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Abstract: This paper proposes extended-window algorithms for model prediction and applies
them to optimize hybrid power systems. We consider a hybrid power system comprising solar
panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms
enable the periodic updating of prediction models and corresponding changes in system parts and
power management based on the accumulated data. We first develop a hybrid power model to
evaluate system responses under different conditions. We then build prediction models using five
artificial intelligence algorithms. Among them, the light gradient boosting machine and extreme
gradient boosting methods achieve the highest accuracies for predicting solar radiation and load
responses, respectively. Therefore, we apply these two models to forecast solar and load responses.
Third, we introduce extended-window algorithms and investigate the effects of window sizes and
replacement costs on system performance. The results show that the optimal window size is one
week, and the system cost is 13.57% lower than the cost of the system that does not use the extended-
window algorithms. The proposed method also tends to make fewer component replacements when
the replacement cost increases. Finally, we design experiments to demonstrate the feasibility and
effectiveness of systems using extended-window model prediction.

Keywords: hybrid power; fuel cell; prediction; management; optimization; extended window

1. Introduction

Worldwide energy consumption has increased awareness of fossil fuel depletion,
climate change, and greenhouse effects. Therefore, searching for renewable energy has
become a global policy. For example, the UK plans to achieve offshore wind power levels
of 50 GW by 2030 [1], while Japan aims to achieve a solar power generation capacity of
88 GW by 2030 [2]. However, these forms of renewable energy are susceptible to weather
variations. For this reason, hydrogen has become an increasingly attractive renewable
energy source because it is independent of weather conditions. At present, the European
Union intends to expand hydrogen production to have a hydrogen electrolysis capacity of
40 GW by 2025–2030 [3]. Similarly, the US Department of Energy has pledged USD 8 billion
to establish regional hydrogen energy centers [4]. Nevertheless, the high cost of hydrogen
production still limits its extensive use as an energy source.

One relatively simple way to offset the cost of hydrogen energy production is to use
hydrogen as a backup system for green energy sources rather than as the sole energy
source. For this purpose, the proton exchange membrane fuel cell (PEMFC) is an ideal
supplementary system due to its favorable properties, including low operation temperature,
fast power response, high power density, and long lifespan [5], which enable system
sustainability under unfavorable weather conditions. For example, Taghizadeh et al. [6]
proposed a hybrid standalone microgrid consisting of a wind turbine (WT), a PEMFC,
photovoltaic cells (PVs), supercapacitors (SCs), and battery energy storage systems. Wind
and solar energy were the primary power sources, while the PEMFC, SCs, and batteries
were used in parallel to enhance the PEMFC performance and lifespan. Bornapour et al. [7]
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modeled a microgrid composed of a PEMFC, a WT, and PVs and employed a multi-objective
firefly algorithm to solve the stochastic energy optimal dispatch problem, thereby enhancing
the system’s reliability. Shayan et al. [8] conducted experimental and numerical analyses to
explore the application of artificial roughness in outdoor solar air heaters. Zhao et al. [9]
proposed a hybrid system that combined solar-assisted methanol reformation and fuel cell
power generation to boost the maximum system efficiency to 59.15%.

These hybrid systems require optimal component selections and settings, as the
choices must consider both the climatic and economic conditions encountered in different
regions. For instance, Rouhani et al. [10] utilized the genetic algorithm and particle swarm
optimization to optimize a hybrid power system consisting of PVs, WTs, batteries, and
fuel cells to achieve system reliability while minimizing system costs. N’guessan et al. [11]
employed the non-dominated sorting genetic algorithm to find the optimal configuration
for an off-grid power system composed of WTs, a PEMFC, electrolyzers, batteries, and
supercapacitors. Lei et al. [12] applied the seagull optimization algorithm to determine the
optimal sizes of PVs, WTs, fuel cells, and electrolyzers. Šimunović et al. [13] optimized the
component sizes of a solar–hydrogen hybrid energy system for a grid-disconnected house
and was able to ensure uninterrupted and reliable power. Therefore, PEMFCs are typically
used to provide supplementary power in hybrid power systems, to satisfy system loads,
and to prevent batteries from experiencing a low state of charge (SOC). However, primary
green energy, such as solar and wind power, is sometimes sufficient to recharge the system
battery [14], raising the question of how to prevent unnecessary hydrogen consumption.

One solution is to predict the load and weather using machine learning. For example,
Park et al. [15] proposed a global solar radiation forecasting method based on a Light
Gradient Boosting Machine (LightGBM), and achieved an RMSE of 0.249 and a shorter
training time than was possible with other methods. Vu et al. [16] built an eXtreme Gradient
Boosting (XGBoost) model to predict short-term power demand for industrial customers
and provided experimental results that confirmed the model’s robustness and performance.
Bae et al. [17] developed an XGBoost model for day-ahead load forecasting, and achieved a
more than 21% improvement in accuracy using Korea’s power data.

Apart from the choice of system components, the power management strategy (PMS)
and controller selection can also improve system reliability and costs. For example, Brka
et al. [18] proposed an intelligent PMS based on neural networks to control the overall
power within a hybrid power system, thereby preventing power losses. Brka et al. [19] also
used an independent hybrid power system comprising WTs, batteries, and hydrogen energy
to implement a predictive neural-network-based PMS that improved the system’s cost and
renewable energy utilization. Nair et al. [20] applied a PMS with model predictive control
in a hybrid power grid comprising PVs, batteries, SCs, and fuel cells. Their simulation
results demonstrated a 50% reduction in PV power and an 80% reduction in the need
for dispatchable generators with their PMS. Kodakkal et al. [21] designed a controller to
work with an enhanced phase-locked loop algorithm to maintain the power quality at
the load side of a renewable hybrid system, thereby ensuring that the source current was
not affected during load fluctuations. Shayan et al. [22] employed a dynamic decision
algorithm to determine the optimal hybridization of local solar and wind energy, thereby
optimizing electricity demand in residential units.

In this paper, we developed an extended-window method that regularly updates the
prediction models and optimizes system components and PMS in hybrid power systems.
We first used MATLAB to develop a hybrid power model to estimate system responses
under different operating conditions. We then applied five machine learning methods to
develop prediction models for our hybrid power system. Among them, the LightGBM and
XGBoost models could forecast solar radiation and load profiles, respectively, with a higher
than 97% accuracy. Therefore, we integrated these two models into a hybrid power system
to investigate the impacts of extended-window optimization on system performance. The
results showed that system costs can be reduced by 6.45% with model prediction and that
applying extended-window optimization can further decrease system costs by 13.57%.
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2. Materials and Methods

This section introduces the hybrid power system. We applied MATLAB Simscape
ElectricalTM to build a hybrid model that enables us to obtain system responses without
extensive experimentation. We also introduce model prediction that can improve system
performance based on forecast system responses. Finally, we propose the extended-window
algorithms, which can update the forecast models and further improve the system perfor-
mance based on accumulated data.

2.1. Hybrid Power System and Model

We consider a hybrid power system consisting of WTs, PVs, a PEMFC, batteries,
chemical hydrogen production, and electrolyzers [23]. The system operates in a fully self-
sufficient manner. Figure 1 illustrates the hybrid power system, in which wind and solar
energy are the primary energy sources, while the fuel cell consumes hydrogen to provide
backup power. Electrolyzers convert redundant energy to hydrogen, while chemical
hydrogen production can generate hydrogen when necessary [14].
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Figure 1. The hybrid power system. (a) System construction. (b) System architecture. Figure 1. The hybrid power system. (a) System construction. (b) System architecture.

The system was constructed in Miaoli County in Taiwan, where the initial components
were selected based on the weather data from National Aeronautics and Space Adminis-
tration to achieve seasonal complementarity between wind and solar energy. However,
previous research has revealed that wind energy is insufficient to compensate for the deficit
in solar energy during the winter. Additionally, a cost analysis indicated that wind power
generation was more expensive than other energy forms [14]. Furthermore, the cost of
using electrolyzers was higher than that of chemical hydrogen production [14]. Therefore,
we conducted our extended-window designs for a hybrid power system consisting of PVs,
batteries, a PEMFC, and chemical hydrogen production that could provide hydrogen by
automatic batch processes [5].

We applied MATLAB Simscape ElectricalTM to develop the hybrid power model
shown in Figure 2. The model enables us to estimate system responses under different op-
erational conditions (e.g., varying components and PMS parameters) without extensive ex-
perimentation. The simulation model consisted of six modules: PVs, load, battery, PEMFC,
chemical hydrogen generation, and power management with a prediction model [24].
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The PV module estimates the solar energy Psolar as follows [14,24]:

Psolar = Isolar × VDC = 0.69 (Ir − 1.52), (1)

where Isolar is the solar current and VDC is the DC-bus voltage. Ir represents the solar
radiation in units of W/m2. Solar energy is the primary energy source in this hybrid power
system. The load module calculates the load current ILoad as follows:

ILoad =
PLoad
VDC

, (2)

where PLoad is the load power. The battery module regulates the energy storage and
consumption of the system. We estimate the battery’s SOC by the following Coulomb
integration method:

SOC(t) = SOC(t0) +

∫ t
t0
[Isolar(t) + IPEMFC(t)− ILoad(t)]dt

C
, (3)

where SOC(t) is the battery SOC at time t, and C is the battery capacity. Isolar(t), IPEMFC(t),
and ILoad(t) represent the solar, PEMFC, and load currents, respectively, at time t. The
PEMFC module acts as the system’s backup power and converts 1 L of hydrogen into
1.2620–1.2987 Wh of electricity. We applied a commercial 3 kW PEMFC, which provided
reliable and consistent performance [25]. The hydrogen consumption rates are set as 12.32,
18.52, 24.64, and 30.75 standard L min−1, with PEMFC currents of 20 A, 30 A, 40 A, and
50 A, respectively [25]. The chemical hydrogen generation module provides hydrogen to
the PEMFC when hydrogen is insufficient [5]. The sodium borohydride (NaBH4) solution
is batched to generate 150 L of hydrogen each time, using 400 mL of 15wt% NaBH4
solution [14]. The power management module adjusts the PEMFC output current IPEMFC
according to the battery SOC with the following PMS [14]:

(a) When the battery SOC drops to SOClow, the prediction model is activated to forecast
the solar radiation and load demand to calculate the battery SOC in the next 24 h.

(b) If the battery SOC in the next 24 h is higher than 20%, the PEMFC remains silent and
returns to Step (a). Otherwise, the PEMFC is activated to provide a supplementary
power supply with the following current:

SOCmin(T) +

∫
T

0 (Isolar(t) + Ireq
PEMFC − ILoad(t))dt

C
= 20%, (4)
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where SOCmin(T) ≤ 20% is the minimum SOC that happens at time T, suppos-
ing the present time is 0. Isolar(t) and ILoad(t) represent the predicted solar and
load currents, respectively, at time t. Ireq

PEMFC is the minimum PEMFC current
to ensure the battery SOC was greater than 20%. The PEMFC current IPEMFC
is set as 0 A, 20 A, 30 A, 40 A, and 50 A when the required Ireq

PEMFC is estimated as
Ireq
PEMFC ≤ 0 A, 0 A <Ireq

PEMFC ≤ 20 A, 20A <Ireq
PEMFC ≤ 30 A, 30 A <Ireq

PEMFC ≤ 40 A,
and 40 A <Ireq

PEMFC , respectively.
(c) When the battery SOC reaches SOChigh, the PEMFC is turned off and returns to

Step (a). Otherwise, it returns to Step (b).

2.2. System Costs and Reliability

The system cost Z(b,s) consists of the following two parts [24]:

Z(b,s) = Zi(b,s) +Zo(b,s), (5)

where Zi(b,s) and Zo(b,s) are the initial and operation costs, respectively. The subscripts b and
s represent the sizes of the battery (in units of 100 Ah) and PV (in units of 1 kW), respectively.

The initial cost Zi(b,s) and operation cost Zo(b,s) are defined as follows [24]:

Zi(b,s) = ∑
k
Zk

i(b,s), (6)

Zo(b,s) = ∑
m
Zm

o(b,s) (7)

where k the represents system components, including PV, batteries, PEMFC, chemical
hydrogen generation, and electronic devices. Conversely, m represents the components
that require maintenance or incur operational costs, such as PVs and NaBH4.

The initial cost is estimated as follows [24]:

Zk
i(b,s) = Ck

i × nk × CRF, (8)

where Ck
i represents the initial cost of module k per unit, nk is the units of module k, and

CRF is the capital recovery factor [26]:

CRF =
ir(1 + ir)ny

(1 + ir)ny − 1
, (9)

where ir represents the inflation rate (we set as ir = 1.26% in this paper) and ny represents
the expected life of the module.

The operation cost of module m is estimated as follows [24]:

Zm
o(b,s) = Cm

o × nm, (10)

where Cm
o is the unit operation or maintenance cost of module m, while nm is the required

units or maintenance of m. For instance, the maintenance cost of the PV modules is set as
1% of its initial cost (i.e., CPV

o = 1% × CPV
i ). Conversely, we set the unit operation cost for

NaBH4 as ZNaBH4
o(b,s) = CNaBH4

o × nNaBH4 , where CNaBH4
o is the unit cost for each batch that

consumes 400 mL of 15wt% of NaBH4 solution, and nNaBH4 is the number of batches. The
component costs and lifespans are shown in Table 1. Finally, battery, PEMFC, and hydrogen
costs depend on the system responses.
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Table 1. Prices and lives of system components.

Component Life Price (US$)
PV cells (1 kW) 15 years 1833

Chemical hydrogen generator 15 years 10,666
Power electronic devices 15 years 1666

PEMFC (3 kW) 8000 h 6000
NaBH4 (60 g/Batch) -- 0.33

Lead–acid battery (48 V–100 Ah) -- 866

Reliability is an important index when evaluating hybrid power systems, given the
intermittent and unstable characteristics of renewable energy. We used the loss of power
supply probability (LPSP) to indicate system reliability, defined as follows:

LPSP =

∫ T
0 LPS(t)dt∫ T
0 Pload(t)dt

, (11)

where Pload(t) is the required load demand and LPS(t) represents the loss of power supply
at time t. The system reliability is highest when LPSP = 0%, indicating no power shortage.

2.3. Model Prediction for the Hybrid Power System

In previous research, we applied solar radiation [27] and load [28] data from 2014
to 2016 to optimize the design for a hybrid power system. Figure 3a illustrates the solar
radiation data, showing a peak of 1094.44 W/m2 and 1083.33 W/m2, and an average
daily availability of 2.31 kWh and 2.39 kWh in the first and second years, respectively.
Figure 3b shows the load profiles, with peaks of 6.83 kW and 6.32 kW, and average daily
consumptions of 15.91 kWh and 18.41 kWh in the first and second years, respectively.
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We applied the Simscape model with these solar and load data to optimize the system
designs. The results are illustrated in Table 2. First, Case-a used the 2014 data to optimize



Technologies 2024, 12, 6 7 of 18

system settings, resulting in (b, s) = (13, 11) and (SOClow, SOChigh) = (40%, 50%). We
then applied these optimal settings to estimate system responses in 2015 without model
prediction, where the system cost is USD 0.7889/kWh and the hydrogen consumption is
468,007.2 L, for a system reliability of LPSP = 0%. Second, Case-A applied the same optimal
setting to estimate system responses in 2015 with XGBoost prediction models [14]. The
system cost was reduced to USD 0.7389/kWh, and the hydrogen consumption decreased to
311,683.9 L, while maintaining system reliability LPSP = 0%. The results showed that model
prediction can significantly reduce system costs and hydrogen consumption by 6.45% and
33.40%, respectively.

Table 2. Comparison of system optimization with/without model predictions.

Case a Case A
Without Model Prediction With Model Prediction

Battery (Ah) 1300 1300
PV (kW) 11 11

(SOClow, SOChigh) (%) (40, 50) (40, 50)
Unit cost (US$/kWh) 0.7863 0.7353

Final SOC (%) 43.87 40.22
Modified unit cost

(US$/kWh) 0.7889 0.7380

H2 (L) 468,007.20 311,683.90

2.4. Extended-Window Algorithms for Model Prediction

Table 2 shows that model prediction can reduce system costs while maintaining system
sustainability. However, our previous optimization [14] applied annual data to optimize
system components and PMS only once for the entire second year. Figure 3c,d shows that
the solar and load data varied significantly during the year. This raised the possibility
that system performance might be further improved by updating the optimal system
settings more frequently. Therefore, we proposed the extended-window algorithms for
model prediction.

The principle of the extended-window algorithms is to train the prediction models
periodically using the accumulated data, as shown in Figure 4, to enable the system
to re-estimate the optimal components and PMS at each interval. Suppose the interval
length is M, which might be one month, one week, and so on. We set Ti − Ti−1 = M, for
i = 1, 2, · · · , n − 1, and the remaining time Tn − Tn−1 ≤ M. The procedures are as follows:

(a) Set i = 1.
(b) Use the radiation and load data in T = [0, Ti−1] to train the prediction models.
(c) Apply the prediction models obtained in step (b) to forecast the solar current and

load responses in the next interval T = [Ti−1, Ti], labeled as Isolar(t) and ILoad(t) for
t ∈ [Ti−1, Ti].

(d) Use Isolar(t) and ILoad(t) to optimize system components and PMS for the interval

t ∈ [Ti−1, Ti], denoted as (b, s)|[Ti−1,Ti ]
and

(
SOClow, SOChigh

)∣∣∣
[Ti−1,Ti ]

.

(e) Apply the optimal settings in step (d) to the interval t ∈ [Ti−1, Ti]. Calculate the
system costs and hydrogen consumption in this interval.

(f) Complete the design when i = n. Otherwise, increase i by one and return to step (b).
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The extended-window model prediction derives optimal system components and
PMS at each interval while updating system components periodically. Therefore, we add
the component replacement costs and adjust the system cost as follows:

Z(b,s) = Zi(b,s) +Zo(b,s) +Zrep(b,s), (12)

where Zrep(b,s) represents the replacement costs, defined as follows:

Zrep(b,s) = ∑
p
Zp

rep(b,s) = ∑
p

Cp
rep × np, (13)

where p is the adjusted components, including the PV and batteries. Zp
rep(b,s) represents the

replacement cost of component p, while np is the replaced units of the component p. The
unit replacement cost is Cp

rep = r% × Cp
i , where r% is the replacement cost ratio and Cp

i is
the initial unit cost of component p.

3. Results

This section applies the extended-window model prediction to the hybrid power
system. We developed five prediction models and chose the two best models to foretell the
solar and load responses. We then applied these models to investigate the merits of the
proposed extended-window method for optimizing the hybrid power system.

3.1. Optimal Prediction Models

Many artificial intelligent algorithms have been applied to hybrid power systems, such
as XGBoost, LightGBM, CatBoost, K-Nearest Neighbors (KNN), and Random Forest (RF).
The details of these algorithms are illustrated in Appendix A. We applied these algorithms
to build the prediction models and evaluated their performance by the normalized root
mean square error (NRMSE), defined as follows:

NRMSE =
1

yave

(
1
N

N

∑
i=1

(yi − yi)
2

)1/2

, (14)

where yi and yi were the real and predictive data, respectively, at the i-th sample, N
represented the number of samples, and yave was the average of real data y. Figure 5
and Table 3 illustrate the NRMSEs of different prediction models using the extended-
window method with M = 1 month and r% = 1. The LightGBM and XGBoost models
can successfully forecast solar radiation and load demand with an accuracy of 97.25% and
97.49%, respectively. Hence, we apply these two models to analyze the system performance.
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Table 3. NRMSE of extended-window prediction models with M = 1 month.

Model
NRMSE (%)

Solar Radiation Load Profile
XGBoost 19.55 2.51

LightGBM 2.75 9.94
Catboost 7.19 16.9

KNN 33.71 74.68
RF 88.95 63.29

As shown in Table 3, the LightGBM and XGBoost models can predict solar radiation
and load profiles with minor prediction errors. We further investigate the impacts of
these small prediction errors on system performance by comparing them with the system
employing perfect predictions. The perfect prediction is defined as using the real data
Isolar(t) and ILoad(t) instead of the predicted Isolar(t) and ILoad(t) for t ∈ [Ti−1, Ti] when
optimizing the components and PMS in each interval. For example, we set the interval
length M = 1 month and the replacement cost ratio r% = 1%. When using the perfect
prediction, the annual system cost was USD 4607.95, with a hydrogen consumption of
102,343.9 L. When using the prediction models, the annual system cost became USD 4599.35,
with a hydrogen consumption of 108,248.70 L. These results show that the influences of
these minor prediction errors are negligible

3.2. Impacts of Window Sizes and Replacement Costs

We analyzed the influences of interval length M and replacement cost ratio r% on
system cost and hydrogen consumption. We compared the results with Case A in three
scenarios: varied M, different r%, and simultaneously varied M and r%.

First, we set r% = 1% to investigate the impact of interval length M on system
performance. The results are shown in Table 4, where M = [6, 4, 3, 2, 1] months, [3, 2, 1]
weeks, and 5 days. The system reliability LPSP = 0% in all cases, while the system costs and
hydrogen consumption gradually decline as M decreases until M = 1 week. The optimal
extended-window designs when M = 1 week are illustrated in Appendix B. Compared with
Case A, the optimal cost reduction is 13.57% and the optimal hydrogen savings is 91.64%
when M = 1 week. Setting M = 5 days worsened the system cost and hydrogen consumption,
possibly because M = 5 days is not a suitable periodicity for data segmentation.

Table 4. Impacts of interval length (r% = 1%).

Case
Annual System Cost Hydrogen Consumption

Cost (USD) Reduction (%) Consumption (L) Reduction (%)
Case A 4958.35 -- 311,683.9 --
Case1%

6m 4954.17 0.08 251,403.8 19.34
Case1%

4m 4871.59 1.75 263,216.5 15.55
Case1%

3m 4863.26 1.92 198,582.3 36.29
Case1%

2m 4751.90 4.16 182,649.1 41.40
Case1%

1m 4599.35 7.24 108,248.7 65.27
Case1%

3w 4368.13 11.90 33,454.8 89.27
Case1%

2w 4382.65 11.61 42,319.6 86.42
Case1%

1w 4285.69 13.57 26,064.4 91.64
Case1%

5d 4381.26 11.64 50,538.0 83.79

Caser%
M : system cost with an interval of M and a replacement ratio cost of r%.

Second, we set M = 1 month to investigate the impacts of replacement cost ratio. The
results are shown in Table 5, where the system reliability LPSP = 0% in all cases. When
the replacement cost increases, the system makes fewer component adjustments between
consecutive intervals to avoid unnecessary replacement costs. Compared with Case A,
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when r% = 1%, the cost and hydrogen reduction were 7.24% and 65.27%, respectively.
When r% = 5%, the cost and hydrogen reduction were 1.86% and 53.18%, respectively.

Table 5. Impacts of replacement cost ratio (M = 1 month).

Case
System Cost Hydrogen Consumption

Cost (USD) Reduction (%) Consumption (L) Reduction (%)
Case A 4958.35 -- 311,683.9 --
Case1%

1m 4599.35 7.24 108,248.7 65.27
Case2%

1m 4703.60 5.14 130,013.6 58.29
Case3%

1m 4764.19 3.92 131,100.5 57.94
Case4%

1m 4801.02 3.17 145,930.3 53.18
Case5%

1m 4866.32 1.86 145,930.3 53.18

Caser%
M : system cost with an interval of M and a replacement ratio cost of r%.

Finally, we discuss the integrated impacts of the interval length M and the replacement
cost ratio r%. The results are shown in Figure 6, where the system reliability LPSP = 0%
in all cases. As shown in Figure 6, M = 1 week is the optimal interval for system costs
and hydrogen consumption regardless of r%. The hydrogen reduction is over 70% for
r% = 1 − 5%. Furthermore, Figure 6a illustrates the limits on cost reduction, where
M = 1 week is the optimal interval length. Setting a shorter M = 5 days leads to an increase
in system costs, possibly because this interval is unsuitable for data segmentation. Hence,
the periodicity of data segmentation and the replacement expenses should be considered
when optimizing system designs using the extended-window model prediction.
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4. Discussion

This paper proposes extended-window algorithms for model prediction. We then
applied them to a hybrid power system consisting of a PV, batteries, PEMFC, and chemical
hydrogen production system. The proposed method enables the periodic adjustment of the
system components and PMS based on accumulated data.
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We applied MATLAB Simscape ElectricalTM to develop a hybrid power model that
enables the estimation of system responses without extensive experimentation. We then
applied five machine learning methods to develop prediction models for our hybrid power
system. The results showed that the LightGBM and XGBoost models could forecast solar
radiation and load profiles with a higher than 97% accuracy. Therefore, we integrated these
two models into the hybrid power system to investigate the impacts of extended-window
model prediction on system performance.

First, we assessed the impact of interval length M on system performance. The
results showed that system cost and hydrogen consumption gradually decreased when we
shortened the window size M to M = 1 week. Therefore, the regular modification of system
components and power management could improve system performance. However, there
was a limit. For example, setting M = 5 days slightly increased the system costs.

Second, we investigated the influences of replacement costs. The results showed that
the system made fewer component adjustments when the replacement cost increased to
avoid replacement expenses. Hence, increasing the replacement cost could eliminate the
cost reduction afforded by the proposed extended-window model prediction. For instance,
the cost reduction was 7.24% when r% = 1% and was 1.86% when r% = 5%.

Finally, we examined the integrated effects of interval length M and replacement cost
ratio r%. The results indicated that M = 1 week is the optimal interval for reducing system
costs and hydrogen consumption regardless of r%. Conversely, increasing the replacement
cost ratio r% tended to demolish the merits of the extended-window method because the
system tended to make fewer component changes.

To demonstrate the proposed method’s effectiveness and feasibility, we designed
experiments using a hybrid power system that employs the extended-window optimization.
The experiment configuration is shown in Figure 7 and consists of real-time simulation and
physical implementation.
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The real-time simulation applied the optimal system settings of two periods when
M = 5 days and r% = 1%: Period I is 16–20 April 2015 and Period II is 21–25 April 2015. In
Period I, the optimal settings are (b, s) = (8, 5) and (SOClow, SOChigh) = (40%, 50%). With
no extended-window model prediction, the optimal settings remained the same in Period
II. With extended-window model prediction, the optimal settings became (b, s) = (10, 7)
and (SOClow, SOChigh) = (40%, 50%) in period II. The practical implementation consists of a
PEMFC and a loadmeter. When the system needed supplementary power, the simulation
model sent current commands IPEMFC to the PEMFC, which was then physically activated
to provide the required current. The original period was ten days; we applied a scale
factor of 1/600 to shorten the experimental time to 24 min, with the initial SOC = 30%. We
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measured system signals, such as the currents and voltages, to detect signs of potentially
declining efficiency.

The system responses are shown in Figure 8 and Table 6. Because the initial SOC was
30%, the system immediately predicted the system SOC for the following 24 h until t = 87 s,
when the system SOC exceeded a threshold SOC = 50%. At Period I, the predicted SOC for
the next 24 h remained above 20%, indicating a sufficient power supply without the PEMFC.
The system cost was USD 37.66 and the hydrogen consumption was zero. At t = 720 s,
the system reached the second interval; the original system settings (b, s) = (8, 5) gave a
system cost of USD 81.06 and a hydrogen consumption of 17,740.8 L. Using the extended-
window model prediction, the optimal system settings were updated as (b, s) = (10, 7),
and the system cost became USD 54.04, with a hydrogen consumption of 3942.4 L. The
extended-window optimization reduced the system costs and hydrogen consumption by
22.76% and 77.78%, respectively. Finally, the system was sustainable because the system
SOC was maintained above 20% in both cases, as shown in Figure 8b.
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Table 6. Statistical data of Figure 8.

Period I

Optimal settings
(b, s) = (8, 5)
(SOClow, SOChigh) = (40%, 50%)

Results

system cost = US$37.66
Final SOC = 40.98%
∆SOC = 10.98%
H2 consumption = 0

Period II

without extended-window with extended-window

Optimal settings
(b, s) = (8, 5)
(SOClow, SOChigh) = (40%, 50%)

(b, s) = (10, 7)
(SOClow, SOChigh) = (40%, 50%)

Results

system cost = US$81.06
Final SOC = 41.04%
∆SOC = 0.06%
H2 consumption = 17740.8 L

system cost = US$54.04
Final SOC = 60.22%
∆SOC = 19.24%
H2 consumption = 3942.4 L

We also designed an energy module, as shown in Figure 9a, to demonstrate the
feasibility of adjusting system components in real time. The module consisted of a 48 V
22 Ah battery, a foldable 180 W PV panel, and a maximum power point tracking controller
between the PV panels and the DC bus to maximize the output solar power. We used
the ANCHI connector as a hot-wired component, as shown in Figure 9b. The subsequent
experiments showed that the module could share the load demands by hot plugging
in real time. Suppose the load demand was 5 A; the system responses are shown in
Figure 9c,d. First, the primary battery provided the load of 5 A alone, so its SOC decreased
at −0.0062%/s. At t = 1200 s, its SOC dropped to 46.24%, and the energy module was
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hot plugging into the primary system through the ANCHI connector to provide the loads
and raise the primary battery SOC at a rate of 0.0016%/s. Because the experiments were
conducted indoors, we simulated the PV panel by applying a power supply, which provided
a constant solar current Isolar = 2A. Finally, the energy module was disconnected from the
primary system in real time by hot swapping at t = 2400 s. The primary system’s battery
again provided a load of 5 A, with a decreasing rate of −0.0062%/s for the SOC. These
results confirm the feasibility of operating a power system with periodic adjustments of
the components.
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5. Conclusions

This paper proposed the use of extended-window algorithms for model prediction
with applications in hybrid power systems. We considered a PV, batteries, PEMFC, and
chemical hydrogen production system. The proposed methods could periodically adjust
system components and PMS based on solar energy and load predictions. We developed a
hybrid power model to estimate system responses at different operational conditions. We
then built five machine learning models and selected the LightGBM and XGBoost models
to forecast solar radiation and load.

We applied a two-year dataset to investigate the merits of extended-window model
prediction. Regarding the window size, the results showed that shortening the interval
could reduce system costs, with an optimal interval of one week. Regarding the replacement
costs, the system tended to make fewer replacements to decrease expenses when the
replacement costs were higher. Combining these analyses, we concluded that weekly
system updates yielded the lowest costs. The optimal cost and hydrogen reduction were
13.57% and 91.64%, respectively, compared to the system that did not employ the extended-
window algorithms.

Finally, we designed experiments to demonstrate the feasibility of a hybrid power sys-
tem employing extended-window model prediction. The experimental results showed that
the extended-window optimization significantly reduced the system costs and hydrogen
consumption by 22.76% and 77.78%, respectively. We also designed a renewable energy
module that could hot plug into the system DC bus in real time to illustrate the feasibility
of using hybrid power systems that adopt the proposed method.
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In this paper, the system parameters were selected according to system loads. For
example, in the first year, the maximum load and average daily power consumption were
6.83 kW and 15.91 kWh, respectively. Therefore, we applied a 3 kW PEMFC to guarantee
system sustainability, and we set the PV modules in units of 1 kW and the battery modules
in units of 48 V–100 Ah. These settings must be adjusted if the system’s power level
changes [30]. In addition, other components, such as supercapacitors [30], might also
be integrated with the hybrid power systems. Finally, we have not considered battery
degradation to simplify system designs. When considering battery degradation, the battery
needs to be replaced more frequently to maintain system sustainability so that the system
costs will be increased. However, periodic adjustments of the prediction models based on
accumulated data are potentially beneficial in reducing system costs because they can at
least retain the same system settings and prediction models as those without employing the
extended-window algorithms. The proposed extended-window algorithms can be applied
to systems with different layouts and settings for performance improvement.
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Appendix A

The five machine learning algorithms are briefly introduced as follows:

(1) eXtreme Gradient Boosting (XGBoost)

The XGBoost algorithm is a machine learning method known for its rapid training
speed and high accuracy. It is designed to transform multiple base learners into strong
learners, constructing a sequence of interconnected trees. Each base learner functioned as a
classification or regression tree, and every tree is linked to its predecessor. By adjusting
weights, XGBoost corrects errors and enhances predictive precision. This algorithm operates
by classifying data points at various nodes in the tree structure.

Given that a single tree might struggle to make accurate predictions, XGBoost com-
bines multiple trees and creates an ensemble of trees that collectively contribute to the
model. Each tree is assigned the task of discerning distinct features. The computational
methodology is as follows [31]:

ŷi =
K

∑
k=1

fk(xi),

where xi is the feature i, ŷi signifies the predicted outcome of feature i, and fk(xi) denotes
the predictive score of feature i in the k-th tree. Subsequently, we optimized the structure of
the trees using the following objective loss function:

L(ϕ) = ∑
i

l(yi, ŷi) + ∑
k

Ω( fk),

http://140.112.14.7/~sic/PaperMaterial/Prediction_weather_load_data.csv
http://140.112.14.7/~sic/PaperMaterial/Prediction_weather_load_data.csv
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where l(yi, ŷi) is the loss function, which calculates the disparity between the actual value
yi and predicted value ŷi, and Ω( fk) is a regularization term that both smooths the final
learning weights and controls the complexity of the model to prevent overfitting.

(2) Light Gradient Boosting Machine (LightGBM)

LightGBM is a free and open-source machine learning framework developed by
Microsoft in 2016, designed for tackling classification and regression problems. It is built
upon the foundation of a traditional Gradient Boosting Machine (GBM) while introducing
optimizations and enhancements. One of its key innovations was utilizing a Gradient-Based
One-Side Sampling (GOSS) technique, which aimed to maintain accuracy while effectively
handling large datasets. Additionally, LightGBM employs Exclusive Feature Bundling
(EFB) to reduce the feature count by bundling mutually exclusive features. This innovative
approach helps enhance performance and efficiency in various machine learning tasks [32].

(3) CatBoost

CatBoost is a framework based on gradient-boosting decision tree models. The algo-
rithm’s name originates from the words “Category” and “Boost”, highlighting its focus
on categorical features within the dataset. Since categorical features consist of a discrete
set of categories, the typical technique for handling them in boosting methods is one-hot
encoding, which adds a binary feature for each category present in the original feature.
However, for high cardinality features, this approach can lead to an explosion in the
number of features. CatBoost also introduces a sorting algorithm that leverages ordered
target statistics, which evolves from mean encoding. This technique addresses prediction
shift problems arising from distribution differences between training and testing datasets.
It handles categorical features with fewer categories using one-hot encoding. For other
categorical features, CatBoost employs an efficient encoding approach similar to mean
encoding but with an additional mechanism to reduce overfitting [33].

(4) K-Nearest Neighbors (KNN)

KNN is one of the simplest machine learning algorithms for classification and re-
gression analyses. It falls under supervised learning algorithms and employs “feature
similarity” to predict values for new data points. KNN assigns a value to the new point
based on its resemblance to nearby points by assessing the similarity between a new data
point and points within the training set. In the context of regression problems, predicting
the value of a point involves calculating the average of the values of its K nearest neighbors.
There are three ways to calculate the distance: the Euclidean distance, which refers to the
actual distance between two points in N-dimensional space; the Manhattan distance, which
indicates the absolute wheelbase sum of the two points in the coordinate system; and the
Minkowski distance, which generalizes both the Euclidean and Manhattan distances [34].

(5) Random Forest (RF)

RF belongs to supervised learning, encompassing accuracy, simplicity, and flexibility.
It stands as one of the most commonly employed algorithms. Its fundamental principle
revolves around the amalgamation of multiple Classification and Regression Trees (CART)
alongside the inclusion of randomly distributed training data. This incorporation signifi-
cantly enhances the ultimate predictive outcomes. RF is capable of integrating multiple
base learners to construct a potent learner. This approach is also referred to as Ensemble
Learning. Within this context, RF uses Bagging in Ensemble Learning, which involves
resampling the original dataset to generate new ones. The resampling process is uniform
and allows for repetition, enabling the creation of multiple sets of new datasets through
bootstrapping. From these datasets, K samples are extracted and used to train K learners.
Each time, the K samples are drawn with replacements from the original dataset, which
means that some data might be duplicated across these K samples. However, the trained
learners exhibited diversity due to the inherent variability resulting from the slight differ-
ences in the composition of training samples for each learner. The outcome was obtained
through majority voting (classification) or averaging (regression) [35].
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Appendix B

The optimal system settings employing the extended-window design with M = 1 week
and r% = 1% are illustrated in Table A1.

Table A1. The optimal settings with M = 1 week and r% = 1%.

Period (b, s) (SOClow,
SOChigh)

System Cost
(USD)

Hydrogen
Consumption (L)

1st (14, 9) (25%, 30%) 74.17 0
2nd (14, 12) (30%, 35%) 88.31 862.4
3rd (18, 9) (25%, 30%) 80.78 0
4th (11, 9) (25%, 30%) 71.87 0
5th (13, 12) (25%, 30%) 88.79 1479.2
6th (16, 23) (40%, 45%) 191.2 21,628.4
7th (7, 5) (25%, 30%) 59.49 0
8th (8, 9) (25%, 30%) 68.4 0
9th (11, 8) (25%, 30%) 68.41 0
10th (11, 14) (40%, 45%) 92.55 0
11th (11, 5) (30%, 35%) 59.83 123.2
12th (13, 8) (25%, 30%) 71.4 0
13th (20, 6) (30%, 35%) 72.48 123.2
14th (12, 3) (25%, 30%) 51.77 0
15th (26, 6) (35%, 40%) 81.88 369.6
16th (7, 6) (25%, 30%) 57.59 0
17th (7, 5) (35%, 40%) 52.6 0
18th (13, 6) (25%, 30%) 63.12 0
19th (30, 16) (25%, 30%) 127.7 0
20th (14, 6) (25%, 30%) 69.17 0
21th (17, 26) (25%, 30%) 149.5 0
22th (17, 9) (35%, 40%) 84.15 0
23th (12, 7) (45%, 50%) 68.36 0
24th (20, 8) (25%, 30%) 80.25 0
25th (19, 11) (25%, 30%) 89.74 0
26th (16, 8) (35%, 40%) 76.25 0
27th (16, 8) (45%, 50%) 75.1 0
28th (26, 11) (25%, 30%) 99.8 0
29th (28, 12) (25%, 30%) 103.2 0
30th (16, 9) (25%, 30%) 79.67 0
31th (19, 9) (45%, 50%) 81.55 0
32th (21, 8) (25%, 30%) 80.48 0
33th (17, 12) (25%, 30%) 91.15 0
34th (18, 9) (25%, 30%) 80.29 0
35th (27, 24) (40%, 45%) 152.7 0
36th (18, 11) (25%, 30%) 93.36 0
37th (17, 8) (45%, 50%) 76.76 0
38th (16, 6) (25%, 30%) 66.32 0
39th (19, 11) (25%, 30%) 90.78 0
40th (10, 4) (25%, 30%) 56.18 0
41th (13, 6) (25%, 30%) 62.98 0
42th (10, 5) (25%, 30%) 56.02 0
43th (11, 6) (25%, 30%) 61.49 0
44th (12, 11) (25%, 30%) 81.88 0
45th (6, 5) (25%, 30%) 53.99 0
46th (12, 6) (25%, 30%) 61.9 0
47th (12, 9) (40%, 45%) 73.36 739.2
48th (11, 8) (25%, 30%) 68.08 0
49th (12, 14) (25%, 30%) 95.05 0
50th (11, 9) (25%, 30%) 72.43 0
51th (14, 11) (25%, 30%) 83.61 0
52th (12, 23) (25%, 30%) 147.8 0
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