
Citation: Salam, A.; Ullah, F.; Amin,

F.; Abrar, M. Deep Learning

Techniques for Web-Based Attack

Detection in Industry 5.0: A Novel

Approach. Technologies 2023, 11, 107.

https://doi.org/10.3390/

technologies11040107

Academic Editors: Mohammed

Mahmoud and Lipo Wang

Received: 21 May 2023

Revised: 25 June 2023

Accepted: 7 August 2023

Published: 8 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Deep Learning Techniques for Web-Based Attack Detection in
Industry 5.0: A Novel Approach
Abdu Salam 1 , Faizan Ullah 2, Farhan Amin 3,* and Mohammad Abrar 4

1 Department of Computer Science, Abdul Wali Khan University, Mardan 23200, Pakistan;
abdusalam@awkum.edu.pk

2 Department of Computer Science, Bacha Khan University, Charsadda 24420, Pakistan;
faizanullah@bkuc.edu.pk

3 Department of Information and Communication Engineering, Yeungnam University,
Gyeongsan 38541, Republic of Korea

4 Faculty of Computer Studies, Arab Open University, P.O. Box 1596, Muscat 130, Oman; abrar.m@aou.edu.om
* Correspondence: farhanamin10@hotmail or farhan@ynu.ac.kr

Abstract: As the manufacturing industry advances towards Industry 5.0, which heavily integrates
advanced technologies such as cyber-physical systems, artificial intelligence, and the Internet of
Things (IoT), the potential for web-based attacks increases. Cybersecurity concerns remain a crucial
challenge for Industry 5.0 environments, where cyber-attacks can cause devastating consequences,
including production downtime, data breaches, and even physical harm. To address this challenge,
this research proposes an innovative deep-learning methodology for detecting web-based attacks
in Industry 5.0. Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
transformer models are examples of deep learning techniques that are investigated in this study
for their potential to effectively classify attacks and identify anomalous behavior. The proposed
transformer-based system outperforms traditional machine learning methods and existing deep
learning approaches in terms of accuracy, precision, and recall, demonstrating the effectiveness of
deep learning for intrusion detection in Industry 5.0. The study’s findings showcased the superiority
of the proposed transformer-based system, outperforming previous approaches in accuracy, precision,
and recall. This highlights the significant contribution of deep learning in addressing cybersecurity
challenges in Industry 5.0 environments. This study contributes to advancing cybersecurity in
Industry 5.0, ensuring the protection of critical infrastructure and sensitive data.

Keywords: cyber-physical systems; CNN; Industry 5.0; transformer models; web-based attacks

1. Introduction

Industry 5.0, the most recent industrial revolution, emphasizes the fusion of cyber-
physical systems, AI, and IoT to create an interconnected, intelligent, and adaptive pro-
duction environment [1]. This paradigm shift has revolutionized manufacturing processes,
enabling increased efficiency, productivity, and customization [2]. It also facilitates the
optimization of resources, i.e., energy efficiency, and reduced waste [3]. As a result, Indus-
try 5.0 is transforming various sectors, including automotive, healthcare, agriculture, and
logistics [4,5].

However, the growing interconnectedness and complexity of Industry 5.0 systems
have also introduced new cybersecurity challenges, making these systems more suscep-
tible to web-based attacks. Industry 5.0’s integration of IoT devices, big data, and cloud
computing expands the attack surface, revealing weaknesses that cybercriminals might
take advantage of [6]. Moreover, the convergence of operational technology (OT) and
information technology (IT) heightens the risk of cyber-physical incidents that can have
catastrophic consequences for safety, security, and trust [7].
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Web-based attacks such as distributed denial of service (DDoS), SQL injection, and
cross-site scripting pose serious risks to Industry 5.0 infrastructure and could result in the
loss of confidential data, operations being disrupted, and monetary losses [8]. These attacks
can also undermine public trust in emerging technologies, hampering their widespread
adoption and stifling innovation [9]. To protect the assets and ensure the resilience of
Industry 5.0 systems, it is essential to develop effective and trustworthy attack detection
methods.

To address the issue of web-based attack detection, traditional machine learning
methods have been used [10]. These techniques, including decision trees, support vector
machines, and clustering algorithms, have shown promising results in detecting known
attack patterns [11]. However, these approaches often struggle to cope with the evolving
complexity and sophistication of cyber threats [12]. They are also limited in handling large-
scale, high-dimensional, and imbalanced datasets, which are common in cybersecurity
applications [13].

Deep learning techniques, which have shown remarkable success in a variety of
domains such as image recognition, natural language processing, and speech recognition,
offer promising alternatives for improving cybersecurity in Industry 5.0 [14]. CNNs, RNNs,
and transformer models are among the techniques that can automatically learn complex
patterns and representations from raw data [15]. This capability enables deep-learning
models to detect novel and sophisticated attacks that may elude traditional machine-
learning methods [16].

Furthermore, deep learning techniques can be adapted to handle the challenges associ-
ated with cybersecurity datasets, such as imbalance, noise, and non-stationarity [17]. They
can also be combined with other artificial intelligence techniques such as reinforcement
learning and adversarial learning to create more robust and adaptive attack detection
systems [18]. Deep learning techniques have the potential to significantly improve the
detection and prevention of web-based attacks in Industry 5.0 by leveraging these advanced
capabilities, ultimately contributing to the safety, security, and sustainability of the rapidly
evolving digital landscape [3].

Furthermore, in Industry 5.0, where human-machine collaboration plays a crucial role,
it is essential to consider the human element in cybersecurity. Effective attack detection
should not only rely on automated systems but also involve human expertise and decision-
making. Humans can provide context, intuition, and domain knowledge that can enhance
the accuracy and efficiency of attack detection mechanisms [19].

Incorporating the human element in the context of cyber-attack prevention in Industry
5.0 involves recognizing the value of human expertise, contextual understanding, adaptabil-
ity, creativity, human-machine collaboration, and user awareness and education. Human
expertise is essential for analyzing complex attack patterns and developing effective de-
fense strategies. The contextual understanding provided by humans considers the social,
cultural, and ethical dimensions of cybersecurity, ensuring a balanced approach. Humans’
adaptability and creativity enable them to address emerging threats and find innovative
solutions. Collaborating with machines allows for efficient data processing and automa-
tion, while human oversight ensures accurate interpretation and decision-making. User
awareness and education programs empower individuals to contribute to cybersecurity by
adopting safe practices and reducing the risk of human-related vulnerabilities [20].

Overall, integrating the human element in Industry 5.0’s cyber-attack prevention
acknowledges the unique capabilities of humans and their ability to complement tech-
nological systems. By leveraging human expertise, understanding the broader context,
promoting collaboration, and enhancing user awareness, organizations can establish a
comprehensive and resilient cybersecurity framework that effectively safeguards against
cyber threats in the evolving digital landscape [21].

In the context of cyber-attack prevention in Industry 5.0, several methodologies,
experiments, and datasets have been developed to incorporate human elements. These
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efforts aim to leverage human expertise, behavior, and interactions to enhance cybersecurity
measures such as user behavior analytics and human centric cyber security datasets [22].

User behavior analytics: user behavior analytics (UBA) involves monitoring and
analyzing human behavior patterns to detect anomalous activities that may indicate a
cyber-attack. By studying user interactions with digital systems and networks, UBA
algorithms can identify deviations from normal behavior and trigger alerts. Research has
demonstrated the potential of UBA in detecting insider threats, credential theft, and other
malicious activities. However, challenges remain in accurately distinguishing between
normal and abnormal behaviors, as well as addressing privacy concerns associated with
extensive user monitoring [23].

Human-centric cybersecurity datasets: to develop and evaluate cybersecurity solu-
tions with human elements, researchers have created datasets that incorporate real-world
human behavior and interactions. These datasets capture various aspects, including user
authentication logs, network traffic, and user responses to simulated attacks. They pro-
vide valuable resources for studying human behavior in the context of cyberattacks and
developing data-driven defense strategies [24].

While these methodologies, experiments, and datasets incorporating human elements
in cyber-attack prevention in Industry 5.0 have shown promising results, there are still gaps
and limitations to consider [25].

Despite the promise of deep learning techniques for cybersecurity, their application in
the context of Industry 5.0 remains relatively unexplored. Existing research has primarily
concentrated on the application of individual deep learning techniques, such as CNNs
and RNNs, to specific attack scenarios [26]. However, in Industry 5.0, a comprehensive
understanding of the performance of various deep learning techniques and their suitability
for various types of web-based attacks is still lacking. This knowledge gap hinders the
development of effective and efficient deep learning-based solutions for detecting and
mitigating cyber threats in Industry 5.0 environments [27].

In light of these challenges, there is a pressing need for novel research that investigates
deep learning techniques’ applicability in web-based attack detection in Industry 5.0, com-
paring the performance of different techniques and identifying the most suitable approaches
for various attack scenarios. By addressing this research gap, the present study aims to
contribute to the advancement of cybersecurity in Industry 5.0, ensuring the protection of
critical infrastructure, sensitive data, and overall trust in emerging technologies [8].

The motivation for this research stems from the increasing complexity and intercon-
nectedness of Industry 5.0 systems, which have heightened their vulnerability to web-based
attacks. Traditional machine learning methods have shown limitations in addressing these
threats, necessitating the exploration of more advanced techniques, such as deep learning.
The primary goal of this research is to gain a better understanding of the capabilities of
deep learning techniques for detecting web-based attacks in Industry 5.0, as well as to
contribute to the development of more secure, resilient, and trustworthy industrial systems.

Despite the potential of deep learning techniques for detecting web-based attacks,
there is limited research on their application to Industry 5.0 environments. Furthermore,
previous research has primarily concentrated on individual deep learning techniques, i.e.,
CNNs or RNNs, without considering the full range of possibilities or their performance in
comparison with one another [26].

This research paper’s primary objective is to propose a novel deep learning-based
approach for web-based attack detection in Industry 5.0 by comparing the performance of
CNNs, RNNs, and transformer models. This study aims to:

• Investigate the use of deep learning approaches in identifying web-based attacks in
Industry 5.0 scenarios.

• Evaluate the performance of several deep learning algorithms in terms of accuracy,
precision, and recall.

• In Industry 5.0, determine which deep learning technique is best for detecting web-
based attacks.
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The primary research problem addressed in this study is determining the optimal
deep learning technique for detecting web-based assaults in Industry 5.0. Specifically, the
study aims to compare the performance of CNNs, RNNs, and transformer models and
evaluate their accuracy, precision, and recall. By addressing this research problem, valuable
insights will be gained for enhancing cybersecurity in Industry 5.0 systems. The rest of the
paper is organized into four sections. Section 2 provides a literature review on Industry
5.0, web-based attacks, and deep learning techniques for attack detection, highlighting
the gaps in the existing literature. Section 3 outlines the methodology, including dataset
description, feature selection, deep learning models, and evaluation metrics. Section 4
presents the experimental results, discussing model comparison, performance evaluation,
and the implications of the results. Finally, Section 5 concludes the paper, summarizing the
findings, implications, and future research directions.

2. Related Work

Industry 5.0 is a prospective manufacturing strategy that intends to incorporate cutting-
edge technology, e.g., the Internet of Things (IoT), artificial intelligence (AI), and robotics
into the production process in recent years. However, this advanced technology also poses
a significant risk in terms of cybersecurity. In this section, we explore the challenges of
Industry 5.0 and its potential vulnerabilities to cyber-attacks.

2.1. Industry 5.0 and Cybersecurity Challenges

Industry 5.0, the latest phase of the industrial revolution, aims to integrate cyber-
physical systems, IoT, and AI to create an interconnected, intelligent, and adaptive pro-
duction environment [3]. This paradigm shift offers numerous benefits, such as increased
efficiency, productivity, and customization, as well as reduced waste and optimized re-
source utilization [28]. Industry 5.0 applications have been implemented across various
sectors, including automotive, healthcare, agriculture, and logistics [29].

However, the increasing interconnectedness and complexity of Industry 5.0 systems
introduce new cybersecurity challenges [6]. The integration of IoT devices, big data, and
cloud computing increases the attack surface, making these systems more vulnerable
to cyber threats [30]. Additionally, the convergence of IT and OT increases the risk of
cyber-physical incidents with potentially catastrophic consequences for safety, security, and
trust.

Leng et al. [27] provide a comprehensive review of the cybersecurity challenges in
smart manufacturing, focusing on the Industry 5.0 perspective. The authors identify several
key security issues, such as data integrity, privacy, and access control, and discuss potential
countermeasures. They emphasize the need for robust and adaptive security solutions
to protect Industry 5.0 systems from various threats, including web-based attacks [31].
The summary of the literature on Industry 5.0 and cybersecurity challenges is shown in
Table 1. For instance, in the automotive industry, Industry 5.0 technologies have improved
production line efficiency and enabled real-time vehicle monitoring. In healthcare, smart
hospitals with advanced robotics and AI systems enable remote patient monitoring and
personalized treatments. Agriculture benefits from precision farming techniques, while
logistics utilizes smart warehouses and predictive analytics. These examples illustrate how
Industry 5.0 is transforming industries and showcase its potential impact.

Table 1. Summary of the literature on Industry 5.0 and cybersecurity challenges.

Reference Study Focus Key Findings

Nahavandi et al. [3] Overview of Industry 5.0 Definition, characteristics, and potential
applications of Industry 5.0

Østergaardet al. [32] Benefits of Industry 5.0 Increased efficiency, productivity, and
customization in manufacturing processes
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Table 1. Cont.

Reference Study Focus Key Findings

Huang et al. [6] Security challenges in
Industry 5.0

Identification of key security issues and
potential countermeasures for smart
manufacturing

Roman et al. [30] Features and challenges of
IoT Security

Discussion of the increased attack surface
and vulnerability of Industry 5.0 systems
due to IoT integration

2.2. Web-Based Attacks and Their Impact on Industry 5.0

Web-based attacks pose significant threats to Industry 5.0 infrastructure, potentially
leading to the loss of sensitive information, disrupted operations, and financial damages [8].
DDoS attacks, SQL injection, and cross-site scripting are some examples of typical web-
based attacks.

GÜVEN et al. [26] provide an in-depth analysis of DDoS attacks in the context of IoT,
discussing the implications of the Mirai botnet and other IoT-based botnets. The authors
highlight the need for robust defense mechanisms to protect IoT devices, which are often
integral components of Industry 5.0 systems, from being compromised and used in DDoS
attacks.

Liu et al. [10] presented a survey of machine learning algorithms for detecting soft-
ware vulnerabilities and web attacks, such as SQL injection and cross-site scripting, was
undertaken. They discovered various machine learning methods, including decision trees,
support vector machines, and clustering algorithms, that have demonstrated potential in
detecting known attack patterns. However, they also noted the limitations of these tech-
niques in dealing with the evolving complexity and sophistication of web-based threats.
The summary of the literature on web-based attacks and their impact on Industry 5.0 is
shown in Table 2.

Table 2. Summary of the literature on web-based attacks and their impact on Industry 5.0.

Reference Study Focus Key Findings

GÜVEN et al. [26] DDoS attacks in IoT

In-depth analysis of IoT-based
botnets and the need for
robust defense mechanisms
against DDoS attacks

Dogman et al. [8] Security in AI-enabled IoT
systems

Discussion of the potential
consequences of web-based
attacks on Industry
5.0 infrastructure

Liu et al. [10] Machine learning for web
attack detection

Survey of machine learning
techniques applied to
software vulnerability
detection and web attacks

2.3. Deep Learning Techniques for Attack Detection

CNNs, RNNs and transformer models have demonstrated exceptional performance in
a variety of applications, including image recognition, natural language processing, and
speech recognition [33]. These techniques can learn complex patterns and representations
from raw data, enabling them to detect novel and sophisticated attacks that may elude
traditional machine-learning methods [16].

Yin et al. [14] produced a thorough examination of deep learning algorithms for
cybersecurity, outlining how they can be used to find vulnerabilities and identify intrusions.
They identified several deep learning architectures and techniques that have demonstrated
promising results in detecting cyber threats, such as CNNs for network traffic analysis
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and RNNs for sequential data analysis. The authors also highlighted the potential of deep
reinforcement learning and adversarial learning for developing more robust and adaptive
attack detection systems [18].

Salih et al. [34] explored the use of deep learning techniques for handling the challenges
associated with cybersecurity datasets, such as imbalance, noise, and non-stationarity. They
proposed a deep learning-based approach to tackle class imbalance in network intrusion
detection and demonstrated its effectiveness in detecting both known and unknown attacks.

Vinayakumar et al. [35] investigated the application of deep learning techniques for
detecting web-based attacks, specifically focusing on SQL injection and cross-site scripting
attacks. They compared the performance of several deep learning architectures, including
CNNs, RNNs, and LSTM networks, and found that hybrid models combining multiple
architectures yielded the best performance. The summary of the literature on deep learning
techniques for attack detection is shown in Table 3.

Table 3. Summary of the literature on deep learning techniques for attack detection.

Reference Study Focus Key Findings

Yin et al. [14]
A comprehensive survey
on deep learning for
cybersecurity

Review of deep learning techniques and
their applications in intrusion detection,
malware analysis, and vulnerability
discovery

LeCun et al. [33] Deep learning overview
Discussion of the success and potential of
deep learning techniques in various
domains

Vaswani et al. [16] Attention Mechanisms in
deep learning

Introduction of the transformer model and
its potential for enhancing cybersecurity

Salih et al. [34]
Data preprocessing in
deep learning for
cybersecurity

Exploration of deep learning techniques for
handling challenges associated with
cybersecurity datasets

Vinayakumar et al.
[35]

Deep learning for
detecting web-based
attacks

Comparison of deep learning architectures
for detecting SQL injection and cross-site
scripting attacks

2.4. Research Gaps and Benefits of Quantum Models

While deep learning techniques have shown promise in addressing web-based attacks,
their application in the context of Industry 5.0 remains relatively unexplored. Existing
research has primarily focused on individual deep-learning techniques, such as CNNs or
RNNs, for specific attack scenarios [26]. However, a comprehensive understanding of the
performance of various deep learning techniques and their suitability for different types of
web-based attacks in Industry 5.0 is still lacking.

Quantum machine learning has emerged as a promising direction that offers potential
benefits over classical machine learning methods. It has demonstrated quantum advantages
in various tasks and domains. While our paper focuses on classical deep learning models
for web-based attack detection, it is important to consider the potential implications of
quantum models in this context, especially in the era of Industry 5.0. Quantum models have
shown remarkable performance in tasks such as financial market risk analysis [36], quantum
neural computing [37], learning from experiments [38], and combinatorial optimization [39].
These recent works highlight the potential of quantum machine learning to outperform
classical approaches and offer improved performance and efficiency in solving complex
problems. By exploring and discussing these advancements in quantum machine learning,
we can gain insights into the potential benefits and future developments of incorporating
quantum models in web-based attack detection systems.

Furthermore, there is a need for more research on the integration of deep learning
techniques with other AI methods, such as reinforcement learning and adversarial learning,
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to develop more robust and adaptive attack detection systems [18]. Studies that investigate
the scalability and real-time applicability of deep learning techniques for web-based attack
detection in Industry 5.0 are also limited. Integrating deep learning with other AI methods,
such as reinforcement learning and adversarial learning, can lead to the creation of more
robust and adaptive attack detection systems. By closing these research gaps, not only can
the field of cybersecurity in Industry 5.0 be advanced, but it can also ensure the protection
of critical infrastructure, sensitive data, and foster overall trust in emerging technologies.

In conclusion, this literature review has identified several key challenges and gaps
in the existing research on deep learning techniques for web-based attack detection in
Industry 5.0. Addressing these gaps and challenges will contribute to the advancement of
cybersecurity in Industry 5.0, ensuring the protection of critical infrastructure, sensitive
data, and overall trust in emerging technologies. The summary of the research gaps in the
existing research is shown in Table 4.

Table 4. Summary of the research gaps in the existing research.

Reference Study Focus Key Findings

Popoola et al. [18] Deep learning for attack
detection in IoT networks

Discussion of the potential of deep
reinforcement learning and adversarial
learning for developing robust attack
detection systems

leng et al. [27] Security challenges in
Industry 5.0

Emphasis on the need for robust and
adaptive security solutions to protect
Industry 5.0 systems from web-based
attacks

3. Methodology

This section discusses the methodology used for developing and evaluating deep
learning models for intrusion detection. It covers the dataset description and preprocessing
steps, feature selection and extraction techniques, and the different types of deep learning
models, including CNNs, RNNs, and transformer models. It also presents the evaluation
metrics used to assess the models’ performance. An overview of the proposed methodology
is presented in Figure 1.

Figure 1. Proposed deep learning methodology for web-based attack detection.

3.1. Datasets and Pre-Processing

The dataset used in this research is a combination of the KDD Cup 1999 dataset [40]
and the more recent CICIDS2017 dataset [41], which provide a comprehensive collection
of various web-based attacks, including DDoS, SQL injection, and cross-site scripting
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attacks. Both datasets were created by recording TCP/IP traffic in a controlled network
environment, simulating a range of attacks. A detailed description is given in Table 5.

Table 5. Description of datasets.

Dataset No. of Instances Attack Types

KDD Cup 1999 5 million DoS, R2L, U2R, probe

CICIDS2017 2.8 million Brute force, web attack, infiltration, botnet,
DDoS

The KDD Cup 1999 dataset comprises approximately 5 million connection records,
where each connection is described by 41 features and labeled as either ‘normal’ or an
‘attack’, with the latter further categorized into four major types: denial of service (DoS),
remote to local (R2L), user to root (U2R), and probe.

The CICIDS2017 dataset is a widely used dataset in the field of cybersecurity, specif-
ically for intrusion detection system (IDS) evaluation and research. It consists of about
2.8 million instances, each described by 79 features. While the dataset primarily focuses
on network traffic and system events, it does incorporate human elements in several ways
such as real-world network traffic reflects the actual behavior and activities of users. Di-
versification in the attack scenarios represents the human element in terms of attackers’
motivations and strategies. In addition, the source and destination IP, ports and protocol
types in the CICIDS2017 provide insights into the interactions between individuals and
network systems, enabling researchers to analyze and model the human behavior aspects of
cyber-attacks. Furthermore, attack payloads can help understand the techniques employed
by attackers to exploit vulnerabilities and deceive users. This aspect further contributes to
the consideration of human involvement by examining the impact on individuals’ systems
and data.

For pre-processing, the data was first cleaned by removing duplicate entries and
handling missing values. Then, it was normalized to ensure that all features have the same
scale, reducing the likelihood of bias towards high-magnitude features. Normalization was
performed using the min-max scaling technique, which scales the range of features to [0, 1].

3.2. Feature Selection and Extraction

The high dimensionality of the datasets poses a challenge for any machine learning
model, as it can lead to overfitting and increased computational complexity. Therefore,
feature selection was performed to reduce the dimensionality and retain only the most
informative features. The feature selection process was based on the mutual information
criterion, a measure of the amount of information obtained about one random variable
through observing the other random variable. This allowed us to rank the features based on
their relevance to the output variable (i.e., attack type) and select the top-ranked features.

After feature selection, feature extraction was performed to further reduce the dimen-
sionality and improve the model’s ability to generalize. Principal component analysis
(PCA) was used for feature extraction, which transforms the original features into a new
set of features (principal components) that are uncorrelated and capture the maximum
variance in the data. The flow of the data preprocessing, feature selection, and extraction is
given in Figure 2.
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Figure 2. Feature selection and extraction process.

3.3. Deep Learning Models

In this research, we employ three types of deep learning models: CNNs, RNNs, and
transformer models. These models were selected due to their proven success in various
domains, including cybersecurity [14,16,18].

3.3.1. Convolutional Neural Networks (CNNs)

CNNs are primarily used in image processing tasks due to their ability to capture
local patterns and spatial hierarchies in the data [33]. However, their application in the
field of cybersecurity, specifically web-based attack detection, has recently been gaining
traction [14]. In this study, we leverage the ability of CNNs to learn patterns in the input
feature space and identify potential markers indicative of an attack as shown in Figure 3.

Figure 3. Model architectures and parameters of transformer models.

The architecture of our CNN model consists of several convolutional layers followed
by pooling layers, and finally fully connected layers. The convolutional layers learn local
patterns in the data, while the pooling layers reduce the spatial dimensions, and the fully
connected layers perform classification. The architecture of the CNN model is given in
Figure 4.
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Figure 4. Architecture of the CNN model [42].

3.3.2. Recurrent Neural Networks (RNNs)

RNNs are designed to process sequential data, making them suitable for tasks involv-
ing temporal dependencies [43]. In the context of web-based attack detection, the sequence
of network packets can provide valuable information about the nature of the traffic.

The architecture of our RNN model includes a layer of long short-term memory
(LSTM) cells, a variant of RNN that effectively handles long-term dependencies in the
data. This LSTM layer is followed by a fully connected layer that performs classification as
shown in Figure 5.

Figure 5. Architecture of the RNN model [44].

3.3.3. Transformer Models

Transformer models, based on the ‘attention’ mechanism, have revolutionized the
field of natural language processing [16]. They can focus on different parts of the input
sequence when producing an output, making them highly effective for tasks that require an
understanding of complex patterns in the data. The architecture of the transformer model
is shown in Figure 6.
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Figure 6. Architecture of the transformer model [45].

In this study, we adapted a transformer model for the task of web-based attack
detection. The model’s architecture includes an encoder that processes the input sequence
and a decoder that produces the output. The encoder consists of multiple self-attention
layers that enable the model to focus on different parts of the input sequence, enhancing its
ability to identify potential attacks.

Table 6 provides an overview of the model architectures and parameters used in the
transformer models. The architecture consists of four layers, with a hidden dimension
of 256. The model utilizes eight attention heads for capturing different aspects of the
input. The feed-forward dimension is set to 1024, allowing for non-linear transformations
within the model. The positional encoding length is set to 1000, providing the model
with information about the relative positions of tokens in the input sequence. These
parameters collectively define the structure and behavior of the transformer models used
in the research.

Table 6. Model architectures and parameters of transformer models.

Architecture Parameters

Number of layers 6

Hidden dimension 256

q1′ 8

Feed-forward dimension 1024

Input vocabulary size 10,000

Target vocabulary size 10,000

Positional encoding length 1000

3.4. Models Evaluation Metrics

In order to validate the experiments, there may be unseen threats to the validity of
experimentation encompass various aspects that may introduce biases or limitations to
the study’s findings. In the context of the presented research on deep learning models
for intrusion detection in Industry 5.0, we can identify several threats such as confound-
ing variables and model overfitting (internal validity); generalizability and sample bias
(external validity); and feature selection and measurement bias (construct validity).
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In this research we carefully selected the two datasets namely KDD 1999 and CI-
CIDS2017 which is a diversified dataset that reduces the sample bias, model overfitting,
and generalization. CICIDS2017 is commonly used dataset as a use case of Industry
5.0 [46–49]. In addition, the PCA, transform features, rank features and relevance to output
feature selection and extraction techniques are used to further reduce the chances of bias
and limitation. Table 7 represents the size of features.

Table 7. Dataset size after feature extraction, selection, and pre-processing.

Dataset Size after Feature
Extraction

Size after Feature
Selection

Size after
Pre-Processing

KDD Cup 1999 90,000 80,000 75,000

CICIDS2017 180,000 160,000 150,000

Finally, to avoid the measurement bias, multiple evaluation criteria are used, i.e.,
accuracy, precision, recall, and F measures. By acknowledging these threats and taking
appropriate measures, this research enhances the validity of the experimentation and
improves the reliability and generalizability of the findings in the context of Industry 5.0.

3.4.1. Accuracy

It is the most intuitive performance measure. Accuracy is the ratio of correctly pre-
dicted instances (both positive and negative) to the total number of instances. Accuracy is
calculated as follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

where TP is the number of true positives (attacks correctly identified as attacks), TN is
the number of true negatives (normal behavior correctly identified as normal), FP is the
number of false positives (normal behavior incorrectly identified as an attack), and FN is
the number of false negatives (attacks incorrectly identified as normal).

3.4.2. Precision

Precision is also known as the positive predictive value; precision is the ratio of
correctly predicted positive instances to the total predicted positive instances. It is calculated
as follows:

Precision =
(TP)

(TP + FP)
(2)

Precision measures the ability of a classifier not to label a negative sample as positive.

3.4.3. Recall

Recall is also known as sensitivity, hit rate, or true positive (TP); recall is the ratio of
correctly predicted positive instances to the total actual positive instances. It is calculated
as follows:

Recall =
(TP)

(TP + FN)
(3)

Recall measures the ability of a classifier to find all the positive samples.

3.4.4. F1 Score

F1 score is the weighted average of precision and recall. Therefore, this score takes
both false positives and false negatives into account. It is usually more useful than accuracy,
especially if you have an uneven class distribution. The F1 score is calculated as follows:

F1 Score =
2× (Precision× Recall)
(Precision + Racall)

(4)
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The models’ performances are evaluated using these metrics, and the results are
presented in the next chapter. The use of these four metrics provides a comprehensive
assessment of the models’ capabilities and allows for a fair comparison between them.

4. Results and Discussion

In this section, we present the results of our experiments with the three deep learning
models, i.e., CNNs, RNNs, and transformer models. These results are based on the perfor-
mance of each model in detecting web-based attacks on the test set, following the training
and validation stages. We evaluate each model based on the four metrics discussed in the
previous chapter: accuracy, precision, recall, and F1 score as shown in Figure 7.

Figure 7. Model architecture and parameters of CNN.

4.1. Models Performance Evaluation

The performance of each model according to the four metrics is shown in Table 8. The
values are averages over multiple runs of the experiments, with different initializations of
the models.

Table 8. Performance of deep learning models.

Model Accuracy Precision Recall F1 Score

CNNs 0.94 0.92 0.91 0.92

RNNs 0.95 0.93 0.92 0.93

Transformer model 0.96 0.94 0.94 0.94

All three models achieved high performance with accuracy above 0.94 and F1 scores
above 0.92. This suggests that deep learning techniques can be highly effective for the
task of web-based attack detection in Industry 5.0. Figure 8 shows the confusion matrix of
predicted data.
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Figure 8. Confusion matrix of predicted data.

However, there are some differences between the models. The transformer model
achieved the highest performance across all four metrics, with accuracy and an F1 score
of 0.96 and 0.94, respectively. This suggests that the self-attention mechanism of the
transformer model, which allows it to focus on different parts of the input sequence when
producing output, is particularly beneficial for this task.

The RNNs also performed well, with slightly lower performance than the transformer
model. This is likely due to their ability to process sequential data, which is crucial for
detecting patterns in the sequence of network packets.

The CNNs, while still achieving high performance, had slightly lower scores than the
other two models. This suggests that while their ability to capture local patterns in the data
is beneficial, it might not be as crucial for this task as the ability to process sequential data
or focus on different parts of the input sequence.

In addition to the overall performance, we also evaluated the models’ ability to detect
different types of attacks. Table 9 presents the F1 scores of each model for three common
types of web-based attacks: distributed denial of service (DDoS), SQL injection, and cross-
site scripting.

Table 9. F1 scores for different types of attacks.

Model DDoS SQL Injection Cross-Site Scripting

CNNs 0.91 0.90 0.92

RNNs 0.92 0.91 0.93

Transformer Models 0.94 0.94 0.95

The results show that all three models are effective at detecting different types of
attacks, with the transformer model once again achieving the highest scores. This suggests
that the transformer model’s self-attention mechanism is not only beneficial for the overall
task of web-based attack detection but also for detecting specific types of attacks.

4.2. Comparison with State-of-the-Art Techniques

In addition to the evaluation of the proposed deep learning techniques, it is crucial to
place these results in the context of existing state-of-the-art techniques. This comparison
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provides a benchmark for understanding the extent of improvement achieved by the
proposed models.

Traditional methods for web-based attack detection include signature-based detection,
anomaly-based detection, and machine learning methods such as decision trees, support
vector machines, and ensemble methods. More recent methods have started to incorporate
deep learning techniques, but often focus on specific types of deep learning models, such
as CNNs or RNNs, and do not consider transformer models. Table 10 compares the
performance of our proposed models with several state-of-the-art techniques, based on
their F1 scores reported in recent literature.

Table 10. Comparison with state-of-the-art techniques.

Reference Technique F1 Score

Visoottiviseth et al. [50] Signature-based detection 0.85

Krishnamurthy et al. [51] Anomaly-based detection 0.86

Wei et al. [52] Decision trees 0.88

(Vijayanand et al. [53] Support vector machines 0.89

(Chakir et al. [48] Ensemble methods 0.90

Proposed methods

CNNs 0.92

RNNs 0.93

Transformer models 0.94

As can be seen from Table 9, our proposed models outperform the state-of-the-art
techniques. The transformer model, in particular, achieves an F1 score that is 0.04 points
higher than the best-performing state-of-the-art technique (ensemble methods). This
demonstrates the potential of deep learning, and transformer models in particular, for
improving web-based attack detection in Industry 5.0.

The results of our experiments demonstrate the potential of deep learning techniques
for web-based attack detection in Industry 5.0. All three models achieved high performance,
suggesting that these techniques can effectively learn the patterns associated with web-
based attacks and distinguish them from normal behavior.

Among the three models, the transformer model achieved the highest performance.
This suggests that its self-attention mechanism, which allows it to focus on different parts
of the input sequence when producing output, is particularly effective for this task. This
finding aligns with recent research in other domains, which has shown the superiority of
the transformer model in tasks involving sequential data.

While the RNNs and CNNs did not perform as well as the transformer model, their
performance was still high, suggesting that they can also be effective tools for this task.
The slight superiority of the RNNs over the CNNs might be due to their ability to process
sequential data, which is crucial for detecting patterns in the sequence of network packets.

However, it is important to note that these results might not generalize to all types
of web-based attacks or all types of Industry 5.0 systems. Further research is needed to
explore the effectiveness of these techniques in different settings and against different types
of attacks. Moreover, while the performance of these models is high, there is still room for
improvement. Future research could explore ways to further enhance their performance,
such as by integrating them with other techniques or by developing new, more advanced
deep learning models.

5. Conclusions

In this study, we investigated the application of deep learning techniques, specifically
CNNs, RNNs, and transformer models, for web-based attack detection in Industry 5.0.
Our findings suggest that these deep learning techniques can effectively detect web-based
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attacks, with an overall high performance across all models. Among the three models,
transformer models showed the highest performance, indicating their significant potential
for this task.

The findings of our study have important implications for improving the security of
Industry 5.0. Our results indicate that deep learning techniques can be highly effective
tools for detecting web-based attacks, which are one of the major threats to Industry 5.0.
Specifically, our results suggest that transformer models, which have not been extensively
used in this context, could be particularly effective. This could guide the development of
more advanced and reliable security systems for Industry 5.0, contributing to the resilience
and sustainability of these systems.

Despite its contributions, our study also has some limitations that point to directions
for future research. First, our study focused on three specific types of deep learning models
and three specific types of attacks. Future research could explore other types of models and
attacks to provide a more comprehensive understanding of the potential of deep learning
for web-based attack detection. Second, while our results indicate that our proposed models
outperform traditional techniques, they do not explore the potential of hybrid methods that
combine these techniques. Future research could investigate such hybrid methods, which
could potentially leverage the strengths of both traditional and deep learning techniques.
Finally, our study did not investigate the interpretability of the proposed models. Given the
importance of interpretability in many security applications, future research could explore
methods for improving the interpretability of deep learning models for web-based attack
detection.

Author Contributions: The contributions of the authors are as follows: conceptualization, A.S.;
methodology M.A. and F.U.; software, F.U. and F.A.; validation, F.A. and A.S.; draft preparation,
A.S., F.U. and F.A.; review and editing, M.A. and A.S.; visualization, F.U.; supervision, M.A.; funding
acquisition, F.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets analyzed during the current study are KDD Cup 1999 dataset [40]
and CICIDS2017 dataset [41].

Conflicts of Interest: The authors declare that we have no conflict of interest regarding the publication
of this article.

References
1. Coelho, P.; Bessa, C.; Landeck, J.; Silva, C. Industry 5.0: The Arising of a Concept. Procedia Comput. Sci. 2023, 217, 1137–1144.

[CrossRef]
2. Leng, J.; Sha, W.; Wang, B.; Zheng, P.; Zhuang, C.; Liu, Q.; Wuest, T.; Mourtzis, D.; Wang, L. Industry 5.0: Prospect and retrospect.

J. Manuf. Syst. 2022, 65, 279–295. [CrossRef]
3. Nahavandi, S. Industry 5.0—A human-centric solution. Sustainability 2019, 11, 4371. [CrossRef]
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