underprediction across all models. 
Furthermore, this inaccuracy is accentuated in either the more complex specification of the credit risk 
models or in the Fed or VAR as opposed to the MS-VAR macroeconomic scenario models, where the 
assumption of a linear process for the joint distributions of the macroeconomic variables is at odds 
with reality. The next phase of the model validation exercise quantifies the level of model risk across 
specifications through generating worst-case loss projections using the principle of relative entropy, 
which attributes the contribution of model risk emanating from the credit risk models versus the 
macroeconomic scenario generation models. The finding in this regard is that, while more highly 
parameterized credit risk models give rise to greater measured model risk, it is in fact the less 
complex macroeconomic scenario generation models (assuming Gaussian dynamics) that also lead 
to increased model error. The model validation implications of these findings is that CECL model 
developers are advised to err on the side of either more parsimonious credit risk model specifications 
or more realistic dynamics to characterize the distribution of macroeconomic variables, in order to 
mitigate underprediction or measured model risk. That said, we recognize that this conclusion is 
limited by the model data and class of models tested herein, and this may not be generalizable to 
other modeling contexts; nonetheless, we are of the belief that there is useful information that 
practitioners can glean from this exercise regarding the potential direction and magnitude of model 
risk.  

This paper proceeds as follows: in Section 2, we review the related literature. In Section 3, we 
present a framework for CECL model validation of the conceptual soundness aspect, as well as 
outline our approach for the validation of CECL model implementation and execution. The 
econometric methodologies are outlined in Section 4. Section 5 presents an example of CECL model 
validation, where we assess the modeling data and empirical results. In Section 6, we perform our 
model risk quantification exercise for the various loss model and scenario generation specifications. 
Section 7 concludes and presents directions for future research. 

2. Review of the Literature 
The procyclicality of the incurred loss standard for the provisioning of expected credit losses 

was extensively discussed by a range of authors, e.g., Bernanke and Lown (1991), Kishan and Opiela 
(2000), Francis and Osborne (2009), Berrospide and Edge (2010), Cornett, McNutt, Strahan, and 
Tehranian (2011), and Carlson et al. (2013). 

We note some key studies of model risk and its quantification that address issues in the 
implementation of the supervisory guidance on model risk (Board of Governors of the Federal 
Reserve System 2011; SR 11-7). Glasserman and Xu (2013) quantified the impact of model risk through 
measuring and minimizing risk in a way robust to model error, starting from a baseline model to find 
the worst-case error incurred through a deviation from this. This is based on a precise constraint on 
the plausibility of the deviation, using relative entropy to constrain model distance, leading to an 
explicit characterization of worst-case model errors. This approach transcends measuring the effect 
of estimation errors to consider errors in underlying stochastic assumptions of the model to 
characterize the greatest vulnerabilities to error in a model. 

Jacobs (2015) contributed to the model risk management discipline by shifting the focus from 
individual models toward aggregating firmwide model risk, in line with SR 11-7 guidance that 
specifically focuses on measuring such risk individually and in aggregate. The author discussed 
various approaches to measuring and aggregating model risk across an institution, and also 
presented an example of model risk quantification in the realm of stress testing, where he compared 
alternative models in the Frequentist and Bayesian classes, for the modeling of stressed bank losses. 

In the practitioner realm, a whitepaper by Accenture Consulting (Jacobs et al. 2015a) noted that 
financial institutions are continuously examining their target state model risk management 
capabilities to support the emerging regulatory and business agendas across multiple dimensions, 
and that the field continues to evolve with organizations developing robust frameworks and 
capabilities. The authors observed that industry efforts to date focused primarily on model risk 
management on an individual basis, and more institutions are now shifting focus to the aggregation 
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of firmwide model risk. They provided background on issues in model risk management, including 
an overview of supervisory guidance, and they discussed various approaches to measuring and 
aggregating model risk. 

Jacobs et al. (2015b) contributed to the literature by developing a Bayesian-based credit risk 
stress-testing methodology, which can be implemented by small- to medium-sized banks, as well as 
presenting empirical results using data from the recent CCAR implementations. Through the 
application of a Bayesian model, they formally incorporated exogenous scenarios and also quantified 
the uncertainty in model output that results from stochastic model inputs. The authors compared the 
proportional model risk buffer measure of the severely adverse cumulative nine-quarter loss estimate 
obtained from the empirical implementation of a Bayesian as compared to a Frequentist model, 
finding it to be 40% higher in the former than in the latter. In the model validation exercise, they 
found that the Bayesian model outperformed the frequentist model statistically significantly, 
according to the cumulative percentage error metric, by 2% (1.5%) over the entire sample (downturn 
period). 

Skoglund (2018) studied the quantification of model risk inherent in loss projection models used 
in the macroeconomic stress testing and impairment estimation, which is of significant concern for 
both banks and regulators. The author applied relative entropy techniques that allow model 
misspecification robustness to be numerically quantified using exponential tilting toward an 
alternative probability law. Using a particular loss forecasting model, he quantified the model worst-
case loss term-structures, to yield insight into what represents in general an upward scaling of the 
term-structure consistent with the exponential tilting adjustment. The author argued that this 
technique can complement the traditional model risk quantification techniques where specific 
directions or a range of reasons for model misspecification are usually considered. 

There is rather limited literature on scenario generation in the context of stress testing. Jacobs et 
al. (2018) examined this in the context of CCAR and credit risk by conducting an empirical experiment 
using data from regulatory filings and Federal Reserve macroeconomic data. The authors found that 
an MS-VAR model performed better than a standard VAR model, in terms of producing severe 
scenarios more conservatively, as well as showing superior predictive accuracy. 

Jacobs (2019) investigated a stress testing modeling framework believed to be very close to that 
employed by the regulators, which projects various financial statement line items for an aggregated 
“average” bank. He assessed the accuracy of alternative stress test modeling approaches, particularly 
a simple single equation as compared to more complex multiple equation approaches. The results 
showed potential inaccuracies in stress test model forecasts, particularly multi-equation models that 
do not properly account for the dependency structure amongst the input and target variables. 
Furthermore, the results highlighted the public policy need for reconsidering the existent regulations 
that fail to place limits on the use of regulatory stress tests, and the need for supervisory models to 
be subject to model validation and governance standards. In a related paper, Belloti and Crook (2013) 
presented discrete time survival models of borrower default for credit cards that included behavioral 
data about credit card holders and macroeconomic conditions across the credit card lifetime, finding 
that dynamic models which included these variables provided statistically significant improvements 
in model fit, which translated into better forecasts of default at both account and portfolio levels when 
applied to an out-of-sample dataset. By simulating extreme economic conditions, the authors showed 
how these models can be used to stress test credit card portfolios.  

In a study in the limited literature on CECL, Chae et al. (2018) noted that CECL is intended to 
promote proactive provisioning, as loan loss reserves can be conditioned on expectations of the 
economic cycle. They studied the degree to which a single modeling decision, i.e., expectations about 
the path of future house prices, affected the size and timing of provisions for first-lien residential 
mortgage portfolios. The authors found that, while CECL provisions are generally less procyclical as 
compared to the current incurred loss standard, the revised standard may complicate the 
comparability of provisions across banks and time. 

Jacobs (2019) established that, in general, the CECL methodology is at risk of not achieving the 
stated objective of reducing the procyclicality of provisions relative to the incurred loss standard. 
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Across model specifications, he observed chronic underprediction of losses in the last two-year out-
of-sample period, arguably late in the economic cycle. While this finding is arguably driven to some 
extent by the modeling choices employed in the paper, the observation that the amount of 
procyclicality exhibits significant variation across model specifications and scenario generation 
frameworks is of relevance to practitioners and policy-makers. Relative to the perfect foresight 
benchmark, the MS-VAR model for macroeconomic scenario generation produced a lower level of 
variation in the model performance statistics as compared to the VAR or Fed models. As a second 
exercise, the author quantified the level of model risk in an approach that used the principle of 
relative entropy, finding that more elaborate modeling choices, such as more highly parameterized 
credit loss models, tend to introduce more measured model risk. However, the regime switching 
specification for scenario generation generates less model risk as compared to the Fed or vector 
autoregressive frameworks. 

3. Model Validation of CECL Model Development and Implementation 

In this section, we discuss a general framework for model validation of the model development 
and implementation process in the CECL context. In Figure 2, we present our framework graphically 
and illustrate the model validation process as following the model development life cycle. The 
starting point in reviewing model development is an understanding of the theory and practice that 
underlies exercise. There must be a clear business case supporting the decision to embark upon model 
development. In the case of CECL, this is based upon accounting requirements, supervisory 
guidance, and credit risk management policy considerations. The next critical element is a review of 
the relevant academic literature in conjunction with prevalent industry practice. In the case of CECL, 
we note that academic research may be limited, as compared to credit risk in general. As a 
consequence, we would rely more heavily upon peer bank practice, which can be comprehended 
through participation in industry associations and benchmark study exercises. Finally, this leads to 
an evaluation of the conceptual soundness around the approach chosen for CECL purposes. In this 
paper, we illustrate such developmental evidence in the CECL background review of Section 2, the 
literature review of Section 3, and the model theory/mathematics in Section 4. Regarding the 
importance of this model development aspect in terms of being a weakness that can lead to model 
failure, we would say that, in general, while this is of paramount importance, at the same time, it is 
not a consideration that imminently leads to model failure. For example, one can have black-box 
approaches that predict outcomes very well but are hard to explain or justify. That said, such 
approaches are challenging in contexts such as CECL where the mechanics of the model have to be 
comprehended by stakeholders such as regulators or the lines of business. Therefore, we would argue 
that conceptual soundness is probably a very important consideration in most contexts and especially 
in CECL. 
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Figure 2. Overview of a general framework for the validation of model development—model data, 
estimation, conceptual review, and model testing. 

The next pillar in this sequence is a review of the model data. A critical consideration here is the 
representativeness of the data supporting model estimation for the bank’s current portfolio, which 
was long the focus of supervisors going back to Basel implementation of the previous decade, as well 
as CCAR/DFAST5  in this decade. We would add that, in the CECL context, the challenge is to ensure 
that data are not unduly sampled from the stressed period, an element of conservatism seen in Basel 
or CCAR/DFAST. In some cases, this may necessitate the use of external or industry data, if internal 
data are not sufficient to meet this requirement. In this validation activity, an assessment of data 
quality and any data cleansing processes is critical, as illustrated in Section 7 of this paper. In terms 
of how we would rank this aspect of model development with regard to potential model failure, we 
would identify this as a key (or even most important) consideration in determining the fitness for 
purpose of a model in almost any context, particularly so in the CECL setting where the model results 
are supporting financial reporting. Furthermore, if data are non-representative or have unwanted 
elements of conservatism, then this could directly lead to poor performance and model failure. 

Transitioning from model data to estimation, we note that the complexity of the statistical or 
econometric model must be supported by the granularity or richness of the data. Considerations of 
data availability and quality will also drive segmentation and variable selection decisions. There is a 
wide range of practice amongst financial institutions in this regard, and it is a key task of model 
validators to critically evaluate these choices. For example, some banks look at industry 
segmentations, while others do so by lines of business, as well as combinations of these. Another 
dimension is the level of modeling granularity, going from loan-level, to risk rating, and then to 
segment-level “top-of-the-house” approaches (i.e., the choice illustrated in this paper). Finally, the 
econometric approaches may vary and need to be justified, as we have choices such as ordinary least 
squares, time series, hazard rate, etc.; this is illustrated in Section 4 of this paper. Then, as shown in 
Section 5 of this paper, from a risk model validation perspective, we must critically assess the model 
estimation results, as well as aspects such as signs of coefficient estimates, measures of model fit, 
statistical significance of estimates, etc. Given the focus of accuracy and unbiasedness in the CECL 
context, the paramount model validation consideration is the quality of model fit in terms of results 

 
5 Dodd-Frank Act Stress Testing—“DFAST”. 
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not showing evidence of chronic over- or underprediction of losses. We also highlight the role of code 
review in conjunction with the assessment of estimation results as part of model validation. This is 
not only the replication of estimation results, but a critical assessment of the structure of the code and 
the quality of the algorithms (e.g., is the code well organized and commented, and are the algorithms 
robust and run time reasonable?). That said, we recognize that the level of detail that is practical in 
code review will be dependent on situation and resource availability, for example, limitations that 
are inherent with vended models. More broadly, our view is that the estimation aspect of model 
development, while important to the quality of models, is probably of intermediate concern and 
ranks behind the aforementioned conceptual soundness and model data components in terms of 
contribution to model failure. Many of the models in use for CECL are using well-understood and 
standard techniques, and there is a tendency to avoid extremely complex and elaborate methods that 
could lead to model risk or issues with interpretability. That said, we are not advocating overly 
simplistic approaches, but rather asserting that whatever estimation or model class we choose should 
be right-sized to the modeling context. 

In the subsequent testing aspect of model validation, we have the evaluation of model 
performance along dimensions such as predictive accuracy, rank ordering, and stability. While, in 
principle, this should be done on both an in- and an out-of-sample basis, a challenge in the CECL 
context is limitations in the length of the historical data supporting the latter analysis. Nevertheless, 
as illustrated in this study, even with data going back to the last downturn, it is feasible to look at the 
last few years as a holdout sample. That said, given how short a two-year out-of-sample period is, 
we have to be cautious in arriving at strong conclusions. Therefore, we should supplement this basic 
backtesting with other exercises such as stability and sensitivity analysis (e.g., estimation omitting 
various time periods), as well as stress testing of the model (e.g., analysis of results under stress 
scenarios and comparison to historical periods of stress). Another element of model testing illustrated 
in this study is challenger model analysis, i.e., the comparison of results across different econometric 
specifications, whether alternative variable selections or econometric specifications. Challenger 
model analysis can also include an estimation of models under alternative segmentations in cases 
where models are estimated in industry or line of business groupings Finally, we could also have 
bottom-up challengers to segment level models, for example, a loan-level hazard rate formulation 
versus a rating migration model construct. A final point in this regard is that testing should be geared 
toward the objectives of CECL, which are oriented toward model accuracy as opposed to 
conservatism in the CCAR setting; related to this point, champion and challenger models should all 
meet requirements under CECL (e.g., in the case of LGD, there should be no discounting of workout 
recoveries). Our view of where this aspect of model development lies on the criticality spectrum with 
respect to model risk is near the top, definitely above estimation technique, and not far from model 
data or conceptual soundness. Chronic predictive inaccuracy, while amenable to tactical fixes such 
as qualitative factor adjustments, is definitely a factor that can lead to a model being deemed unfit 
for purpose. This is accentuated in the CECL context, where unbiasedness is paramount, and where 
model outcomes directly impact financial reporting or the bottom line.  

The capstone of the model development cycle is documentation, the review and assessment of 
which is a critical ingredient in model validation. The ideal construct is documentation that would 
enable a third-party reviewer to replicate the model development having only the model 
development data at hand; however, admittedly, in the vast majority of situations, model 
documentation in the industry falls short of this standard, especially in the case of complex and high-
risk models prevalent in CECL. Therefore, for practical purposes, we prefer to take a more expansive 
view, and we consider other artefacts of developmental evidence, such as various kinds of supporting 
documentation. Nevertheless, in general, there are certain industry standards that model developers 
adhere to in order for the model documentation to be considered fit for purpose; these are as follows: 

• Clear articulation of the business purpose and portfolio profile pertaining to the model; 
• Comprehensive discussion of the model history; 
• Rigorous review of academic and practitioner literature relevant to the model; 
• Precise exposition of model mathematics and functional forms; 
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• Complete examination of model data sourcing, cleansing processes and data quality analysis; 
• Thorough narrative on the segmentation and variable selection process, encompassing both 

statistical analyses and expert panel dialogue; 
• Informative description of estimation results, including comparison to challenger and candidate 

models; 
• Detailed analysis of all model testing that while supporting the choice of the champion model 

while also honestly representing potential weaknesses; 
• Understandable detail around any model adjustments, overlays, and risk mitigation elements 

layered onto model output. 

In sum, model documentation should be a self-contained compendium of the elements of 
developmental evidence that we discussed previously, which are the object of the validation review. 
That said, this does not mean that model documentation should err on the side of being excessively 
voluminous, as is now the trend in the industry. In turn, the documentation of model validation 
should follow these standards, with the additional burden that there should be a value added in 
terms of analysis, observations, recommendations, and conclusions. 

Model validation documentation should enable the improvement of the model development 
process, in addition to being a vehicle for managing and measuring model risk, and being 
comprehensible by both a technical and a lay-person audience. Turning to the CECL perspective, 
given the sensitivity of financial reporting and heightened scrutiny by third-party reviewers around 
this process, high-quality documentation becomes a greater priority. Finally, we would submit that 
the structure of this study showcases several productive elements in what would be considered best-
practice model validation documentation by industry standards. We note here that, in ranking the 
aspects of model development in terms of criticality, where potential weaknesses most likely to lead 
to model failure are ranked higher, we would submit that this aspect is probably the least important. 
That said, the absolute importance of this depends upon the modeling context; for example, a very 
complex model will require more detailed documentation. On this note, we would recommend that 
model developers pursue automation strategies to reduce the burden of producing model or code 
documentation (e.g., there are some documentation tools in open-source platforms such as Python or 
R that allow one to automate the updating of tables and figures in a document as underlying data 
change). 

Finally, for our model validation framework in Figure 2, we address model redevelopment, closing 
the loop on the model life-cycle process. The direction of future incarnations of a model will be based 
upon a combination of considerations informed by validation observations and recommendations, 
monitoring outcomes, and user feedback. The role of model validation in this regard is to ensure that 
model developers judiciously weigh all these considerations in light of business needs, changes in 
the portfolio, advancements in the science of credit risk, availability of new or alternative data, and 
the economics of redevelopment. The outcome of decisions made at this stage will have a direct 
bearing on the theoretical and practical directions taken. It is critical that model validation be 
involved in this redevelopment process and, moreover, that the criticality of this partnership with 
model developers is accentuated in the CECL context where the supporting models have implications 
for financial reporting. As compared to the previously discussed aspects of model validation, in terms 
of the weight that this element should carry in contributing or detracting from the probability of a 
model being deemed unfit, we would place this in the middle to the lower end of the spectrum. That 
said, here is a place where we would call out the difference between validation from an oversight 
versus from a first-line perspective, as, in the former, there is more an expectation of an arms-length 
approach, whereas, in the latter, we would want more involvement from independent yet aligned 
quality assurance service experts in model redevelopment.  

Next, we turn the focus on some model validation considerations that are rather particular to 
CECL within the testing phase of the process, namely, challenges in backtesting and benchmarking, 
while a framework for thinking about such factors is illustrated in Figure 3. Whereas, in stress testing 
and CCAR, we have an emphasis of conservatism, and, in credit ratings, accuracy is balanced by 
considerations of stability or rating philosophy (e.g., a through-the-cycle orientation for underwriting 
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of Basel application), in CECL, the paramount considerations are the reasonableness, credibility, and 
unbiasedness of estimates. In the graphic, for the sake of exposition, we organize these model success 
criteria concepts into four quadrants, labeling the positive and negative halves of the y-axis as 
quantitative versus qualitative considerations, respectively; furthermore, we add an additional 
element in the southeast quadrant, the qualitative elements of benchmarking and sensitivity, as such 
exercises are at the intersection of bias and credibility considerations. 

 
Figure 3. Challenges in the validation of Current Expected Credit Loss (CECL) model development—
benchmarking and backtesing. 

Turning first to quantitative criteria, regarding accuracy, we have the extant goodness-of-fit 
criteria of the CECL component models (RMM, PD, LGD, or EAD), both in and out of sample, as well 
as for the combined ECL. This aspect of CECL backtesting may leverage existing success criteria (e.g., 
CCAR, ALLL) in determining how the firm defines accuracy. However, in the context of credit 
parameter or bottom-up models, the nuance for total ECL testing in the CECL setting is that, as a 
consequence of combining these estimates, the interaction of model errors may impact accuracy in 
the aggregate, and this is more problematic in the CECL as opposed to the CCAR application. 
Regarding the quantitative criterion of unbiasedness, the expectation is that the model for each risk 
parameter, as well as the combined ECL estimate, does not systematically overestimate or 
underestimate. This quantitative model success criterion is related to accuracy, which remains a 
distinct concept, in that, for CECL, there will be particular scrutiny of cumulative percentage errors 
(forecasted relative to actual values) over certain key historical periods, such as the recent benign 
period that purportedly could precede a downturn6. We reference the previous discussion of the 
importance of model performance with respect to ensuring against model failure in general and in 
particular for CECL, while highlighting concept of unbiasedness.  

Next, we turn to discussion of the qualitative model success criteria. First considering the 
reasonability/credibility criterion for CECL estimates, a desirable characteristic is that expected 
component risk model or aggregate ECL forecasts neither an increase nor a decrease in perpetuity. 
Depending upon the economic environment that we are expected to enter, after a period of either 
elevated or muted losses, there should be a reversion to a level consistent with average experience 
over the long term. This requires a reversion mechanism taking us from the reasonable and supportable 

 
6 We note that, in some cases, such as lines of credit, the error is measured relative to an interpretation.  
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forecast (RSF) to the long-run average (LRA) period that yields such an intuitive pattern, which is 
usually a mechanism that is not completely statistical in nature. For example, we may have 
immediate, linear, or curvilinear reversion paths of some kind. That leads to the challenge in 
determining how to specify ECL curves in the LRA; options include reverting to long-run loss rates 
in segments, injecting long-run averages of macroeconomic variables into forecasting models, or 
leveraging long-run averages for risk parameter components, and the justification for these choices 
rests largely upon judgmental and not purely quantitative considerations. Another qualitative 
element of this dimension is that, for macroeconomic forecasts intended to be comparable to certain 
historical economic cycles, such corresponding risk components should closely resemble history, 
which is something that cannot always be established through model selection due to inherent 
limitations in driver availability or linear specifications. Furthermore, any assumptions that inform 
the total allowance estimate should be reasonable, clearly documented, and rigorously supported. 
For example, any weightings on multiple scenarios should be intuitive with respect to where we are 
in the economic cycle, and any overlays or adjustments to the modeled ECL estimates should be 
linked to an identified model weakness and be substantiated by analysis. Another consideration is 
that coverage ratios by ranked risk characteristics should exhibit monotonic patterns, and this 
element can inform the latter qualitative adjustments if reasonable ordering is not evident from the 
modeled output. Finally, we consider benchmark or challenger constructs, which could be models, 
segmentations, or data. We can ask if alternative approaches, which should be broadly comparable 
to our champion constructs, provide sufficient support for the modeled CECL forecasts. 
Benchmarking can include comparison to incurred loss estimates or CCAR baseline forecasts, with 
due consideration given to the significant changes under CECL7. Another critical activity is sensitivity 
analysis for assumptions that have a material impact on the ECL, which can not only give us a sense 
of the variability in the CECL estimates, but also inform overlays or adjustments to the model. A 
related exercise here is attribution analysis, where we decompose changes in model estimates over 
cycles into what is driven by forecasts, portfolio quality, or modifications to the model. A last item to 
consider here is challenger analytics, for example, comparing impact of reversion at macroeconomic 
variable versus the loss parameter level, which can serve as a point of view or support for modeling 
assumptions. Finally, with respect to how we would rank these qualitative aspects of model 
validation in terms of mitigating or exacerbating the likelihood of model failure, our view is that these 
would be close to the previously discussed quantitative aspects specific to CECL. Our reasoning is 
that, if enough of these aspects do not meet expectations, then we could also be in a position where 
the use of the models for CECL is curtailed, and the construct could even eventually become 
irrelevant (e.g., the case where qualitative overlays are driving results), which is tantamount to model 
failure.  

We conclude this section by a note on the roles of the second line versus the first line of defense 
model validation. The framework that we describe, which is broadly in line with SR 11-7 standards, 
is applicable to model validation occurring within the model development (“first-line model 
validation”), as well as the same as performed by an independent second-line function. It is 
recognized that validation activities commonly occur within model development groups, with model 
development staff cross-checking work amongst themselves, to ensure quality and correctness. A 
trend in the industry is to add formality around this first-line validation function and a degree of 
independence by making it a separate function (albeit under the same reporting structure), in order 
to have an enhanced and improved process. This trend accelerated with the advent of CECL, as 
having such a formalized first-line validation process enables an organization to have a more robust 
CECL process, in the sense of resiliency in the face of multiple third-party review.  

In Figure 4, we depict, at a high level, the process for implementing and executing a CECL 
model, the PV&A steps that are embedded in that process, and the evidence or artefacts of the PV&A. 
As a first step, the model implementation team checks that the code (e.g., the model estimation 
scripts, as well as the input files) deployed in the implementation process is that approved by the 

 
7 We note that while this may be straightforward for term loans, there would be great challenges doing this 

for lines of credit, and in that context this may be feasible only for model elements such as PD forecasts.  
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independent model risk management group (IMRMG), and this is recorded in the CECL Model 
Development PV&A Log. If the same programming languages are used in implementation as in 
development, this is a rather straightforward process; otherwise, there is a step to translate the 
development codes into implementation codes, which needs to be verified and assessed. Secondly,  
there is a check of the data that drive the CECL forecasts, namely, the risk factors in the econometric 
models and the macroeconomic variables used in the regression models. 

 
Figure 4. Framework for process verification and assessment of CECL model implementation and 
execution. 

This is accomplished by a comparison that is recorded in an Analysis Results Summary document. 
The third step of the process involves establishing the implementation environment, which means 
ensuring that the code and data are ingested correctly by the model implementation platform. The 
artefact supporting the PV&A of this step is recorded in the Comparative Analysis Summary document. 
In the fourth step, there is an evaluation of the model implementation output, which is again 
verification that the risk factors and predicted credit losses which drive the CECL model forecasts 
match those in the model development stage. The correct completion of this control is evidenced by 
a Comparison Results Excel workbook. The final step involves the transfer of CECL models 
implementation outputs to the model aggregation engine (MAE), which is the execution stage of the 
CECL model, and checking that these are complete and that results match; the PV&A activity 
associated with this is the comparison of CECL model output with that of the output post MAE 
implementation to that expected from CECL model development runs. The artefact associated with 
this element of PV&A is an automated code that resides in in a Reasonability Check excel workbook. 
We note here that spreadsheet-based solutions are not optimal from a model validation best-practice 
standards perspective, and that we could consider more robust constructs, such as automated work-
flow tools. 

4. Example of a CECL Modeling Framework: Time-Series VAR Methodologies for Credit Model 
Estimation and Macroeconomic Scenario Generation 

Stress testing is concerned principally with the policy advisory functions of macroeconomic 
forecasting, wherein stressed loss projections are leveraged by risk managers and supervisors as a 
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decision-support tool informing the resiliency institutions during stress periods8. Traditionally, the 
way that these objectives were achieved ranged from high-dimensional multi-equation models, all 
the way down to single-equation rules, with the latter being the product of economic theories. Many 
of these methodologies were found to be inaccurate and unstable during the economic tumult of the 
1970s as empirical regularities such as Okun’s Law or the Phillips Curve started to fail. Starting with 
Sims (1980) and the VAR methodology, we saw the arrival of a new paradigm, where, as opposed to 
the univariate AR modeling framework (Box and Jenkins 1970; Brockwell and Davis 1991; 
Commandeur and Koopman 2007), the VAR model presents as a flexible multi-equation model still 
in the linear class, but in which variables can be explained by their own and other variables’ lags, 
including variables exogenous to the system. We consider the VAR methodology to be appropriate 
in the application of stress testing, as our modeling interest concerns relationships and forecasts of 
multiple macroeconomic and bank-specific variables. We also consider the MS-VAR paradigm in this 
study, which is closely related to this linear time-invariant VAR model. In this framework, we analyze 
the dynamic propagation of innovations and the effects of regime change in a system. A basis for this 
approach is the statistics of probabilistic functions of Markov chains (Baum and Petrie 1966; Baum et 
al. 1970). The MS-VAR model also subsumes the mixtures of normal distributions (Pearson 1984) and 
hidden Markov chain (Blackwell and Koopmans 1957; Heller 1965) frameworks. All of these 
approaches are further related to Markov chain regression models (Goldfeld and Quandt 1973) and to 
the statistical analysis of the Markov switching models (Hamilton 1988). Most closely aligned to our 
application is the theory of doubly stochastic processes (Tjostheim 1986) that incorporates the MS-VAR model 
as a Gaussian autoregressive process conditioned on an exogenous regime generating process. 

Let ( )1 ,..., T
t t ktY Y=Y  be a k -dimensional vector-valued time series of the output variables of 

interest in our application, with the entries representing some loss measure in a particular segment, 

which may be influenced by a set of observable input variables denoted by ( )1 ,..., T
t t rtX X=X , 

which is an r -dimensional vector valued time series also referred to as exogenous variables, 
representing a set of macroeconomic or idiosyncratic factors in our context. This gives rise to the 

( ), ,VARMAX p q s  (vector autoregressive moving average with exogenous variables) 

representation. 
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lag polynomials of respective orders p , s, and q , respectively, and B  is the back-shift operator that 

satisfies i
t t iB X X −=  for any process { }tX . It is common to assume that the input process tX  is 

generated independently of the noise process ( )1 ,..., T
t t kt= Ε ΕΕ 9. The autoregressive parameter 

 
8 Refer to Stock and Watson (2001) for a discussion of the basic aspects of macroeconomic forecasting (i.e., 

characterization, forecasting, inferences, and policy advice regarding macroeconomic time series and the 
structure of the economy). 

9 In fact, the exogenous variables { }tX  can represent both stochastic and non-stochastic (deterministic) 

variables, examples being sinusoidal seasonal (periodic) functions of time, used to represent the seasonal 
fluctuations in the output process { }tY , or intervention analysis modelling in which a simple step (or pulse 
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matrices jΦ  represent sensitivities of output variables to their own lags and to lags of other output 

variables, while the corresponding matrices jΘ  are model sensitivities of output variables to 

contemporaneous and lagged values of input variables. It follows that the dependency structure of 
the output variables tY , as given by the autocovariance function, is dependent upon the parameters 

jΦ  and, hence, the correlations amongst the tY  and the correlation amongst the tX  that 

depend upon the parameters jΘ . In contrast, in a system of univariate ( ), ,ARMAX p q s  

(autoregressive moving average with exogenous variables) models, the correlations amongst the 
elements of tY  are not taken into account; hence, the parameter vectors jΘ  have a diagonal 

structure (Brockwell and Davis 1991). Please refer to Appendix A for further details on the VAR 
model specification and estimation, as well as the extension to the MS-VAR model. 

Next, in this section, we comment on a view of this methodology from a model validation of 
conceptual soundness perspective. We would submit that, for CECL purposes, and in a top-down 
modeling setting (i.e., where the target variables are losses in modeling segments, as opposed to loan- 
or obligor-level risk factors like LGD or PD, respectively), the VAR or MS-VAR methodology is fit 
for purpose. These techniques are well understood by the academic and practitioner communities, 
and they are widely used in the industry for credit modeling purposes including CCAR, so that such 
techniques are rather suitable for CECL modeling. That said, in validating these models, we need to 
be mindful of whether the model code is correct and well constructed, and whether the assumptions 
of these statistical models are satisfied. Indeed, in our model development process, we follow 
industry and SR 11-7 standards in testing our model code and the assumptions of the econometric 
models, including supporting diagnostics such as sensitivity and stress testing of the models, as well 
as the construction of challenger models10. 

We conclude this section with some comments regarding the validation of model 
implementation in this academic exercise. As we only have a set of model prototypes in this study, 
which are not placed into production, strictly speaking, we do not have an example of validation 
pertaining to model implementation. That said, there are aspects of our model development process 
that facilitate robust model implementation as part of our practice. Firstly, we built our models in the 
R language (R Core Development Team 2020) using a customized front-end, which is capable of 
seamlessly integrating with many production platforms used in the industry for CCAR or CECL 
purposes, and we would add to a better extent than more standardized platforms such as SAS. In 
fact, many banks are moving in this direction with regard to their model development platforms, 
with a view toward better integrating with tailored execution platforms. Another aspect that is 
relevant for model implementation, if these models were to be put into production, is that our 
customized development environment is based upon “R-Studio”, which has automated facilities for 
updating code packages. This feature would make the process verification and assessment of model 
implementation far more streamlined as compared to other solutions. Another advantage of open-
source model development solutions from an implementation validation perspective is the 
transparency of source code underlying the packages, such that it is straightforward to verify that the 
same code used in development is also being used in implementation, as compared to other 
constructs where a translation process has to be put into place. These aspects speak to the reality that 
validation of the development and implementation aspects is linked, and that, if both are in better 
sync, this results in an enhanced validation process as a whole. Finally, from a CECL perspective, 
where model accuracy is of paramount importance (in contrast to other stress testing exercises such 
as CCAR), we believe that the more cutting-edge algorithms available in R as compared to SAS can 
result in not only more accurately estimated models, but also lower execution risk, as it is easier to 

 
indicator) function taking the values of 0 or 1 indicates the effect of output due to unusual intervention events 
in the system. 

10 The full model development code package, an R project containing all data and code, is available upon 
request.  



Int. J. Financial Stud. 2020, 8, 27 17 of 34 

 

translate this code base to an execution environment, as there is greater transparency and simplicity 
of the construct.  

5. Example of CECL Model Development Validation: Analysis of Model Data, Estimation 
Results, Challengers, and Performance Testing 

The objective of this section is to showcase some elements of model validation in the CECL 
context that evidences some best practices. Note that this is not meant to have all the components or 
structure of a model validation report as would be produced at a financial institution, but rather to 
highlight some elements that are critical in this setting. As an example, we make reference to results 
suggestive of favorable model fit, or desirable properties for residuals, but we do not document the 
full battery of such tests as would be the case in a real-world example of a SR 11-7-compliant model 
validation report. Therefore, we aim to strike a balance between content informing a practical 
application on the one hand, and a style aligned to a research paper on the other. 

The data in this empirical estimation exercise are sourced from the Statistics on Depository 
Institutions (SDI) report, which is available on the Federal Deposit Insurance Corporation’s (FDIC) 
research website11. These bank data represent all insured depository institutions in the US and contain 
income statement, balance sheet, and off-balance sheet line items. We use quarterly data from the 
fourth quarter of 1991 through the fourth quarter of 2017. The models for CECL are specified and 
estimated using a development period that ends in the fourth quarter of 2015, leaving the last two 
years (2016 and 2017) as an out-of-sample test time period. The model development data are Fed 
macroeconomic variables, as well as aggregate asset-weighted average values of bank financial 
characteristics for each quarter, with the latter either in growth rate form or normalized by the total 
value bank assets in the system. 

The Federal Reserve’s CCAR stress-testing exercise requires US domiciled top-tier financial 
institutions to submit comprehensive capital plans conditioned upon prescribed supervisory and at 
least a single bank-specific, set of scenarios (base, adverse, and severe). The supervisory scenarios are 
constituted of nine quarter paths of critical macroeconomic variables (MVs). In the case of institutions 
materially engaged in trading activities, in addition, there is a requirement to project an instantaneous 
market or counterparty credit loss shock conditioned on the institution’s idiosyncratic scenario, in 
addition to supervisory prescribed market risk stress scenarios. Additionally, large custodian banks 
are asked to estimate a potential default of their largest counterparty. Institutions are asked to submit 
post-stress capital projections in their capital plan starting 30 September of the year, spanning the 
nine-quarter planning horizon that begins in the fourth quarter of the current year, defining 
movements of key MVs. In this study, we consider the MVs of the 2015 CCAR, as well as their base 
scenario for CECL purposes. 

• Real gross domestic product growth (RGDP); 
• Real gross domestic investment (RDIG); 
• Consumer price index (CPI); 
• Real disposable personal income (RDPI); 
• Unemployment rate (UNEMP); 
• Three-month treasury bill rate (MTBR); 
• Ten-year treasury bond rate (10YTBR); 
• BBB corporate bond rate (BBBCR); 
• Dow Jones index (DJI); 
• National house price index (HPI); 
• Nominal disposable personal income growth (NDPIG); 
• Mortgage rate (MR); 
• CBOE’s equity market volatility index (VIX); 
• Commercial real estate price index (CREPI). 

 
11 These are available at https://www5.fdic.gov/sdi/main.asp?formname=standard 
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Our model selection process imposed the following criteria in selecting input and output 
variables across both VAR and MS-VAR models for the purposes of scenario generation12: 

• Transformations of chosen variables should indicate stationarity; 
• Signs of coefficient estimates are economically intuitive; 
• Probability values of coefficient estimates indicate statistical significance at conventional 

confidence levels; 
• Residual diagnostics indicate white-noise behavior; 
• Model performance metrics (goodness of fit, risk ranking, and cumulative error measures) are 

within industry-accepted thresholds of acceptability; 
• Scenarios rank order intuitively (i.e., severely adverse scenario stress losses exceeding scenario 

base expected losses). 

We considered a diverse set of macroeconomic drivers representing varied dimensions of the 
economic environment and a sufficient number of drivers (balancing the consideration of avoiding 
over-fitting) by industry standards (i.e., at least 2–3 and no more than 5–7 independent variables). 
According to these criteria, we identified the optimal set focusing on five of the nine most commonly 
used national Fed CCAR MVs as input variables in the VAR model. 

• UNEMP; 
• BBBCY; 
• CREPI; 
• VIX; 
• CORPSPR. 

Similarly, we identified the following balance sheet items, i.e., banking aggregate idiosyncratic 
factors, according to the same criteria: 

• Commercial and industrial loans to total assets (CILTA); 
• Commercial and development loans growth rate (CDLGR); 
• Trading account assets to total assets (TAATA); 
• Other real estate owned to total assets (OROTA); 
• Total unused commitments growth rate (TUCGR). 

These historical data, 65 quarterly observations from 4Q01 to 4Q1713, are summarized in Tables 
1 and 2 in terms of distributional statistics and correlations. In Figures 5 and 6, we show, as examples, 
the macroeconomic variable UNEMP and the idiosyncratic variable CILTA, respectively, with both the 
historical time series and the three scenarios of generation model forecasts (Fed, VAR, and MS-VAR) for the 
period 1Q16–4Q17. Across all series, we observe that the credit cycle is clearly reflected, with indicators of 
economic or financial stress (health) displaying peaks (troughs) in the recession of 2001–2002 and in 
the financial crisis of 2007–2008, with the latter episode dominating in terms of severity by an order 
of magnitude. However, there are some differences in timing, extent, and duration of these spikes 
across macroeconomic variables and loss rates. These patterns are reflected in the percentage 
change transformations of the variables as well, with corresponding spikes in these series that 
correspond to the cyclical peaks and troughs, although there is also much more idiosyncratic 
variation observed when looking at the data in this form. Firstly, we describe main features of the 
distributional statistics of all variables, then the correlations with the variables and the NCORs, 
followed by the dependency structure within the group of input macroeconomic variables, then the 
same for the input bank idiosyncratic variables, and finally the cross-correlations between these two 

 
12 We perform this model selection in an R script designed for this purpose, using the libraries dse and tse to 

estimate and evaluate VAR and MS-VAR models (R Core Development Team, 2019). 
13 We leave out the last two years of available data, 1Q16–4Q17, in order to have a holdout sample for testing 

the accuracy of the models. We also choose to start our sample in 2001, as we believe that the earlier period 
would reflect economic conditions not relevant for the last decade and also because, in the financial industry, 
this is a standard starting point for CCAR and DFAST stress-testing models. 
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groups. We observe that all correlations have intuitive signs and magnitudes that suggest significant 
relationships, although the latter are not large enough to suggest any issues with multicollinearity. 
Considering the correlations within and across the sets of macroeconomic and idiosyncratic variables, 
we note that signs are all economically intuitive, and, while magnitudes are material, they are not 
high enough to result in concerns of multicollinearity. 

 
Figure 5. Time series and base scenarios—unemployment rate (Federal Reserve Board 4Q91–4Q15 
and Jacobs et al. (2018) models). 

 
Figure 6. Time series and base scenarios—commercial and industrial loans to total assets (Federal 
Deposit Insurance Corporation (FDIC) Statistics on Depository Institutions (SDI) Report, Federal 
Reserve Board 4Q91–4Q15 and Jacobs et al. (2018) models). 

Table 1. Summary statistics of historical Y9 credit loss rates, banking system idiosyncratic variables, 
and macroeconomic variables (FDIC SDI Report and Federal Reserve Board 4Q91–4Q15). 

   Input Variables - Idiosyncratic Variables Input Variables - Macroeconomic Variables 

  NCOR CIL CDL TAA OREO TTUC UNEMP BBBCY CREPI VIX CORPSP
R 

Cnt. 65 65 64 65 65 64 65 65 65 65 65 
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Mean 0.35% 0.101 0.01 0.05 0.001 0.01 6.31 5.54 201.12 26.56 2.99 
StdDev 0.23% 0.01 0.05 0.01 0.001 0.03 1.73 1.29 40.64 12.09 1.15 

Min. 0.13% 0.087 −0.09 0.03 0.001 −0.09 4.10 3.70 138.70 12.70 1.40 
25 Prc. 0.17% 0.10 −0.04 0.04 0.001 −0.001 5.00 4.50 167.30 18.90 2.30 
Med. 0.26% 0.1054 0.02 0.06 0.0009 0.013 5.70 5.50 198.50 22.70 3.00 

75 Prc. 0.44% 0.11 0.04 0.05 0.002 0.02 7.70 6.40 234.0 30.80 3.50 
Max.  0.93% 0.13 0.16 0.08 0.004 0.06 9.90 9.40 278.70 80.90 7.20 
CV 0.67 0.09 7.21 0.20 0.73 4.53 0.27 0.23 0.20 0.46 0.38 

Skew. 1.32 0.1477 −0.21 0.46 0.91 −1.25 0.80 0.77 0.21 1.96 1.50 
Kurt. 0.67 −0.24 −0.06 0.16 −0.59 2.05 −0.72 0.34 −1.12 5.51 4.13 

Table 2. Correlations of historical Y9 credit loss rates, banking system idiosyncratic variables, and 
macroeconomic variables (FDIC SDI Report and Federal Reserve Board 4Q91–4Q15). 

  NCOR CIL CDL TAA OREO TTUC 
UNEM

P 
BBBC

Y 
CREPI VIX 

CORPSP
R 

NCOR                       
CIL −0.59                     
CDL −0.82 0.39                   
TAA 0.63 −0.43 −0.34                 

OREO 0.69 −0.59 −0.84 0.06               
TUC −0.64 0.13 0.61 −0.07 −0.59             

UNEMP 0.91 −0.62 −0.80 0.30 0.94 −0.41           
BBBCY 0.52 −0.25 −0.31 0.48 0.13 −0.17 0.07         
CREPI −0. 80 0.56 0.58 −0.13 −0.66 0.25 −0.54 −0.41       

VIX 0.64 −0.22 −0.52 0.05 0.45 −0.27 0.38 0.60 −0.22     
CORPSPR 0.69 −0.45 −0.55 0.08 0.45 −0.21 0.61 0.47 −0.25 0.81   

A critical modeling consideration for the MS-VAR estimation is the choice of process generation 
distributions for the normal and the stressed regimes. As described in the summary statistics of Jacobs 
(2018), we find that, when analyzing the macroeconomic data in percentage change form, there is 
considerable skewness in the direction of adverse changes (i.e., right skewness for variables where 
increases denote deteriorating economic conditions such as UNEMP). Furthermore, in normal 
regimes, where percentage changes are small, we find a normal distribution to adequately describe 
the error distribution, whereas, when such changes are at extreme levels in the adverse direction, we 
find that a log-normal distribution does a good job of characterizing the data generating process.14 
Another important modeling consideration with respect to scenario generation is the methodology for 
partitioning the space of scenario paths across our 10 macroeconomic and idiosyncratic variables for 
the base scenario. In the case of the base scenario, we take an average across all paths in a given 
quarter for a given variable. The scenarios are shown in Jacobs (2019a), where we show, for each 
macroeconomic variable, the base scenarios for the VAR and MS-VAR models15, and we also compare 
these to the corresponding Fed scenarios, along with the historical time series. 

The VAR (1) estimation results of our CECL models are summarized in Table 3. We identify 14 
optimal models according to the criteria discussed previously, seven combinations of macroeconomic 
variables (four bivariate and three trivariate specifications), and versions of these incorporating 
idiosyncratic variables. 

• Model 1: macroeconomic—UNEMP and BBBCY; idiosyncratic—none; 
• Model 2: macroeconomic—UNEMP and BBBCY; idiosyncratic—CILTA and CDLGR; 
• Model 3: macroeconomic—UNEMP and CREPI; idiosyncratic—none; 
• Model 4: macroeconomic—UNEMP and CREPI; idiosyncratic—TAAA and CDLGR; 

 
14 This is similar to the findings of Loregian and Meucci (2016) and Jacobs (2017a) in the context of modeling 

US Treasury yields. We observe that this mixture adequately characterizes the empirical distributions of the 
data in this paper. 

15 Estimation results for the VAR and MS-VAR model are available upon request. The models are all convergent 
and goodness-of-fit metrics fall within industry standards. Signs of coefficient estimates are in line with 
economic intuition and estimates are all significant at conventional levels.  We use the dse, tseries, and 
MSBVAR libraries in R in order to perform the estimations (R Development Core Team 2019). 
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• Model 5: macroeconomic—UNEMP and CORPSPR; idiosyncratic—none; 
• Model 6: macroeconomic—UNEMP and CORPSPR; idiosyncratic—OROTA; 
• Model 7: macroeconomic—CREPI and VIX; idiosyncratic—none; 
• Model 8: macroeconomic—CREPI and VIX; idiosyncratic—TAAA and OROTA; 
• Model 9: macroeconomic—CORPSPR, UNEMP, and VIX; idiosyncratic—none; 
• Model 10: macroeconomic—CORPSPR, UNEMP, and VIX; idiosyncratic—TUCGR; 
• Model 11: macroeconomic—BBBCY, UNEMP, and CREPI; idiosyncratic—none; 
• Model 12: macroeconomic—BBBCY, UNEMP, and CREPI; idiosyncratic—CDLGR; 
• Model 13: macroeconomic—BBBCY, UNEMP, and CORPSPR; idiosyncratic—none; 
• Model 14: macroeconomic—BBBCY, UNEMP, and CORPSPR; idiosyncratic—TAAA. 

Table 3. Vector autoregressive CECL model estimation results compared—historical Y9 credit loss 
rates, banking system idiosyncratic, and macroeconomic variables (FDIC SDI Report and Federal 
Reserve Board 4Q91–4Q15). 

Statist
ics 

NCOR 
Lag Int. 

UN- 
EMP BBBCY CREPI BBBCY VIX 

CILT
A 

CDLG
R 

TAAT
A 

OREO
-TA TUCG 

Esti. −0.69 −0.31% 0.16% 0.04%                 
PV 0.0E+0 0.0E+0 1.6E−3 3.1E−4                 

AR2 92.62% 
Esti. −0.67 −0.04% 0.01% 0.03%       −0.9% −0.78%       
PV 0.0E+0 5.2E−3 1.9E−3 1.0E−3       0.0E+0 0.0E+0       

AR2 96.69% 
Esti. −0.71 −0.03% 0.23% 0.02%                 
PV 0.0E+0 3.1E−2 2.0E−3 1.6E−2                 

AR2 89.69% 
Esti. −0.70 −0.03% 0.01%   −0.43%       −0.66% 4.75%     
PV 0.0E+0 6.2E−2 2.6E−2   2E−13       6.6E−7 0.0E+0     

AR2 95.55% 
Esti. −0.70 −0.05% 0.01%     0.01%             
PV 0.0E+0 3.5E−3 3.0E−2     2.8E−3             

AR2 87.45% 
Esti. −0.85   0.01%     0.05%         0.01%   
PV 0.0E+0   2.8E−1     3.5E−3         1.2E−2   

AR2 94.88% 
Esti. −0.82 −0.12%     −0.20%   0.06%           
PV 0.0E+0 1.9E−11     6.7E−3   8.9E−7           

AR2 87.45% 
Esti. −0.79 −0.29%     −0.30%   0.04%     5.0% 9.22%   
PV 0.0E+0 0.0E+0     4.2E−7   2.5E−4     0.0E+0 3.5E−3   

AR2 95.18% 
Esti. −0.89   0.003%     0.00% 0.06%           
PV 0E+0   4.0E−1     4.9E−3 2.3E−7           

AR2 92.82% 
Esti. −0.88 −0.18% 0.00%     0.01%           −0.61% 
PV 0.0E+0 0.0E+0 4.9E−3     2.2E−1           2.3E−2 

AR2 92.88% 
Esti. −0.79 −0.13% 0.01% 0.02% −0.22%               
PV 0.0E+0 5E−15 1.2E−2 1.5E−2 8.4E−4               

AR2 91.97% 
Esti. −0.85 0.03% 0.01% 0.02% −0.25%       −0.54%       
PV 0.0E+0 1.3E−2 1.5E−3 4.6E−2 2.6E−7       1.2E−6       

AR2 96.44% 
Esti. −0.65 −0.35% 0.05% 0.04%   0.02%             
PV 0.0E+0 0.0E+0 5.0E−6 1.1E−4   5.6E−4             

AR2 93.12% 
Esti. −0.85 −0.31% 0.001% 0.03%   0.01%       3.6%     
PV 0.0E+0 0.0E+0 4.6E−4 7.9E−3   2.8E−1       0.0E+0     

AR2 94.71% 

As we can see in Table 3, all of the candidate models satisfy our basic requirements of model fit 
and intuitive sensitivities. Model fit, as measured by adjusted R-squared (AR2), ranges from 87% to 
97% across models, which is good performance by industry standards and broadly comparable. The 
best-fitting model is number 2, the bivariate macroeconomic specification with UNEMP and BBBCY, 
with idiosyncratic variables CILA and CDLG, having an AR2 of 97.7%. The worst fitting model is 
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number 7, the bivariate macroeconomic specification with CREPI and VIX, with no idiosyncratic 
variables, having an AR2 of 87.5%. The autoregressive coefficient estimates all show that the NCORs 
display significant mean reversion, having values ranging from −0.89 to −0.65 and averaging −0.77. 

The model performance metrics of the 14 models are presented in Table 4. We tabulate these 
statistics for the development sample 4Q01–4Q15 and out-of-sample 1Q16–4Q17, and the latter is 
evaluated under the three scenario generation models (Fed, VAR, and MS-VAR), as well as perfect 
foresight (i.e., assuming that we anticipated the actual paths of the macroeconomic and idiosyncratic 
variables). We consider the following industry standard model performance metrics: 
• Generalized cross-validation (GCV); 
• Squared correlation (SC); 
• Root-mean-squared error (RMSE); 
• Cumulative percentage error (CPE); 
• Akaike information criterion (AIC). 

We observe from Table 4, as well as from the examples above in Figure 7 (unemployment rate 
and BBB corporate—five-year treasury bond spread) and Figure 8 (unemployment rate, commercial 
real estate price index, BBB corporate bond yield, and commercial development loan growth), that 
there is great diversity of out-of-sample model performance across econometric specifications, as well 
as across models for baseline economic forecasts, both in absolute terms and in comparison to the 
perfect foresight benchmark. We further note that, in summary, out-of-sample performance across 
models is not assessed as being favorable by industry standards, even in the perfect foresight 
scenario. Measures of model (GCV, SC, RMSE, and AIC) fit tend to be poor, and there is chronic 
underprediction of NCORs according to the CPE metric. For example, the average SC in sample is 
93.7% ranging from 88.9% to 87.1%; however, out of sample, it averages 17.2% and ranges from 0.06% 
to 87.3%. On the other hand, in sample, the CPE averages 0.04% and ranges from −0.09% to 0.21%, 
while, out of sample, the average is −43.0% and ranges from −158.9% to 48.9%. 

 
Figure 7. Net Charge-off Rate model accuracy plots—unemployment rate and BBB corporate—five-
year treasury bond spread (FDIC SDI Report, Federal Reserve Board 4Q91–4Q15 and Jacobs et al. 
(2018) models). 
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Figure 8. Net Charge-off Rate model accuracy plots—unemployment rate, commercial real estate 
price index, BBB corporate bond yield, and commercial development loan growth (FDIC SDI Report, 
Federal Reserve Board 4Q91–4Q15 and Jacobs et al. (2018) models). 
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Table 4. CECL vector autoregressive model of in- and out-of-sample performance measures compared—historical Y9 credit loss rates, banking system idiosyncratic, and 
macroeconomic variables (FDIC SDI Report, Federal Reserve Board 4Q91-4Q15 and Jacobs et al. (2018) models). 

Time Per. Stat. 

Model 

UN-  
EMP & 
CORP- 

SPR 

UN- 
EMP, 

CORP-
SPR, 

TAATA 
& CDLG 

UN- EMP 
& CREPI 

UN- 
EMP, 

CREPI, 
TAA- TA 
& CDLG 

UN- EMP 
& COR- 

PSPR 

 UN- 
EMP, 

CORP-
SPR & 
OREO-

TA 

CREPI & 
VIX 

CREPI, 
VIX, 
ORE-  

OTA & 
TAA- TA 

VIX, UN- 
EMP & 
COR- 
PSPR 

VIX, 
UNEMP, 

CORP- SPR 
& TUCLG 

BBBCY, 
UN-  

EMP & 
CREPI 

BBBCY, 
UN-  

EMP, 
CREPI & 

CDLG 

BBBCY, 
UNEMP & 
CORP- SPR 

BBBCY, 
UNEMP. 

CORP- SPR 
& TAATA 

Dev. 
Smpl. 

GCV 12E−10 1.3E−10 1.7E−10 9E−11 2E−10 1E−10 1E−10 10E−11 1. E−10 1.4E−10 1.3E−10 6.0E−11 1.1E−10 1.1E−10 
SC 93.1% 97.1% 90.1% 95.9% 88.9% 95.2% 90.0% 95.7% 93.4% 93.7% 92.8% 96.8% 93.7% 95.3% 

RMSE 6.4E−4 6.6E−4 7.7E−4 5.3E−4 8.2E−4 5.6E−4 7.8E−4 5.5E−4 6.6E−4 6.5E−4 6.7E−4 4.5E−4 6.2E−4 5.7E−4 
CPE −0.02% 0.02% 0.02% 0.01% −0.01% −0.10 −0.01 0.09% 0.1% 0.14% 0.04% −0.02% 0.21% 0.04% 
AIC −603 −589.5 −591.6 −583.1 −584.9 −589.2 −590.8 −579 −561 −561.4 −598.5 −631.7 −606.6 −576.3 

Perf. Frcst. 
Pred. 

GCV 4.8E−8 2.0E−8 1.6E−9 8.4E−9 3E−10 1.1E−8 1.5E−8 2.9E−8 7E−9 1.1E−8 8.1E−9 2.7E−10 7.1E−8 4.3E−8 
SC 0.4% 3.8% 5.2% 7.9% 50.4% 0.1% 10.1% 42.1% 30.3% 19.7% 1.2% 68.4% 2.1% 6.6% 

RMSE 0.002 0.002 0.0004 0.001 0.0002 0.001 0.001 0.002 0.001 0.002 0.001 0.0002 0.003 0.003 
CPE −86% −50.0% 5.5% −30% 4.9% −40% 38.1% −67.1% 29.2% 35.6% −32.8% 5.1% −103.8% −67.5% 
AIC −79.0 −82.3 −106.5 −89.0 −119.0 −88.5 −88.6 −79.2 −92.5 −86.8 −91.3 −116.5 −74.0 −76.0 

Fed Base 
Pred. 

GCV 4.0E−8 2.2E−8 6E−10 1.7E−8 1.1E−9 2.6E−8 6.5E−3 1.9E−7 7.8E−8 1.3E−7 1.7E−8 4.7E−9 2.0E−8 9.1E−8 
SC 80.2% 87.3% 21.8% 29.0% 4.9% 4.5% 0.7% 0.2% 0.8% 0.44% 81.8% 2.0% 1.4% 9.7% 

RMSE 0.002 0.002 0.0002 0.002 0.0003 0.001 0.002 0.01 0.003 0.005 0.002 0.001 0.002 0.004 
CPE −80.1% −58.9% −7.41% −49% 7.4% −61% −715% −152 −80% −100.6% −50.6% 6.1% 48.9% −35.4% 
AIC −80.5 −81.2 −113.9 −83.2 −109.2 −82.0 −77.8 −64.3 −73.2 −67.2 −85.4 −93.7 −83.9 −70.0 

VAR Mdl. 
Base Pred. 

GCV 6.7E−8 4.2E−8 4.7E−10 1.7E−8 1.2E−9 1.1E−8 6.3E−8 2.1E−7 8.6E−8 1.4E−7 2.7E−8 2.5E−09 4.6E−9 1.3E−7 
SC 23.7% 27.8% 13.8% 28.7% 9.58% 4.9% 0.6% 0.1% 0.74% 0.34% 45.7% 9.9% 12.5% 7.3% 

RMSE 0.003 0.003 0.0002 0.002 0.0003 0.001 0.03 0.01 0.003 0.005 0.002 0.001 0.001 0.005 
CPE −102% −80.2% −2.6% −47.2% 9.0% −40.4% −75% −158% −83.4% −104.8% −64.7% −8.7% 25.8% −59.0% 
AIC −76.4 −76.12 −116.14 −83.4 −108.7 −88.5 −76.9 −63.4 −72.4 −66.6 −81.6 −98.8 −95.9 −66.8 

MS- VAR 
Mdl. Base 

Pred. 

GCV 2.0E−8 1.5E−8 3.2E−9 1.2E−8 3.1E−9 6.3E−09 4.6E−8 1.4E−7 8.1E−8 1.4E−7 3.9E−9 1.8E−8 3.4E−8 7.6E−8 
SC 46.2% 42.97% 0.63% 7.71% 4.62% 0.4% 0.3% 2.1% 0.8% 0.44% 0.42% 1.1% 85.1% 12.3% 

RMSE 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.01 0.003 0.005 0.001 0.002 0.002 0.004 
CPE −53.9% −45.6% 13.0% −19% 16.9% −30.5% −65% −136% −80.3% −105.9% −10.6% 37.4% −73.8% −26.9% 
AIC −86.0 −84.37 −100.6 −86.4 −101.0 −93.3 −79.3 −66.5 −72.9 −66.4 −97.2 −85.1 −79.7 −73.4 
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While this is not conclusive, if we assume that we are near the end of an economic expansion, 
and conditional upon the class of models considered, these results imply that some banks’ models 
may under-provision as we enter a downturn, which is evidence that the CECL standard may fail to 
address the problem of procyclicality that was the intent of the new accounting guidance. However, 
we recognize that this observation of bias is distinct from that or procyclicality; thus, a stronger 
conclusion will require a direct measure of procyclicality and consideration of a wider class of 
models, which is left to future research. Among the loss model specifications, we find that, generally, 
the loss prediction specifications having a lower parameterization, as well as the MS-VAR scenario 
generation model, tend to produce better measures of model fit and a lower degree of 
underprediction. Furthermore, relative to the perfect foresight benchmark, the MS-VAR model 
produces a lower level of variation in the model performance statistics across loss predictive model 
specifications. That said, we add the qualification that this interpretation is subject to the restrictions 
of the data and models employed, and, while some firms may face such strictures, it may well be the 
case that different methodologies applied to richer datasets may present a differing conclusion. 
Therefore, we do not make the assertion that these observations necessarily imply a weakness in the 
CECL framework, as our conclusions are influenced by likely model weaknesses. However, in the 
case of firms facing such strictures, these results suggest that they may want to consider alternative, 
and possibly more advanced, approaches. 

6. The Quantification of Model Risk According to the Principle of Relative Entropy 

Risk measurement relies on modeling assumptions, the errors in which expose such models to 
model risk. In this paper, we apply a tool for quantifying model risk and making risk measurement 
robust to modeling errors. As simplifying assumptions are inherent to all modeling frameworks, the 
prime directive of model risk management is to assess vulnerabilities to and consequences of model 
errors. Therefore, a well-designed model risk measurement framework is capable of bounding the 
effect of model error on specific measures of risk, given a baseline nominal model for measuring risk, 
as well as identifying the sources of model error to which a measure of risk is most vulnerable, while 
also isolating which changes in the underlying model have the greatest impact on this risk measure. 

In this paper, consistent with the objectives of credit loss measurement in CECL, we focus on 
both objectives through calculating an upper bound on the range of credit risk values that can result 
over a range of model errors within a certain distance of a nominal model, for a range of credit loss 
models and economic scenario generation models. This bound is somewhat analogous to an upper 
confidence bound; however, whereas a confidence interval quantifies the effect of sampling 
variability, the robustness bound that we develop quantifies the effect of model error. The simple 
example of a standard error estimate should help illustrate this idea as a conventional measure of 
credit risk in a loan or bond portfolio. Measuring standard deviation prospectively requires 
assumptions about the joint distribution of the returns of assets or default correlation in a credit 
portfolio. 

In light of the first objective listed above and our focus on the CECL context, we would want to 
bound the values of standard deviation that can result from a reasonable degree of model error. In 
practice, model risk is sometimes addressed by comparing the results of different models; however, 
more often, if it is considered at all, model risk is investigated by varying model parameters. 
Crucially, the tools applied here go beyond parameter sensitivity to consider the effect of changes in 
the probability law that defines an underlying model, enabling us to identify vulnerabilities to model 
error that are not reflected in parameter perturbations. For example, the main source of model risk 
might result from an error in a joint distribution of returns that cannot be described through a change 
in a covariance matrix. To work with model errors described by changes in probability laws, we need 
a way to quantify such changes, and, to this end, we deploy the principle of relative entropy (Hansen 
and Sargent 2007; Glasserman and Xu 2013). In Bayesian statistics, the relative entropy between 
posterior and prior distributions measures the information gained through additional data. In 
characterizing model error, we interpret relative entropy as a measure of the additional information 
required to make a perturbed model preferable to a baseline model. Thus, relative entropy becomes 
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a measure of the plausibility of an alternative model. It is also a convenient choice because the worst-
case alternative within a relative entropy constraint is typically given by an exponential change of 
measure. 

We quantify the model risk with respect to a champion, or null, model ( )y f x=  such that the 

Kullback–Leibler relative entropy divergence measure from a challenger, or reference, model ( )y g x=  

is given by
 

( ) ( )
( )

( )
( ) ( ), log

g x g x
D f g f x dx

f x f x
 

=   
 

.  (3) 

In this construct, the ( )f x  mappings are our set of estimated CECL loss distribution models, 

and the ( )g x  benchmark is some kind of alternative, such as the perfect foresight loss forecast. We 

can define the likelihood ratio ( ),m f g  characterizing our modeling choice according to the 

following relationship:
 

( ) ( )
( )

,
g x

m f g
f x

= .  (4) 

It is standard in the literature to express Equation (4) in terms of an equivalent expectation of a 
relative deviation in likelihood.

 
( ) ( )E log ,f m m D f g δ= <   ,  (5) 

where δ  represents a relatively small upper bound on model risk deviations, dictated by the model 
risk appetite of the organization with respect to a particular model type (e.g., a model performance 
threshold). A key property of relative entropy is that ( ), 0d f g ≥  and ( ), 0d f g =  only if 

( ) ( )f x g x= . Given a set of reference models ( )g x  and a relative distance measure 

( ),d f g δ< , the solution for ( ),m f g  shows that the model error can be quantified by the 

following change of numeraire (Glasserman and Xu 2013): 

( ) ( )( )
( )( )

exp
,

E expf

f x
m f g

f xθ

θ
θ

=
  

,  (6) 

where Equation (6) is the solution or inner supremum to the optimization problem.
 

( )
( )

( ) ( ) ( ) ( )( )( )
0

1, inf sup E logf
m x

m f g m x f x m x m xθ θ
δ

θ>

 = − −  
.  (7) 

In Equation (6), the model risk measure is parameterized by [ ]0,1θ ∈ , such that 0θ =  

corresponds to the best case of zero model risk, and 1θ =  corresponds to the worst case of maximal 
model risk. An important property of the change in Equation (4) is that it is model-free, or independent 
of the reference model ( )g x . This is critical from a model validation perspective, as this implies that 

this procedure is robust to model misspecification. 
We summarize the empirical implementation results of our model risk quantification in Table 5 

and show examples in Figure 9 (unemployment rate and BBB corporate bond yield) and Figure 10 
(unemployment rate, CBOE equity volatility index, BBB corporate—five-year treasury bond spread, 
and total uncommitted loan growth). In Table 4, we tabulate the mean CECL loss under the model, 
with the same in the worst case, where the relative model risk error (RMRE) measure is defined as 
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where ( ),,E ,
l tf l tf l e 

 xx  is a CECL loss estimate for the vector of macroeconomic variables ,l tx  

in loss model 1,.., ll N=  (our 14 VAR NCO models) and economic scenario generation model 

1,.. ee N=  (Fed, VAR, and MS-VAR), and ( ),, ,
l t

WC
l tf l e

θ xx  is the worst-case version at time 

1,..t T=  in the forecast period; thus, this represents an empirical forecast error metric where the 
expectation with respect to the null model is replaced by a sample average. In simple terms, the RMSE 
represents a relative worse-case deviation (or a degree of instability) from some modeling element, 
which, in this case, is the choice of a macroeconomic scenario model or a particular credit loss model. 

 
Figure 9. Kullback–Leibler relative entropy worst-case loss for model risk quantification plot—
unemployment rate and BBB corporate bond yield (FDIC SDI Report, Federal Reserve Board 4Q91–
4Q15 and Jacobs et al. (2018) models). 

 
Figure 10. Kullback–Leibler relative entropy worst-case loss for model risk quantification plot—
unemployment rate, CBOE equity volatility index, BBB corporate—five-year treasury bond spread, 
and total uncommitted loan growth (FDIC SDI Report, Federal Reserve Board 4Q91–4Q15 and Jacobs 
et al. (2018) models). 
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Table 5. Kullback–Leibler relative entropy worst-case loss for model risk quantification measures—
vector autoregressive CECL out-of-sample models compared (FDIC SDI Report, Federal Reserve 
Board 4Q91–4Q15, and Jacobs et al. (2018) models). 

Macroeconomic Idiosyncratic   Fed VAR 
MS-
VAR Min Avg Stdev Max 

UNEMP & BBBCY None 
Base 0.0338% 0.0448% 0.0781% 

23.82% 26.82% 3.6% 30.5% Worse 0.0617% 0.0519% 0.1146% 
RMRE 30.49% 26.14% 23.82% 

UNEMP & BBBCY CILA & CDLG 
Base 0.0696% 0.0344% 0.0920% 

25.61% 30.17% 5.6% 36.5% Worse 0.0956% 0.0713% 0.1237% 
RMRE 36.47% 28.43% 25.61% 

UNEMP & CREPI None 
Base 0.1567% 0.1648% 0.1913% 

19.87% 24.65% 4.2% 27.7% Worse 0.1642% 0.1777% 0.2300% 
RMRE 26.20% 27.88% 19.87% 

UNEMP & CREPI TAATA & CDLG 
Base 0.0868% 0.0895% 0.1366% 

25.15% 31.25% 5.3% 34.7% Worse 0.1296% 0.1364% 0.2115% 
RMRE 33.92% 34.69% 25.15% 

UNEMP & CORPSPR None 
Base 0.1817% 0.1845% 0.1979% 

15.36% 21.64% 5.6% 25.9% Worse 0.2059% 0.2063% 0.2289% 
RMRE 25.98% 23.57% 15.36% 

UNEMP & CORPSPR OREOTA 
Base 0.0661% 0.1008% 0.1177% 

21.58% 26.11% 3.9% 28.6% Worse 0.1085% 0.1305% 0.1329% 
RMRE 28.14% 28.62% 21.58% 

CREPI & VIx None 
Base 0.1129% 0.1166% 0.1021% 

17.22% 25.18% 6.9% 29.4% Worse 0.1711% 0.1700% 0.1614% 
RMRE 29.39% 28.93% 17.22% 

CREPI & VIx OREOTA & TAATA 
Base 0.1458% 0.1564% 0.1187% 

30.92% 39.35% 7.4% 44.6% Worse 0.1026% 0.1101% 0.0714% 
RMRE 42.60% 44.53% 30.92% 

VIX, UNEMP & CORPSPR None 
Base 0.1331% 0.1381% 0.1361% 

29.65% 36.78% 6.3% 41.7% Worse 0.1398% 0.1436% 0.1221% 
RMRE 39.00% 41.69% 29.65% 

VIX, UNEMP & CORPSPR TUCLG 
Base 0.1658% 0.1718% 0.1741% 

36.39% 43.61% 6.5% 49.0% Worse 0.2162% 0.2157% 0.2091% 
RMRE 48.98% 45.47% 36.39% 

BBBCY, UNEMP & CCREP None 
Base 0.0836% 0.0598% 0.1513% 

33.63% 39.64% 5.2% 42.7% Worse 0.1089% 0.0972% 0.2006% 
RMRE 42.70% 42.57% 33.63% 

BBBCY, UNEMP & CCREP CDLG 
Base 0.1796% 0.1545% 0.2326% 

41.44% 47.41% 5.4% 51.9% Worse 0.2527% 0.1990% 0.3305% 
RMRE 51.91% 48.89% 41.44% 

BBBCY, UNEMP & CORPSPR None 
Base 0.2520% 0.2128% 0.0444% 

26.26% 36.68% 9.0% 42.4% Worse 0.3330% 0.2400% 0.0723% 
RMRE 42.36% 41.42% 26.26% 

BBBCY, UNEMP & CORPSPR TAATA 
Base 0.1766% 0.1981% 0.1746% 

42.93% 46.81% 3.6% 50.0% Worse 0.3231% 0.3283% 0.3194% 
RMRE 47.49% 50.02% 42.93% 

Relative Model Risk Error Summary Statistics - Macroeconomic 
Scenario Generation Models 

Min 25.98% 23.57% 15.36% 

  

Avg 37.54% 36.63% 27.84% 
StdDev 8.75% 9.22% 8.48% 

Max 51.91% 50.02% 42.93% 

Relative Model Risk Error Summary Statistics - Total Macroeconomic 
Scenario Generation & Credit Loss Models 

Min 15.36% 
Avg 34.01% 

StdDev 9.68% 
Max 51.91% 

Table 5 shows that, across credit loss and macroeconomic scenario generation models, the 
average RMRE 34.01% (where we measure the bounds in terms of the net charge-off rate) is 
substantial and varies widely across both credit loss and macroeconomic scenario generation 
specifications from 15.4% to 51.9%. Considering scenario generation frameworks, we observe that the 
MS-VAR model has a consistently lower RMSE measure as compared to the Fed or VAR models, 
averaging 27.8% in the former as compared to 27.5% and 36.6%, respectively, in the latter. Another 
pattern that we observe is that, in the majority of cases, credit loss models having either more 
macroeconomic variables or including idiosyncratic factors in addition to a set of macroeconomic 
factors have higher model risk measures. The two-variable credit loss models with no idiosyncratic 
variables have RMSEs ranging from 21.6% to 25.2.4%, while those having three macroeconomic 
factors have a range of 36.7% to 39.6%. On the other hand, among the versions of these models having 
idiosyncratic variables, the two-variable credit loss models have RMSEs ranging from 24.7% to 39.4%, 
while those having three macroeconomic factors have a range of 43.6% to 47.4%. 

There is a profound model risk management policy implication of this analysis that speaks to 
our second objective in measuring model risk, namely, identifying the sources of vulnerability in 
assumptions that give rise to model risk. There are two sources at play herein—the joint distribution 



Int. J. Financial Stud. 2020, 8, 27 29 of 34 

 

of the macroeconomic and idiosyncratic variables, as well as the assumptions on the error terms in 
the joint distribution of losses, and, with respect to the latter, whether they are Gaussian (i.e., Fed or 
VAR) or follow a heavy-tailed distribution (i.e., MS-VAR). We conclude from these results that the 
less parsimonious models give rise to a greater risk of model misspecification that manifests in the 
higher RMRE measures. On the other hand, while we may think that the additional parameter of the 
MS-VAR model would give rise to more model risk, the fact that this model is better capable of 
modeling the fat-tailed distribution of credit losses is realized in a lower MS-VAR measure, regardless 
of the credit loss model specification. This should be no surprise, as we saw that the Fed and VAR 
models had rather more egregious underprediction than the MS-VAR model, which is at odds with 
the historical distribution of losses. On the other hand, while the credit models with more variables 
fit only slightly better on an in-sample basis, most exhibited relatively poor performance out of 
sample. The conclusion is that practitioners may wish to err on the side of more parsimonious models 
that can also accommodate non-normality. 

7. Conclusions and Future Directions 

In this study, we presented a holistic model validation framework for CECL model development 
and model implementation execution, and we also illustrated elements of CECL model development 
validation, including the quantification of model risk. In our example of the latter validation of CECL 
model development, we analyzed the impact of model specification and scenario dynamics upon 
expected credit loss estimates in CECL, through implementing a highly stylized framework 
borrowed from the ST modeling practice. We performed a model selection of alternative CECL 
specifications in a top-down framework, using FDIC FR-Y9C data and constructing an aggregate or 
average hypothetical bank, with the target variable being NCORs and the explanatory variables 
constituted by Fed providing macroeconomic variables, as well as bank-specific controls, for 
idiosyncratic risk. We studied not only the impact of the ALLL estimate under CECL for alternative 
model specifications, but also the impact of different frameworks for scenario generation: the Fed 
baseline assumption, a Gaussian VAR model, and a mixture-of-distributions MS-VAR model, 
following the study of Jacobs et al. (2018). 

Our empirical results suggest that modeling techniques and model data such as those considered 
herein are likely to produce a bias of underestimation, and, coupled with an assumption that we are 
at the end of a favorable phase of a credit cycle, this could be taken as evidence that the CECL 
standard is at risk of not achieving the stated objective of reducing the procyclicality of provisions 
relative to the legacy incurred loss standard. This is the case as, across models, we observe chronic 
underprediction of losses in the last two-year out-of-sample period, which arguably is a period that 
is late in the economic cycle. Furthermore, we illustrated that the amount of such bias exhibits 
significant variation across model specifications and scenario generation frameworks. Note that we 
did not estimate a direct measure of procyclicality in this exercise, which could lead to a more 
definitive conclusion, which would be a fruitful avenue of future research. In general, we found that 
the MS-VAR scenario generation framework produces the best performance in terms of fit and lack 
of underprediction relative to the perfect foresight benchmark, which is in line with the common 
industry practice of giving weight to adverse but probable scenarios, which the MS-VAR regime 
switching model can produce naturally and coherently as part of the estimation methodology that 
places greater weight on the economic downturn. We also found that, for any scenario generation 
model, across specifications, the more lightly parameterized models tend to have better out-of-
sample performance16. Furthermore, relative to the perfect foresight benchmark, the MS-VAR model 
was found to produce a lower level of variation in the model performance statistics across loss 
predictive model specifications. 

 
16 We note that this observation is consistent with findings in the literature that employ ensemble techniques, 

such as Bayesian averaging or random forest models, where collections of more parsimonious models 
properly weighted are likely to out-perform more highly parameterized models on an out-of-sample basis. 
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As a second and related exercise, we quantified the level of model risk in this hypothetical CECL 
exercise, using the principle of relative entropy. We found that more elaborate modeling choices, such 
as more highly parameterized models in terms of more macroeconomic or idiosyncratic covariates, 
tend to introduce more measured model risk. However, the more highly parameterized 
macroeconomic scenario generation framework that can accommodate heavy tails in the credit loss 
distribution (the MS-VAR model, which has separate parameters for normal and stressed conditions) 
tends to introduce less measured model risk than Gaussian approaches (Fed or VAR models). The 
implication is that, while banks may wish to err on the side of more parsimonious approaches in 
order to manage the increase model risk that the introduction of the CECL standard gives rise to, 
they are advised to balance this against the need to model the non-normality in the credit loss 
distribution. 

The policy implication of this analysis is that the volume of lending and the amount of regulatory 
capital held may vary greatly across banks, even when it is the case that the respective loan portfolios 
have very similar risk profiles. Another consequence of this divergence of expected loan loss 
estimates under the CECL standard is that supervisors and other market participant stakeholders 
may face challenges in comparing banks at a point in time or over time. There are also implications 
for the influence of modeling choices in specification and scenario projections on the degree of model 
risk introduced by the CECL standard. 

There are several directions in which this line of research could be extended, as outlined below. 

• More granular classes of credit risk models, such as ratings migration or PD/LGD 
scorecard/regression; 

• Alternative datasets, for example, bank or loan level data; 
• More general classes of regression model, such as logistic, semi-parametric, or machine 

learning/artificial intelligence techniques (Jacobs 2018); 
• Applications related to stress testing, such as regulatory or economic capital. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Details of VAR Model Specification, Estimation, and Markov Switching Extension 

In this study, we consider a vector autoregressive model with exogenous variables (VARX), denoted 
by ( ),VARX p s , which restricts the moving average (MA) terms beyond lag zero to be zero, or 

* 0j k k j×= >Θ 0 . 

1 1

p s

t j t j j t j t
j j

− −
= =

− = + Y Φ Y Θ X Ε .  (A1) 

The rationale for this restriction is three-fold. Firstly, in MA terms, there were no cases significant 
in the model estimations, such that the data simply do not support a VARMX representation. 
Secondly, the VARX model avails us of the very convenient dse package in R, which has 
computational and analytical advantages (R Development Core Team 2019). Finally, the VARX 
framework is more practical and intuitive than the more elaborate VARMAX model, and it allows 
for superior communication of results to practitioners. 

We now describe how the parameter matrices of the ( ),VARX p s  models are estimated. We 

may obtain consistent and efficient estimates using the method of conditional maximum likelihood 
estimation (CMLE, which, in the case of the ( ), ,VARMAX p q s  model, recursively optimizes the 

following conditional log-likelihood function: 
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as well as the use of any necessary observed initial values of { }1 1,..., , ,...,p s− − − −Y Y X X . CMLE 

estimates of the unknown parameter matrices { } { } { }{ }*
1 1 1
, ,

s qp

j j jj j j= = =
Φ Θ Θ , given by 
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may be obtained by iterative numerical methods such as Newton–Raphson for the VARMAX model. 
In the special case of the ( ),VARX p s  model (A2), and where there are no constraints on the 

parameter matrices { } { }{ }*
1 1
,

sp

j jj j= =
Φ Θ , we obtain a significant simplification of the estimation 

algorithm as the CMLE estimates are now given by linear multivariate least squares regression 
methods. In particular, we can express the ( ),VARX p s  model (A4) as follows: 

,T
t t t= +Y B Z Ε  (A5) 

where ( )* *
1 1,..., , ,...,p s=B Φ Φ Θ Θ  and ( )1 1,..., , ,...,T T T T

t t t p t t s− − − −=Z Y Y X X . It follows that the 

CMLE estimator of B  is given by 
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where ( )1,...,
T

p T+=Z Z Z  and ( )1,...,
T

p T+=Y Y Y . Under standard stationarity conditions, the 

asymptotic distribution of ˆ CMLEB is given by 

( ) ( )( )1ˆ ˆ ˆvec ~ , .CMLE CMLE TN
−

= ⊗β B β Σ Z Z   (A7) 

We now consider the MS-VARX generalization of the VARX methodology with changes in 

regime, where the parameters of the VARX system ( ),
TT T p sR +∈Β Φ Θ�  will be time-varying. 

However, the process might be time-invariant conditional on an unobservable regime variable 

( )1,...,ts M∈ , denoting the state at time t  out of M  feasible states. In that case, the conditional 

probability density of the observed time series tY  is given by 
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where mΒ  is the VAR parameter matrix in regime ( )1,...,m M∈  and 1t−Ψ  are the observations 

{ } 1t j j

∞

− =
y . Therefore, given a regime ts , the conditional ( ), tVARX p s s  system in expectation 

form can be written as 
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We define the innovation term as 

,t t t t tE s= −   Ε Y Y Ψ .  (A10) 

The innovation process tε  is a Gaussian, zero-mean white-noise process having variance–

covariance matrix ( )tsΣ . 

( )( )~ ,t tNID sΕ 0 Σ .  (A11) 

If the ( ), tVARX p s s  process is defined conditionally upon an unobservable regime ts  as in 

Equation (A9), the description of the process generating mechanism should be made complete by specifying 
the stochastic assumption of the MS-VAR model. In this construct, ts  follows a discrete-state 
homogeneous Markov chain.

 

{ } { }( ) { }( )1 1 1
Pr , Prt t j t j t jj j j
s s s

∞ ∞ ∞

− − −= = =
=y ρ ,  (A12) 

where ρ  denotes the parameter vector of the regime generating process. We estimate the MS-VAR 
model using the MSBVAR package in R (R Development Core Team 2019). Finally, note that, in this 
document, outside the description of Section 4 and this Appendix, we use the acronyms VAR and 
MS-VAR instead of VARX and MS-VARX to refer to our competing modeling methodologies. 
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