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Abstract: Mechanical jerk systems have applications in several areas, such as oscillators, microcon-
trollers, circuits, memristors, encryption, etc. This research manuscript reports a new 3-D chaotic
jerk system with two unstable balance points. It is shown that the proposed mechanical jerk system
exhibits multistability with coexisting chaotic attractors for the same set of system constants but for
different initial states. A bifurcation analysis of the proposed mechanical jerk system is presented to
highlight the special properties of the system with respect to the variation of system constants. A
field-programmable gate array (FPGA) implementation of the proposed mechanical jerk system is
given by synthesizing the discrete equations that are obtained by applying one-step numerical meth-
ods. The hardware resources are reduced by performing pipeline operations, and, finally, the paper
concludes that the experimental results of the proposed mechanical jerk system using FPGA-based
design show good agreement with the MATLAB simulations of the same system.

Keywords: chaotic oscillator; chaos; jerk system; bifurcation analysis; FPGA

1. Introduction

Mechanical dynamical systems have several applications in chaos theory [1–4]. For
instance, Reis and Savi [1] studied quasi-periodic and spatiotemporal chaotic responses in
a conservative Duffing-type mechanical system with cubic nonlinearity. Using Lyapunov
stability theory and power spectrum analysis, Cai et al. [2] studied the periodic motion
and chaos in the dynamics of a van der Pol (VDP) oscillator. Madiot et al. [3] demon-
strated dissipative chaotic motion in an electromechanical resonator. Balamurali et al. [4]
investigated the generation of multi-scroll chaos in coupled Rayleigh–Duffing oscillators.
Other related investigations can be found in recent papers, which in addition, include
the hardware implementation of the chaotic systems. It is apparent that one of the most
used devices to verify experimental chaotic attractors is the field-programmable gate array
(FPGA). For example, the authors of [5] present the FPGA implementation of an audio block
encryption using a 3-D chaotic system with adaptive parameter perturbation, showing
that their proposed scheme is suitable for real-time secure communication. An FPGA
implementation of an autonomous Josephson junction jerk oscillator and the investigated
coexisting and chaotic attractors, is given in [6], where the authors also show the control
and synchronization of the chaotic oscillator. FPGAs have also been used to implement
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memory-based systems, as shown in [7], where the authors show an encryption appli-
cation and FPGA realization of a fractional memristive chaotic system. More elaborated
applications can also be found in recent works, such as that described in [8], in which the
design, hardware implementation and performance analysis of three chaos-based stream
ciphers using FPGAs are presented. This study also emphasizes the generation of robust
pseudo-random number generators of chaotic sequences and their corresponding stream
ciphers. The authors of [9] have also recently described the FPGA implementation of an
image encryption-steganography system using a novel chaotic system with line equilibria
to enhance security.

The main focus of this paper is on the implementation of a new 3-D multistable
chaotic jerk system with two unstable balance points. It is highlighted that the main
contribution reported herein is not only in the introduction of a new 3-D mathematical
model, but also the FPGA implementation of a new 3-D multistable chaotic jerk system
with low hardware resources, which is compared with a direct implementation from the
mathematical description and using pipeline operations.

Regarding 3-D chaotic jerk systems, it is well-known that, in classical mechanics, an
autonomous jerk differential equation has the general form given in (1), where “jerk” refers
to the third-order derivative

...
ε = d3ε

dt3 .

...
ε = F(ε, ε̇, ε̈), (1)

To represent the jerk system in a set of 3-D equations, (1) presents a system of ordinary
differential equations (ODE), for which one can use the phase variables given in (2), so
that one can rewrite the jerk differential equations as described by (3), where F(x, y, z)
represents the nonlinear dynamics that the system uses to drive different chaotic behaviors.

x = ε, y = ε̇, z = ε̈ (2)

ẋ = y
ẏ = z
ż = F(x, y, z)

(3)

Many chaotic jerk systems have been reported in the literature [10–14]. Sprott [10]
described a simple dissipative chaotic jerk system with one quadratic nonlinearity. Sun
and Sprott [11] presented a dissipative chaotic jerk system with piecewise exponential
nonlinearity. Liu et al. [12] discussed a new dissipative chaotic jerk system having two
quadratic nonlinearities. Vaidyanathan et al. [13] proposed a new dissipative chaotic jerk
system having two exponential nonlinearities and presented its electronic circuit simulation.
Rajagopal et al. [14] proposed a new dissipative chaotic jerk system with two quadratic
nonlinearities, discussed its dynamic properties, and provided a circuit realization of the new
jerk system. Chaotic jerk systems have applications in many areas, such as oscillators [3,15],
microcontrollers [16], circuits [17,18], memristors [19,20], encryption [21], etc.

This research manuscript presents a new 3-D chaotic jerk system with three quadratic
nonlinearities. Dynamic analysis of a chaotic system, such as of the dissipativity, symmetry,
Kaplan–Yorke dimension and stability of the equilibrium points, is very useful for under-
standing the qualitative properties of the system [22]. We show that the new jerk system
has two unstable equilibrium points. Hence, the new jerk system represents a self-excited
attractor in the chaotic case. We also demonstrate that the proposed mechanical jerk system
can exhibit multistability with coexisting chaotic attractors. In fact, multistability is a special
property of nonlinear dynamical systems, which refers to the coexistence of periodic orbits
or chaotic attractors for the same set of system constants but considering different initial
conditions or states [20,21].

Bifurcation analysis of chaotic dynamical systems is a powerful tool to verify chaotic
motion, and is very useful to understand the qualitative properties of the systems, such as
the existence of equilibrium points, quasi-periodic motion, periodic motion and chaotic at-



Technologies 2023, 11, 92 3 of 21

tractors [23,24]. A bifurcation analysis of the proposed mechanical jerk system is presented
herein to describe the special properties of the system with respect to the variation of the
system constants.

Complete synchronization of chaotic systems has several applications, such as secure
communications [25–27]. Using backstepping control, we achieve complete synchroniza-
tion of a pair of new chaotic jerk systems considered as master and slave systems for
communication. The synchronization results for the new chaotic jerk system with a stable
equilibrium are detailed in Section 5.

Finally, the proposed chaotic jerk system is implemented with embedded hardware
using an FPGA and fixed-point notation to perform the computer arithmetic, as undertaken
in the majority of related works, and as already demonstrated in [28]. It is also worth men-
tioning that the new 3-D chaotic system can be designed using integrated circuit technology,
as performed for fractional-order systems in [29]; however, this work makes use of the
advantages of FPGAs for the fast verification and prototyping of systems. The main focus of
this paper is on the implementation of a new 3-D multistable chaotic jerk system with two
unstable balance points. It is highlighted that the main contribution reported herein is not
only the introduction of a new 3-D mathematical model, but also the FPGA implementation
with low hardware resources, which is compared with a direct implementation from the
mathematical description, so that the hardware resources are reduced by using pipeline
operations to reduce the number of multiplication blocks, compared to a direct FPGA
implementation of the discretized equations.

The main contributions of our research work can be enumerated as follows:

(1) We propose a new dissipative chaotic jerk system having three quadratic nonlinear
terms.

(2) We establish that the new chaotic jerk system has two unstable equilibrium points,
which implies that the new system exhibits a self-excited chaotic attractor.

(3) We carry out a detailed bifurcation analysis of the new jerk system which shows the
changes in the dynamic behavior of the jerk system with respect to changes in the
system parameters.

(4) We establish that the new jerk system has multistability with coexisting chaotic attrac-
tors.

(5) We provide a control application of the new jerk system, viz. complete synchronization
of the new jerk systems via backstepping control.

(6) We design an FPGA implementation of the new chaotic jerk system.

Section 2 describes the mathematical model of the new jerk system. Section 3 describes
the bifurcation analysis and the behaviors when varying the parameters of the mathematical
model. The multistability analysis and the coexistence of chaotic attractors is shown in
Section 4. The complete synchronization of the new jerk systems via backstepping control
method is discussed in Section 5. The FPGA implementation and the experimental results
are given in Section 6. Finally, the conclusions are summarized in Section 7.

2. A New 3-D Jerk System

We consider a new 3-D jerk system implied by the dynamics modeled in a compact
form, as denoted in (4), where the three state variables can be described by Z = (x, y, z).
We make an assumption that a, b and c are constant parameters taking only positive
values. The three nonlinearities are given by xy− cx2 + y2, which require four two-input
multipliers; however, an appropriate factorization of the nonlinear functions can lead us to
reduce the number of multiplication blocks, as shown in Section 5.

ẋ = y

ẏ = z

ż = −ax− bz− xy− cx2 + y2

(4)
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We shall display the chaotic properties of the new 3-D jerk system (4) by consider-
ing the parameters as (a, b, c) = (1, 1, 0.1). For simulations, we take an initial state as
Z(0) = (0.3, 0.2, 0.3). Using MATLAB, the Lyapunov exponent index (LEI) values of the
jerk system (4) are evaluated as

τ1 = 0.1176, τ2 = 0, τ3 = −1.1176 (5)

The Kaplan–Yorke fractal dimension of the jerk system (4) is obtained as follows:

DKY = 2 +
τ1 + τ2

|τ3|
= 2.1052 (6)

In (5), it is observed that the LEI values have the signs (+, 0,−), which shows that the
jerk system (4) is chaotic. Furthermore, we note that

τ1 + τ2 + τ3 = −1 < 0 (7)

This calculation establishes that the mechanical jerk system (4) is dissipative. The
dissipativity of the jerk system (4) can also be seen by calculating the divergence of the
vector field

F(x, y, z) =
[

y, z, −ax− bz− xy− cx2 + y2 ] (8)

We note that the divergence of the vector field F is computed as

div F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
= −b = −1 < 0 (9)

Since the divergence of the vector field of the jerk system (4) is negative, we have
shown that the jerk system (4) is a dissipative system.

Thus, we have shown that the new jerk system (4) is both chaotic and dissipative for
the parameter values (a, b, c) = (1, 1, 0.1).

The exponential contraction rate for the jerk system (4) is computed as follows:

dV
dt

= (div F)V = −V (10)

Thus, it follows that
V(t) = V0e−t (11)

where each volume containing the system trajectory of the jerk system (4) shrinks to zero
as t → ∞ at an exponential rate of −t. Thus, the system orbits of the jerk system (4) are
ultimately confined into a specific limit set of zero volume, and the asymptotic motion
settles onto a chaotic attractor. Thus, we have established the existence of the chaotic
attractor for the jerk system (4).

The balance points or equilibrium points of the jerk system (4) are obtained by solving
the equations ẋ = ẏ = ż = 0.

To calculate the balance points of the jerk system (4), we solve the following equations:

y =0 (12a)

z =0 (12b)

−ax− bz− xy− cx2 + y2 =0 (12c)

Solving the system (12), we obtain the solutions as

y = 0, z = 0, −x(cx + a) = 0 (13)
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Since the parameters a, b, c are taken as positive constants, we obtain two balance
points as

B0 = (0, 0, 0), B1 = (−a/c, 0, 0) (14)

For the chaotic case, when (a, b, c) = (1, 1, 0.1), the balance points are numerically
obtained as follows:

B0 = (0, 0, 0), B1 = (−10, 0, 0) (15)

The Jacobian matrix of the jerk system (4) at B0 = (0, 0, 0) is obtained as follows:

J0 =

 0 1 0

0 0 1

−1 0 −1

 (16)

The Jacobian matrix J0 has the eigenvalues −1.4656, 0.2328± 0.7926i. This shows that
the equilibrium point B0 = (0, 0, 0) is a saddle-focus point, which is unstable.

The Jacobian matrix of the jerk system (4) at B1 = (−10, 0, 0) is obtained as follows:

J1 =

 0 1 0

0 0 1

1 10 −1

 (17)

The Jacobian matrix J1 has the eigenvalues −3.6586,−0.0991 and 2.7577. This shows
that the equilibrium point B1 = (−10, 0, 0) is a saddle point, which is unstable.

Hence, the jerk system (4) depicts a self-excited attractor in the chaotic case.
Figure 1 illustrates the MATLAB plots for the jerk system (4) corresponding to the

parameter data (a, b, c) = (1, 1, 0.1), with initial conditions Z(0) = (0.3, 0.1, 0.3).

(a) (x, y)-plane (b) (y, z)-plane
Figure 1. Cont.
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(c) (x, z)-plane (d) R3

Figure 1. MATLAB simulation plots in 2-D planes and 3-D space for the new 3-D jerk system (4)
corresponding to the parameter data (a, b, c) = (1, 1, 0.1) and initial data Z(0) = (0.3, 0.1, 0.3).

3. Bifurcation Analysis for the New 3-D Jerk System

We perform a bifurcation analysis to evaluate the dynamical properties of the jerk
system (4) using Lyapunov exponent (LE) spectrums, bifurcation diagrams and phase plots
for the initial states Z0 = (0.3, 0.2, 0.3).

3.1. When the Parameter a Varies

In this subsection, we fix the values of the parameters b and c, as b = 1 and c = 0.1. We
allow the parameter a to vary in the interval [0.65, 1]. Then, we analyze the corresponding
dynamical behavior of the jerk system (4) using Lyapunov exponents (LEs), as shown
in Figure 2b and the bifurcation diagram depicted in Figure 2a. Additionally, Figure 2c
provides a zoomed-in view of the bifurcation diagram, specifically focusing on the region
where period-doubling occurs. From the above-mentioned figures, it is evident that the jerk
system (4) follows the well-known period-doubling route at the beginning of the parameter
a interval, eventually transitioning into a chaotic region for the rest of the interval.

When a ∈ [0.65, 0.67], the jerk system (4) has one zero LE value and two negative LE
values, as seen in Figure 2b, indicating that the jerk system (4) produces a periodic attractor.
It is clearly seen from Figure 2c that the jerk system generates a periodic attractor in the
interval [0.65, 0.67]. The corresponding plot in (x, y)-plane is shown in Figure 3a.

When a ∈ [0.67, 0.699], the phase plot of the jerk system (4) shows a Period-2 attractor,
as depicted in Figure 3b, which is very consistent with the bifurcation diagram shown in
Figure 2c. The Period-4 attractor is clearly shown in Figure 3c when a ∈ [0.699, 0.71]. It is
also depicted in Figure 2c.

When a ∈ [0.71, 1], generally, the jerk system (4) has one positive LE value, as shown
in Figure 2b, indicating that it exhibits chaotic behavior, as depicted in Figure 2a.

When a = 0.725, the positive LE is very close to zero, providing weak chaoticity, as
illustrated by Figure 3d. When a = 1, the positive LE is large, providing stronger chaoticity,
as illustrated by the (x, y)-plot of the chaotic attractor shown in Figure 1a. We also note
that a small window of periodic behavior appears when a ∈ [0.892, 0.905], as depicted in
Figure 2c.
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(a) Bifurcation diagram

(b) Lyapunov exponents

(c) Bifurcation diagram
Figure 2. (a) Bifurcation diagram, (b) LE spectrum and (c) period-doubling route for the jerk system
(4) when a ∈ [0.65, 1], b = 1 and c = 0.1.
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(a) a = 0.66 (b) a = 0.68

(c) a = 0.7 (d) a = 0.725
Figure 3. Phase plots of the new jerk system (4) for b = 1, c = 0.1 and different values of a.

3.2. When the Parameter b Varies

In this subsection, we fix the values of the parameters a and c as a = 1 and c = 0.1,
and allow the parameter b to vary in the interval [0.8, 2.1]. It can be observed that the jerk
system exhibits both periodic and chaotic behavior. Also, the jerk system experiences the
dynamic property of reversal period-doubling exciting from chaos.

We analyze the corresponding dynamical behavior of the system (4) using Lyapunov
exponents (LEs), as shown in Figure 4b and the bifurcation diagram depicted in Figure 4a.
Additionally, Figure 4c provides a zoomed-in view of the bifurcation diagram, specifi-
cally focusing on the region where the first reverse period-doubling occurs. Furthermore,
Figure 4d offers a zoomed-in view of the bifurcation diagram, specifically focusing on the re-
gion where the second reverse period-doubling occurs. From the above-mentioned figures,
it can be observed that the jerk system (4) can exhibit both periodic and chaotic behavior.
Additionally, the system demonstrates the dynamical property of reverse period-doubling,
wherein it transitions from a chaotic state to periodic behavior.

When b ∈ [0.8, 1.124], the jerk system has one positive LE value, as seen in Figure 4b,
indicating that it produces a chaotic attractor. When b = 1, the corresponding plot of a
chaotic attractor in (x, z)-plane is shown in Figure 1c. Also, it is noted that there are two
windows of periodic behavior when b = 0.88 and b = 0.885. The jerk system leaves the first
region of chaos via a reversal period-doubling route as follows: When b ∈ [1.124, 1.130], it
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can be seen from Figure 4c that the jerk system generates a Period-4 attractor in this region
of b. The corresponding phase plot of the jerk system in (x, z)-plane is shown in Figure 5a.

When b ∈ [1.130, 1.145], the phase plot of the jerk system shows a Period-2 attractor,
as depicted in Figure 5b, which is very consistent with the bifurcation diagram given in
Figure 4c.

(a) Bifurcation diagram (b) Lyapunov exponents

(c) Bifurcation diagram (d) Bifurcation diagram
Figure 4. (a) Bifurcation diagram, (b) LE spectrum, (c) the first cascade of reverse-period doubling,
(d) the second cascade of reverse-period doubling for the jerk system (4) when a = 1, b ∈ [0.8, 2.1]
and c = 0.1.
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(a) (b)

(c) (d)
Figure 5. Phase plots of the new jerk system (4) for a = 1, c = 0.1 and different values of b.

The period-1 attractor is shown in Figure 5c, when b ∈ [1.145, 1.175]. It is also
illustrated in the bifurcation diagram depicted in Figure 4c. After that, the jerk system
reaches the second region of chaos when b ∈ [1.175, 1.5]. In this interval, (4) has one positive
LE, as shown in Figure 4b, indicating that it exhibits chaotic behavior, as illustrated in
Figure 5d. Moreover, three windows of periodic behavior appear inside this region of chaos
when b ∈ S, where S = [1.285, 1.326] ∪ [1.365, 1.374] ∪ [1.41, 1.42].

The jerk system (4) leaves the second region of chaos via a second cascade of reversal
period-doubling route as follows: when b ∈ [1.5, 1.53], it can be seen from the bifurcation
diagram shown in Figure 4d that the jerk system generates a Period-8 attractor. The
corresponding phase plot in the (x, z)-plane is shown in Figure 6a. When b ∈ [1.53, 1.59],
the phase plot of the jerk system (4) shows a Period-4 attractor, as depicted in Figure 6b,
which is very consistent with the bifurcation diagram shown in Figure 4d.

The Period-2 attractor is shown in Figure 6c when b ∈ [1.59, 1.95]. Finally, the re-
versal period-doubling cascade ends with the appearance of the Period-1 attractor when
b ∈ [1.95, 2.1], as shown in Figure 6d.
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(a) (b)

(c) (d)
Figure 6. Phase plots of the new jerk system (4) for a = 1, c = 0.1 and different values of b.

3.3. When the Parameter c Varies

In this subsection, we fix the parameters as a = 1 and b = 1, and allow c to vary in
the interval [0, 0.5]. It can be observed that (4) exhibits both periodic and chaotic behavior.
Also, the jerk system experiences two dynamical properties of anti-monotonicity and
reversal period-doubling from chaos. Then, we analyze the corresponding dynamical
behavior of the jerk system (4) using Lyapunov exponents (LEs), as shown in Figure 7b
and the bifurcation diagram depicted in Figure 7a. Additionally, Figure 7c provides a
zoomed-in view of the bifurcation diagram, specifically focusing on the region where
the phenomenon of antimonotonicity occurs. Furthermore, Figure 7d offers a zoomed-in
view of the bifurcation diagram, specifically focusing on the region where the reverse
period-doubling occurs. From the above-mentioned figures, it can be observed that the jerk
system (4) exhibits both periodic and chaotic behavior. Moreover, the system demonstrates
two dynamic properties: antimonotonicity and reverse period-doubling, the latter leading
to the emergence of periodic behavior from chaos.

When c ∈ [0, 0.23], the jerk system has one positive LE value, as seen in Figure 7b, indi-
cating that the jerk system (4) produces a chaotic attractor. When c = 0.1, the corresponding
plot of a chaotic attractor in the (y, z)-plane is shown in Figure 1b. Also, it is noted that
there is a tiny window of periodic behavior sandwiched in the interval [0.173, 0.179].
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(a) Bifurcation diagram (b) Lyapunov exponents

(c) Bifurcation diagram (d) Bifurcation diagram
Figure 7. (a) Bifurcation diagram, (b) LEs, (c) antimonotonocity phenomena, and (d) reverse-period
doubling route for the jerk system (4) when a = 1, b = 1 and c ∈ [0, 0.5].

When c ∈ [0.23, 0.31], the jerk system enters into a periodic region wherein it experi-
ences the phenomenon of antimonotonicity, as illustrated in Figure 7c. An example of the
attractor’s shapes produced by the jerk system in this region is plotted in Figure 8a. When
c ∈ [0.31, 0.35], a second region of chaos appears, as clearly shown in Figure 7a, wherein
the jerk system exhibits chaotic behavior, as illustrated in Figure 8b.

The jerk system (4) leaves the second region of chaos via a reversal period-doubling
route as follows: When c ∈ [0.35, 0.356], it can be seen from Figure 7a that the jerk system
(4) generates a Period-8 attractor in this region of c as shown in Figure 8d. When c ∈
[0.356, 0.373], the phase plot shows a Period-4 attractor, as depicted in Figure 8d, which is
very consistent with the bifurcation diagram given in Figure 7d. The Period-2 attractor is
shown in Figure 8e, when c ∈ [0.373, 0.433]. Finally, the reversal period-doubling cascade
ends with the appearance of a Period-1 attractor when c ∈ [0.433, 0.5], as shown in Figure 8f.



Technologies 2023, 11, 92 13 of 21

(a) (b)

(c) (d)

(e) (f)
Figure 8. Phase plots of the new jerk system (4) for c equal to: (a) 0.29, (b) 0.32, (c) 0.353, (d) 0.36,
(e) 0.39, and (f) 0.48.
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4. Multistability of the Jerk System

Here, we concentrate on how different initial values affect the new 3-D jerk system’s
dynamics. We show that (4) can generate different attractors for the same values of pa-
rameters but for different initial states. In Figure 9a–c, the phase plot of the jerk system
(4) starting from Z0 = (0.6, 0.6, 0.3) appears in blue color, while the phase plot of the jerk
system starting from Z1 = (−0.1, 0.1,−0.1) appears in red color.

When the coefficient parameters of the new 3-D jerk system are chosen as a = 0.24,
b = 1 and c = 0.1, the system generates two different coexisting periodic attractors, as
shown in Figure 9a. When a = 1, b = 1, and c = 0.32, the jerk system (4) entails coexistence
of one periodic attractor and one chaotic attractor, as displayed in Figure 9b. When a = 1.45,
b = 1, and c = 0.1, the jerk system (4) generates two different coexisting chaotic attractors,
as seen in Figure 9c.

(a)

(b)

(c)
Figure 9. Coexisting attractors of the jerk system (4): (a) Two coexisting periodic attractors, (b) coexis-
tence of one periodic attractor and one chaotic attractor, and (c) two coexisting chaotic attractors.
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5. Complete Synchronization of the New Jerk Systems Using Backstepping Control

Making use of the special structure of the proposed jerk system, we use the backstep-
ping control method to achieve complete synchronization between the master and slave
chaotic jerk systems. The backstepping control method is a recursive design process which
is useful for the asymptotic stabilization of nonlinear control systems [30]. The backstep-
ping control technique provides a systematic framework for designing nonlinear controllers
by using Lyapunov stability theory. The backstepping control method has also been applied
for the synchronization of other types of chaotic systems [31,32]. The synchronization of
chaotic systems has many applications in secure communication systems [33,34].

For the synchronization design, we consider the master and slave jerk systems
as follows: 

ẋm = ym

ẏm = zm

żm = −axm − bzm − xmym − cx2
m + y2

m

(18)


ẋs = ys

ẏs = zs

żs = −axs − bzs − xsys − cx2
s + y2

s + w
(19)

In Equation (19), w is an active control, which is designed using the backstepping
control method in this section.

We define the complete synchonization error by the following equations:
Ex = xs − xm

Ey = ys − ym

Ez = zs − zm

(20)

The error dynamics are derived by the following equations:
Ėx = Ey

Ėy = Ez

Ėz = −aEx − bEz − xsys + xmym − c(x2
s − x2

m) + y2
s − y2

m + w
(21)

In this section, we shall establish the following main result.

Theorem 1. The backstepping control law defined by the equation

w = −(2− a)Ex − 5Ey − (3− b)Ez + xsys − xmym + c(x2
s − x2

m)− y2
s + y2

m − Kαz (22)

with K > 0 and αz = 2Ex + 2Ey + Ez exponentially stabilizes the new chaotic jerk systems (18)
and (19) for all initial states in R3.

Proof. To start the backstepping control method, we use the Lyapunov function

Q1(αx) =
1
2

α2
x, (23)

where
αx = Ex (24)

A simple calculation shows that

Q̇1 = αx α̇x = −α2
x + αx(Ex + Ey) (25)
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Next, we define
αy = Ex + Ey (26)

Then, we can simplify Equation (25) as follows:

Q̇1 = −α2
x + αxαy (27)

In the second step of the backstepping control method, we take the Lyapunov function

Q2(αx, αy) = Q1(αx) +
1
2

α2
y =

1
2

α2
x +

1
2

α2
y (28)

It is easy to verify that

Q̇2 = −α2
x − α2

y + αy(2Ex + 2Ey + Ez) (29)

Next, we define
αz = 2Ex + 2Ey + Ez (30)

Then, we can simplify Equation (29) as follows:

Q̇2 = −α2
x − α2

y + αyαz (31)

As the final step of the backstepping control design, we take the quadratic Lyapunov
function defined as follows:

Q(αx, αy, αz) = Q2(αx, αy) +
1
2

α2
z =

1
2

α2
x +

1
2

α2
y +

1
2

α2
z (32)

Thus, we find the following:

Q̇ = −α2
x − α2

y − α2
z + αzT (33)

where
T = αy + αz + α̇z (34)

A simple calculation gives

T = (2− a)Ex + 5Ey + (3− b)Ez − xsys + xmym − c(x2
s − x2

m) + y2
s − y2

m + w (35)

Substituting the formula given in Equation (22) for w into Equation (35), we obtain

T = −Kαz (36)

Combining (33) and (36), we obtain

Q̇ = −α2
x − α2

y − α2
z(1 + K) (37)

Since the gain K is positive, we see that Q̇ is a quadratic and negative definite function
defined on R3.

By application of Lyapunov stability theory [30], we deduce that the error dynamics
(21) are globally exponentially stable.

This completes the proof.

For MATLAB simulations, we take the parameter values as in the chaotic case:

a = 1, b = 1, c = 0.1 (38)

Also, we set K = 25.
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The initial states of the master and slave jerk systems represented by (18) and (19) are
taken as follows:

xm(0) = 1.2, ym(0) = 0.6, zm(0) = 5.9, xs(0) = 0.4, ys(0) = 4.7, zs(0) = −1.9 (39)

Figure 10 shows the convergence of the synchronization error (Ex(t), Ey(t), Ez(t))
between the jerk systems (18) and (19).

Figure 10. MATLAB plot showing the synchronization error (Ex, Ey, Ez) between the jerk systems
(18) and (19).

6. FPGA Implementation of the New Jerk System

As already shown in several recent works, the FPGA implementation of a chaotic
system, like the new 3-D Jerk one, requires the application of numerical methods, and the
most simple and commonly used is the well-known forward Euler (FE) method.

On the one hand, the discretized equations of the new 3-D chaotic jerk system with
two unstable balance points by applying FE method are given in (40). On the other hand,
and as already mentioned in [28], another way to discretize the equations of a chaotic
system is by applying a more elaborated method as the trapezoidal one, for which the
discretized equations are given in (41). One can identify that the iterative equations given
in (40) can be solved by just providing the initial conditions, since the mathematical model
of the new 3-D chaotic jerk system is an initial value problem. However, when applying an
implicit method, such as the trapezoidal one, the iterative equations given in (41) require the
estimation of the values of the state variables on the right-hand side, which are evaluated
at index [n + 1]. In this case, the estimated value is usually evaluated by an explicit method,
such as FE. In such a case, one can evaluate the equations given in (40) to estimate the
iteration [n + 1], and the result can be used to evaluate the discretized equations given
in (41).

xn+1 = xn + hyn
yn+1 = yn + hzn
zn+1 = zn + h(−axn − bzn − xnyn − cxn

2 + yn
2)

(40)

xn+1 = xn + h(yn + yn+1)
yn+1 = yn + h(zn + zn+1)
zn+1 = zn + h(−axn − bzn − xnyn − cxn

2 + yn
2

−axn+1 − bzn+1 − xn+1yn+1 − cxn+1
2 + yn+1

2)

(41)

Using the coefficient values a = 1, b = 1, c = 0.1, with initial conditions (0.3, 0.2, 0.3),
and by setting the time-step to h = 0.001, one can observe the experimental results from the
FPGA implementation. The block description of the new 3-D chaotic jerk system is given
in Figure 11. One can see that it is not a direct description from (40). It was manipulated to
perform pipeline operations, thus resulting in a connection of blocks that are associated
with the multiplexers, registers, multipliers, adders, and subtractors. Each block can
perform fixed-point arithmetic and uses 24-bit words, assuming 1 bit for the sign, 5 bits for
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the integer part and 19 bits for the fractional representation. Table 1 shows the hardware
resources of the implementation by using the FPGA Zybo Z7-20 board (XC7Z020CLG400-1).
The design was developed in the Xilinx Vivado tool, and the hardware description was
carried out in the VHDL language.

Table 1. Utilization of the FPGA hardware resources using Xilinx Zybo Z7-20 (xc7z020clg400-1).

Resources Used Util

Slice 134 1.01%
LUTs 304 0.57%
FFs 292 0.21%

DSPs 10 3.18%
Frequency Max 111 MHz –

Figure 11. Block diagram for the hardware design of the proposed new 3-D chaotic jerk system
from (40).

In Figure 11, the use of just four multipliers, four adders, three subtractors and nine
registers is shown. This is a very nice hardware design since the direct implementation
of (40) requires nine multipliers: three that multiply h, two to evaluate x2

n and y2
n, one to

multiply xnyn , and three to multiply the coefficients a, b, c. This compact design using
only four multipliers, as shown in Figure 11, performs pipeline operations. A finite state
machine (FSM) is implemented to generate the control signals of the seven multiplexers
that controls the reuse of some multipliers to enable an efficient hardware design. The
pre-computation of new constants (ha = h ∗ a, hb = h ∗ b), as well as the re-ordering of
the executions of the operations, are performed to consume only two clock cycles when
evaluating an iteration.

Figure 12 shows the experimental setup featuring the oscilloscope, the FPGA Zybo
Z7-20 (XC7Z020CLG400-1), and two digital-to-analog converters (DACs). Figure 13 presents
the experimental phase portraits of some combinations of the state variables of the proposed
system observed in an oscilloscope.
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Figure 12. Experimental setup to observe the attractors.

Figure 13. Experimental views for the attractors x− y, x− z, and y− z, generated by setting a = 1,
b = 1, and c = 0.1, with initial conditions (0.3, 0.2, 0.3), and h = 0.001.

7. Conclusions

In this research manuscript, we reported a new 3-D chaotic jerk system with two
unstable balance points. We illustrated that the proposed jerk system exhibits multistability
with coexisting periodic and chaotic attractors for different initial states. A bifurcation
analysis of the proposed mechanical jerk system was described elaborating the special
dynamical properties of the new jerk system.

The FPGA implementation of the proposed mechanical jerk system was successfully
accomplished using the FPGA Zybo Z7-20 (XC7Z020CLG400-1) to synthesize the discrete
dynamical equations obtained by applying numerical methods. It was shown that the
direct implementation of the mathematical model requires nine multipliers; however, an
appropriate factorization led us to use only four connected multipliers to perform pipeline
operations. Finally, the experimental results of the proposed mechanical jerk system using
FPGA-based design showed good agreement with the MATLAB simulations of the same
system. As future research work, applications of the proposed mechanical jerk system in
areas such as secure communications, steganography and cryptosystems can be studied.
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