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Abstract: Brain-machine interfaces (BMIs) are broadly defined as systems that establish direct
communications between living brain tissue and external devices, such as artificial arms. By sensing
and interpreting neuronal activities to actuate an external device, BMI-based neuroprostheses hold
great promise in rehabilitating motor disabled subjects, such as amputees. In this paper, we develop
a control-theoretic analysis of a BMI-based neuroprosthetic system for voluntary single joint reaching
task in the absence of visual feedback. Using synthetic data obtained through the simulation of an
experimentally validated psycho-physiological cortical circuit model, both the Wiener filter and the
Kalman filter based linear decoders are developed. We analyze the performance of both decoders
in the presence and in the absence of natural proprioceptive feedback information. By performing
simulations, we show that the performance of both decoders degrades significantly in the absence of
the natural proprioception. To recover the performance of these decoders, we propose two problems,
namely tracking the desired position trajectory and tracking the firing rate trajectory of neurons
which encode the proprioception, in the model predictive control framework to design optimal
artificial sensory feedback. Our results indicate that while the position trajectory based design can
only recover the position and velocity trajectories, the firing rate trajectory based design can recover
the performance of the motor task along with the recovery of firing rates in other cortical regions.
Finally, we extend our design by incorporating a network of spiking neurons and designing artificial
sensory feedback in the form of a charged balanced biphasic stimulating current.

Keywords: closed-loop brain-machine interfaces; artificial sensory feedback; model predictive control

1. Introduction

Brain-machine interfaces (BMIs) [1,2] are broadly defined as systems that establish direct
communications between living brain tissue and external devices such as artificial arm. The major
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components of these systems include measurements of cortical neuronal activity, extraction of
task-relevant motor intention (decoder), and an encoder that feeds back the motor relevant sensory
information back to the brain. Thus the brain, the BMI and the prosthetic device together act as
a closed-loop BMI. Figure 1 shows a closed-loop BMI design (also known as brain-machine-brain
interface (BMBI) [3]).

Figure 1. A closed-loop brain-machine interface (BMI).

In the last two decades, BMI based motor intended neural prosthetic systems have been studied
extensively [4–11]. In most of these studies, healthy subjects are trained to perform a specific motor
task such as reaching or grasping. Recorded data during the performance of the task are then used to
develop a mathematical model called decoder. The decoder extracts the kinetic as well as the kinematic
motor information from a continuously recorded firing activity of motor relevant cortical neurons.
The performance of the decoder is typically measured by applying the decoded information to a
prosthetic arm. The online movement based error correction during the reaching task is accomplished
by the subject using the available visual feedback information in the absence of the natural
proprioception. Therefore these BMIs are considered as partially closed-loop systems in their current
formulations where the incorporation of artificial proprioception is neglected in their designs.

In the absence of tactile feedback, these BMIs can fail to differentiate visually similar textures.
Similarly, in the absence of proprioception, these BMIs are unable to provide the natural sensation
of the arm movement which are both experienced and used by healthy subjects in controlling their
natural limb movements. It has been recognized in the BMIs community that the inclusion of sensory
feedback from the actuated artificial limb in BMIs is necessary to improve the versatility of motor-based
BMIs [12]. It has also recently been shown in [13] that kinesthetic feedback together with the visual
feedback can significantly improve the BMI performance.

Recently, attempts have been made towards closing the BMI loop by incorporating artificial
texture [3] and proprioception [14,15] information. In these studies, a intra-cortical micro-stimulation
(ICMS) technique has been investigated as a promising approach in providing artificial sensation of
motor tasks to the brain. The approach relies on a learning paradigm where the subject is trained to
differentiate [3] or learn [14,15] artificial sensory feedback in a task-dependent context. Even though
the approach is promising for developing future BMIs, the experimental trial and error approach in
designing appropriate stimulating sensory input currents may change the natural functionality of the
brain. Therefore, a systematic approach that uses optimal feedback control theory is highly desirable
towards developing stimulation enhanced next generation BMIs. This approach provides flexibility
in designing optimal stimulating sensory input currents and analyzing the closed-loop BMI under
various feedback scenarios. It may also reduce the learning effort of the motor task by guiding the
movement in the initial learning of the BMI motor task.

The intellectual merit of studying BMIs by taking control-theoretic approach is to exploit all
the available degrees of freedom in developing the next generation of BMI-based feedback-enabled
neuroprosthetic devices. The development of these feedback-enabled neuroprosthetic devices is
necessary for making the prosthetic devices prone to error in decoding and targeting the intended
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action of the neurons. Moreover, issues such as prosthetic system stability, system reliability,
impact of transmission loss, latency and time delays, impact of model complexity and uncertainty,
optimality of the modeling and control framework, etc. are critical to the clinical deployment of next
generation BMIs.

In recognition of these merits, systematic control-theoretic approaches have recently been taken
to optimize the learning process in BMIs [7], rigorously analyze the BMI systems [16–18] and design
artificial sensory feedback optimally [19,20] by developing a theoretical framework based on optimal
feedback control (OFC) theory. For instance, the authors in [7] proposed a learning model to maximize
the performance of closed-loop BMIs by leveraging tools such as inverse models and feedback control
which are formally embedded in control theory. The authors in [18] developed a theoretical model
of BMI experiments using optimal feedback control as a policy for brain control during BMI motor
tasks. The framework incorporates visual and proprioceptive feedback in estimating states which
are then used to compute optimal control inputs for stimulating neuronal models of the primary
motor cortex and the premotor cortex neurons. Using this framework, the authors showed that the
experimentally observed abrupt changes in neural modulations when switching to BMI control can be
explained using optimal feedback control. In [16], the authors investigated the importance of visual
and proprioceptive feedback in BMIs by using a framework of model predictive control in designing
optimal stimulus for a single spiking neuron for a single joint movement task based closed-loop BMI.
In [17], the authors proposed a stochastic optimal feedback controller as the closed-loop operation of
the brain during a BMI performance. Using this framework, they analyzed the performance of open
and closed-loop BMIs and explained key phenomenon in closed-loop BMI operation. In particular,
they explained the experimentally observed parametric variations in closed-loop operation of BMIs
such as the performance deterioration with increasing bin width and diminishing effect of decoder bias
in closed-loop BMIs. In [19], the authors showed the first systematic approach in designing optimal
artificial sensory feedback in closed-loop BMIs. In particular, the authors proposed an optimal design
of feedback-enabled closed-loop BMI and designed artificial proprioceptive feedback using a model
predictive controller in a single joint reaching task. The authors further extended their firing rate-based
approach [19] to ICMS [20].

In this article, we theoretically demonstrate the recovery of closed-loop performance of a BMI for
voluntary single joint extension task by designing an optimal artificial sensory feedback in the absence
of the natural proprioceptive feedback pathways. Throughout our analysis, we exclude the treatment
of visual feedback as well any form of cortical learning. A theoretical experiment is performed on
a firing rate based cortical circuit model of a voluntary control of a single joint extension task to
design a BMI. In particular, we design both the Wiener filter and the Kalman filter based decoders and
compare their performances. We emphasize the degraded online performance of both decoders in the
absence of the proprioceptive feedback. An optimal artificial sensory feedback in the framework of
model predictive control is designed to compensate the loss of the natural proprioceptive feedback
pathways. We extend our design by including a recurrent network of spiking neurons in the firing rate
based neurophysiological cortical circuit model which allow us to design artificial sensory feedback in
the form of a charge-balanced biphasic waveform of stimulating input current. We demonstrate the
efficacy of our designs by performing simulations.

The remainder of this paper is organized as follows. In Section 2, we describe the
neurophysiological cortical circuit model of a voluntary single joint extension task which we used
to generate the synthetic data in Section 3. This is followed by the design of both the Wiener filter
and the Kalman filter based linear decoders in Section 4. The performance analysis of the designed
decoder in the presence and in the absence of the natural proprioception are described in Section 5.
We formulate the model predictive control problems and design the artificial sensory feedback in
Section 6. The paper ends with discussion.
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2. Psycho-Physiological Cortical Circuit Model of Single Joint Movement

We used an average firing rate based psycho-physiological cortical circuit model, proposed by [21]
and shown in Figure 2, for voluntary control of a single joint movement to design a closed-loop BMI.
This minimal model captures the essential cortical pathways as well as the proprioceptive feedback
pathways which are relevant during voluntary extension or flexion of a single joint such as elbow.
Although the model excludes the treatment of visual feedback during the movement, the model
has shown its capability in a qualitative reproduction of several experimentally observed results
on voluntary control of a single joint movement. The details of the model and its connection with
neurophysiology of a single joint voluntary movement can be found in [21].

Figure 2. A psycho-physiological cortical circuit model for voluntary control of single joint movement:
The diagram has been redrawn from Bullock et al. [21], Figure 1.1. Nomenclature (adopted from [21]):
“GO” is a scalable gating signal; “DVV” is the desired velocity vector; “OPV” is the outflow position
vector; “OFPV” is the outflow force and position vector; “SFV” is the static force vector; “IFV” is the
inertial force vector; “PPV” is the perceived position vector; “DV” is the difference vector; “TPV” is the
target position vector; “γd” and “γs” are dynamic and static gamma motoneurons respectively; “α” is
alpha motoneuron; “Ia” and “I I” are type Ia and II afferent fibers; − represents inhibitory feedback.
The rest of the connections are excitatory.

Briefly, a population of area 5 (the parietal cortex) “DV” neurons computes the difference between
the target and the perceived limb position vectors. The average firing activity of a population of these
neurons is represented as

ri(t) = max{Ti − xi(t) + Br, 0}. (1)

Here, 0 ≤ ri(t) ≤ 1 represents the average firing activity of a population of “DV” neurons
associated with the agonist muscle i and shows a phasic behavior during the movement. Throughout
the paper, we will denote the average firing activity of neurons associated with the agonist muscle
i by the subscript i and the corresponding antagonist muscle by the subscript j. Ti is the target
position vector (“TPV”) command for the target position of the agonist muscle i. xi(t) is the average
firing activity of a population of area 5 “PPV” neurons. These neurons continuously compute
the present position of the agonist muscle i. Br is the base firing activity of the “DV” neurons.
Continuously computed difference vector information by the area 5 “DV” neurons is then scaled
by a population of area 4 (the primary motor cortex (M1)) “DVV” neurons as
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ui(t) = max{g(t).(ri(t)− rj(t)) + Bu, 0}. (2)

Here, ui(t) is the average firing activity of a population of area 4 “DVV” neurons. Bu is the base
firing activity of the “DVV” neurons. g(t) is an internal “GO” signal which is assumed to be originated
from the basal ganglia. “DVV” neurons fire only during the movement and thus their average firing
activity shows a phasic-movement time (MT) behavior. The dynamics of the internal “GO” signal is
modeled as

dg1(t)
dt

= ε(−g1(t) + (C− g1(t))g0), (3a)

dg2(t)
dt

= ε(−g2(t) + (C− g2(t))g1(t)), (3b)

g(t) = g0 g2(t)
C

. (3c)

Here, ε represents a slow integration rate and is treated as constant. C is a constant value at which
the “GO” neurons saturate. The area 4 “OPV” neurons receive information from the area 4 “DVV”
neurons as well as the area 5 “PPV” neurons and show tonic firing activity. The average firing activity
of a population of “OPV” neurons is modeled as

dyi(t)
dt

= (1− yi(t))(ηxi(t) + max{ui(t)− uj(t), 0})− yi(t)(ηxj(t) + max{uj(t)− ui(t), 0}). (4)

Here, η is a scaling factor. The average firing activity of a population of static (γS
i (t)) and dynamic

(γD
i (t)) gamma motoneurons are modeled as

γS
i (t) = yi(t), (5a)

γD
i (t) = ρ max{ui(t)− uj(t), 0}. (5b)

Here, ρ is a scaling parameter. The average firing activity of the primary (“Ia”) and the secondary
(“II”) muscle spindles afferents are modeled as

s1
i (t) = S(θ max{γS

i (t)− pi(t), 0}

+ φ max{γD
i (t)− dpi(t)

dt
, 0}),

(6a)

s2
i (t) = S(θ max{γS

i (t)− pi(t), 0}). (6b)

Here, s1
i (t) and s2

i (t) are the primary and the secondary spindles afferents average firing activity
respectively. pi is the position of the agonist muscle i. θ is the sensitivity of the static nuclear bag
and chain fibers. φ is the sensitivity of the dynamic nuclear bag fibers. The saturation of spindles
afferents activity is given by the function S(ω) = ω/(1 + 100ω2). The average firing activity xi(t) of a
population of area 5 “PPV” neurons is modeled as

dxi(t)
dt

= (1− xi(t))max{Θyi(t) + s1
j (t− τ)− s1

i (t− τ), 0}

− xi(t)max{Θyj(t) + s1
i (t− τ)− s1

j (t− τ), 0}. (7)
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Here, τ is the delay time of the spindles feedback. Θ is a constant gain. The average firing activity
qi(t) of a population of area 4 “IFV” neurons is modeled as

qi(t) = λi max{s1
i (t− τ)− s2

i (t− τ)−Λ, 0}. (8)

Here, Λ is a constant threshold. The average firing activity fi(t) of a population of area 4 “SFV”
neurons is modeled as

dfi(t)
dt

= (1− fi(t))hs1
i (t− τ)− ψ fi(t)( f j(t) + s1

j (t− τ)). (9)

Here, h is a constant gain which controls the strength and speed of an external load compensation.
ψ is an inhibitory scaling parameter. The average firing activity ai(t) of a population of the area 4
“OFPV” neurons is modeled as

ai(t) = yi(t) + qi(t) + fi(t). (10)

The average firing activity of these neurons shows a phasic-tonic behavior. The average firing
activity αi(t) of alpha motoneurons is modeled as

αi(t) = ai(t) + δs1
i (t), (11)

where δ is a stretch reflex gain. The limb dynamics is described by

d2pi(t)
dt2 =

1
I
(M(ci(t)− pi(t))−M(cj(t)− pj(t))

+ Ei −V
dpi(t)

dt
).

(12)

Here pi(t) is the position of the agonist muscle i within its range of origin-to-insertion
distances. pj(t) is the position of the antagonist muscle such that pi(t) + pj(t) = 1. I is the
moment of inertia of the limb. V is the joint viscosity. Ei is the external force applied to the joint.
M(ci(t), pi(t)) = max{ci(t)− pi(t), 0} represents the total force generated by the agonist muscle i.
ci(t) is the muscle contraction activity dynamics of which is given by

dci(t)
dt

= ν(−ci(t) + αi(t)). (13)

3. Synthetic Experimental Data Generation for Extension Task

In a typical non-human primate experiment, a monkey is trained to accomplish a given motor
task such as reaching or grasping. After the training, spiking activity of single neurons are recorded
through implanted multi-channel electrodes from various motor relevant cortical areas such as the
primary motor cortex (M1), the premotor area (PMv, PMd), and the primary somatosensory area (S1).
Simultaneously, kinetic and kinematic information such as joint torque, velocity and position of the
real arm are measured to generate a data set to design a decoder.

In this work, we generated a synthetic experimental data set for voluntary control of a single joint
extension task by simulating the system model (1)–(13) in MATLAB (Version R2011b, The MathWorks,
Inc., Natick, MA, USA). The target position of the agonist muscle i was set to the desired one at t = 0.
The “GO” signal was turned on at t = 50 ms. During the initial 50 ms, the system was at the priming
state. The initial condition of variables was set to 0 except xi(0) = xj(0) = 0.5, yi(0) = yj(0) = 0.5,
pi(0) = pj(0) = 0.5, ui(0) = uj(0) = Bu and ri(0) = rj(0) = Br. For the simulation, we used the
following model parameters [21]: I = 200, V = 10, ν = 0.15, Br = 0.1, Bu = 0.01, Θ = 0.5, θ = 0.5,
φ = 1, η = 0.7, ρ = 0.04, λ1 = 150, λ2 = 10, Λ = 0.001, δ = 0.1, C = 25, ε = 0.05, ψ = 4, h = 0.01,
T1 = 0.7 and τ = 0.
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In BMI experiments, a trial is considered successful if the trained monkey accomplishes the
specified motor task in a given time duration. Thus the accomplishment time of the task in successful
trials is allowed to vary. In our case, the “GO” signal controls the velocity of the joint movement
and thus the accomplishment time of a given task. Therefore we assumed that there is a trial-to-trial
variability in the internal “GO” signal. To introduce the trial-to-trial variability in the “GO” signal,
we modeled g0 as a Gaussian distributed random variable with mean 0.75 and variance 0.0025. For
a given trial, g0 is constant. It should be noted that the “GO” signal has no effect on the accuracy of
the movement.

We simulated the model and generated synthetic data for 1600 independent trials of the voluntary
single joint extension task. In each of these trials, the simulation was performed for the duration of
1.45 s which includes a variable holding period at the target position after the accomplishment of the
task. To generate a synthetic data set, we measured the average firing activity of a population of area 4
“DVV”, “OPV”, and “OFPV” agonist and the corresponding antagonist neurons sampled at every
10 ms. Simultaneously, we measured the agonist muscle position pi(t), the agonist muscle velocity
vi(t) = dpi(t)/dt, and the total force difference between the agonist and the corresponding antagonist
muscle ∆M(t) = M(ci(t), pi(t))−M(cj(t), pj(t)) at every 10 ms. With this, we created a data set of
233, 600 samples by embedding recorded data from 1600 trials.

4. Wiener and Kalman Filters Based Decoder Designs

Neurophysiological as well as BMI experimental studies have shown the encoding of task-relevant
kinetic as well as kinematic motor information in the spike trains of the cortical area 4 neurons. For a
given motor task, this motor information is extracted from a continuously recorded spike train of the
cortical area 4 neurons by developing a mathematical model called decoder. In the past, several linear
and nonlinear decoders have been developed in BMI studies. Among them, the most popular are based
on the Wiener filter [22], the Kalman filter and its variations [23–28], artificial neural networks [29] and
recurrent neural networks [30].

We designed both the adapted Wiener filter [22] and the Kalman filter [28]) based decoder models
(linear decoders) to extract the total force difference between the agonist and the corresponding
antagonist muscle (∆M(k)), the agonist muscle position (pi(k)), and the agonist muscle velocity (vi(k))
from the recorded firing activity of the area 4 “DVV”, “OPV”, and “OFPV” neurons and performed
comparisons between the performance of these two decoders. Here, k = 1, 2, · · · is a discrete sample
time at which data were recorded for a given trial. k = 1 corresponds to t = 0 ms, k = 2 corresponds
to t = 10 ms, and so on. We emphasize that these neurons have direct contribution to the spinal cord
circuit of the neurophysiological system shown in Figure 2.

4.1. Wiener Filter Based Decoder Design

In a discrete-time adapted Wiener filter based decoder design [22], the relation between ∆M(k)
and the average firing activity of area 4 neurons, i.e., “DVV”, “OPV”, and “OFPV” neurons can be
expressed as

∆M(k) = wTz(k) + n1(k). (14)

Here, w is a (L.N)× 1 weight vector. L is the number of delay elements. (·)T is the transpose of
a vector. z(k) = [z1(k), z1(k− 1), · · · , z1(k− L + 1), z2(k), · · · , zN(k− L + 1)]T . zm(k− l) represents
the average firing activity of the population m delayed by l samples. For our system, z1 = yi, z2 = yj,
z3 = ui, z4 = uj, z5 = ai, and z6 = aj. Thus, N = 6. We assumed the number of delay elements L = 10.
Thus the weight vector w has a dimension of 60× 1. We also assumed that there is no measurement
noise in obtaining data i.e., n1(k) = 0. Similarly, the relation between [pi(k), vi(k)]T and the average
firing activity of area 4 neurons i.e., “DVV”, “OPV”, and “OFPV” neurons can be expressed as

[pi(k), vi(k)]T = WTz(k). (15)
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Here, WT is a weight matrix of dimension 60× 2. We again assumed that there is no measurement
noise in obtaining data.

For consistency with BMI experiments, in this work, we used 220,000 samples of the recorded
synthetic data to train the weight vector “w” and the weight matrix “W” of the designed decoders
(Equations (14) and (15)). For this, we used the following normalized least mean squares algorithm [22]:

w(k + 1) = w(k) +
η

β + ||z(k)||2 z(k)e(k). (16a)

W(k + 1) = W(k) +
η

β + ||z(k)||2 z(k)(e(k))T . (16b)

Here, η and β are constants. || · || represents the Euclidean norm. In Equation (16a), e(k)
represents a scalar error between the recorded ∆M(k) and the estimated value through Equation (14).
In Equation (16b), e(k) represents the error vector between the recorded [pi(k), vi(k)]T and the
estimated value through Equation (15). For our study, we set η = 0.01 and β = 1. After the training,
we froze the weight vector “w” and the weight matrix “W” to the final adapted value. Then we used
the rest of 13,600 samples to validate the performance of both decoders.

Figure 3A,C shows the offline performance of the adapted Wiener filter based decoder in decoding
the joint position pi(k) and the joint velocity vi(k) respectively, as defined by Equation (15), on the test
data for 1000 samples. Figure 3E shows the offline performance of the adapted Wiener filter based
decoder in decoding the force difference between the agonist and the corresponding antagonist muscle,
∆M(k), as defined by Equation (14), on the test data for 1000 samples.

Decoded Data Experimental Data0.75

0.45

0 1000

A

-1

8

0 1000

C

-0.05

0.2

0 1000

E

B
0.71

0.49

0 1000

-1

8

0 1000

D

0 1000

-0.05

0.2
F

Wiener Filter Kalman Filter

Figure 3. Comparison of the offline performances of the Wiener filter and the Kalman filter based
decoders for the single joint reaching task on a sample part of the test data. (A,C,E) show the comparison
between the experimental (dotted line, red) and the decoded (solid line, blue) joint position pi(k),
joint velocity, vi(k) and force difference between the agonist and the corresponding antagonist muscle,
∆M(k) respectively for the Wiener filter based decoder; (B,D,F) show the comparison between the
experimental (dotted line, red) and the decoded (solid line, blue) joint position pi(k), joint velocity, vi(k)
and force difference between the agonist and the corresponding antagonist muscle, ∆M(k) respectively
for the Kalman filter based decoder.
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4.2. Kalman Filter Based Decoder Design

The following set of dynamical equations describes the design of the Kalman filter based
decoder [28]:

x̂(k | k− 1) = Ax̂(k− 1), (17a)

P̂(k | k− 1) = AP̂(k− 1)AT + R, (17b)

x̂(k) = x̂(k | k− 1) + Kk(z(k)− Cx̂(k | k− 1)), (17c)

P̂(k) = (I − KkC)P̂(k | k− 1), (17d)

Kk = P̂(k | k− 1)CT(CP̂(k | k− 1)CT + Q)−1. (17e)

Here, x̂(k | k − 1) and x̂(k) represent a priori and a posteriori estimate of the state vector x(k)
of dimension n × 1 at time k respectively. P̂(k | k − 1) and P̂(k) are the estimate of a priori and a
posteriori covariance matrix respectively. z(k) is the observation (firing rate) vector of dimension r× 1.
Kk is the Kalman gain and I is an identity matrix. A ∈ Rn×n is the state matrix and is given by
A = X2XT

1 (X1XT
1 )
−1. C ∈ Rr×n represents the observation matrix and is given by C = ZXT(XXT)−1.

R = 1
D−1 (X2− AX1)(X2− AX1)

T and Q = 1
D (Z−CX)(Z−CX)T are covariance matrices of Gaussian

noise sources with mean zero to the state and the observation vectors respectively. The structure of
matrices Z, X, X1, and X2 is given by

Z =

z1,1 · · · z1,D
...

. . .
...

zr,1 · · · zr,D

 (18a)

X =

x1,1 · · · x1,D
...

. . .
...

xn,1 · · · xn,D

 (18b)

X1 =

x1,1 · · · x1,D−1
...

. . .
...

xn,1 · · · xn,D−1

 (18c)

X2 =

x1,2 · · · x1,D
...

. . .
...

xn,2 · · · xn,D

 (18d)

Here, zi,j represents the jth firing rate data of the ith neuron. xi,j represents the jth data of the
ith state.

For our system, x(k) ≡ ∆M(k) (n = 1) if the total force difference between the agonist
and the corresponding antagonist muscle (∆M(k)) is extracted, and x(k) ≡ [pi(k), vi(k)]T (n = 2)
if the position and the velocity of the agonist muscle are extracted from the average firing
activity of area 4 neurons i.e., “DVV”, “OPV”, and “OFPV” neurons. r = 6 and D = 220,000.
z(k) = [yi(k), yj(k), ui(k), uj(k), ai(k), aj(k)]T .

For consistency with the Wiener filter based decoder design, we used 220,000 samples of the
recorded synthetic data to compute A, C, R, and Q for both x(k) ≡ ∆M(k) and x(k) ≡ [pi(k), vi(k)]T .
Then we used the rest of 13, 600 samples to validate the performance of the decoder for both cases.

Figure 3F shows the offline performance of the Kalman filter based decoder on the test data for
1000 samples when x(k) ≡ ∆M(k) and Figure 3B,D shows the offline performance of the Kalman filter
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based decoder on the test data for 1000 samples when x(k) ≡ [pi(k), vi(k)]T . Clearly, the Kalman filter
based decoder performed better than the Wiener filter based decoder on the test data.

4.3. Comparison of Designed Decoders

We compared the performance of the designed decoders (i.e., the Wiener filter and the Kalman
filter) in an open-loop BMI system design shown in Figure 4.

Figure 4. An open-loop BMI system design.

As shown in Figure 4, the average firing activity of area 4 neurons i.e., “DVV”, “OPV”, and
“OFPV” neurons are used by the decoder to extract either the total force (∆M(k)) or the position
(pi(k)) and the velocity (vi(k)) of the agonist muscle. To compare the performance of both decoders
(i.e., the Wiener filter and the Kalman filter based decoders), We simulated (1)–(10) along with the
particular decoder model (i.e., (14)–(16) for the Wiener filter and (17) and (18) for the Kalman filter)
and s1

i (t− τ) = s2
i (t− τ) = s1

j (t− τ) = s2
j (t− τ) = 0 and g0 = 0.75. Remaining model parameters

are the same as given in Section 3.
Figure 5A,B compare the open-loop performance of the Wiener filter based decoder and the

Kalman filter based decoder with the performance of the closed-loop real system shown in Figure 2
when the extracted information from both decoders is the position (pi(t)) and the velocity (vi(t)) of the
agonist muscle in real time t respectively. As shown clearly in these figures, the performance of both
decoders degrades substantially in the absence of the natural proprioception information. Moreover,
the Kalman filter performed better over the Wiener filter in decoding position compared to the velocity
of the agonist muscle.

Figure 5C compares the open-loop performance of the Wiener filter based decoder and the Kalman
filter based decoder with the performance of the closed-loop real system shown in Figure 2 when
the extracted information from both the decoders is the total force (∆M(t)) in real time t. As shown
in Figure 5C, the performance of both decoders degrades substantially in the absence of the natural
proprioception information.

Without the loss of generality, in the rest of the paper, we considered the Wiener filter based
decoder design with ∆M(t) as the extracted information to design closed-loop BMIs. Note that the
described approach can be implemented to other forms of decoders as well.
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Figure 5. Comparison of the open-loop performances of the Wiener filter based decoder and the
Kalman filter based decoder with the performance of the closed-loop real system shown in Figure 2.
(A) compares the open-loop decoder performance and the performance of the closed-loop real system
when the extracted information from both decoders was the joint position, pi(t); (B) shows the
open-loop decoder performance and the performance of the closed-loop real system when the extracted
information from both decoders was the joint velocity, vi(t); (C) compares the open-loop decoder
performance and the performance of the closed-loop real system when the extracted information
from both decoders was the force difference between the agonist and the corresponding antagonist
muscle, ∆M(t).

5. Need of a Closed-Loop BMI

We studied the online performance of the Wiener filter based decoder with ∆M(k) as the extracted
information in the presence and in the absence of the natural proprioceptive feedback information
when the decoder interacts with the dynamics of the muscle as shown in Figure 6.

Figure 6. A closed-loop BMI system design using the natural proprioceptive feedback information
(sensory feedback).

To make a realistic comparison of the performance of the decoder with the neurophysiological
(psycho-physiological) system, we first carried out our investigation by studying the performance of
the neurophysiological system shown in Figure 2 in the presence and in the absence of the natural
proprioceptive feedback i.e., the sensory feedback. For both cases, we simulated (1)–(13) with g0 = 0.75.
The remaining model parameters are the same as given in Section 3 for both cases except θ = 0 and
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ρ = 0 in the case of no proprioception. This means that the primary (“Ia”) and the secondary (“II”)
muscle spindles afferents become inactive (see (6)) in the absence of proprioception.

Figure 7A shows the position trajectory of the agonist muscle i (pi(t)) in the presence and in the
absence of the natural proprioception for the neurophysiological system.

0.4

0.8

0 3000

With Proprioception

Without Proprioception

Psycho-Psysiological System

0 3000
0.4

0.8
Brain-Machine Interface

With Proprioception

Without Proprioception

0

0.2

0 3000
0.45

0.75

0 3000

0.5

0.95
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0.75
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Area 4 "OPV"

Area 5 "PPV"
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B

C

Figure 7. Degradation in the performance of BMI in the absence of proprioception. (A,B) show the
position trajectory of the agonist muscle i (pi(t)) as a function of time (t) in the presence (solid line) and
in the absence (dotted line) of the natural proprioceptive feedback information. (A) shows the position
trajectory for the neurophysiological system (“Psycho-Physiological System”) while (B) shows the
position trajectory for the designed BMI (“Brain-Machine Interface”). The desired position target (Ti)
for the agonist muscle i in (A,B) is 0.7; (C) shows the average firing activity of a population of agonist
area 4 “DVV” (ui(t)), area 4 “OPV” (yi(t)), area 4 “OFPV” (ai(t)) and area 5 “PPV” (xi(t)) neurons
in the presence (solid line) and in the absence (dotted line) of the natural proprioceptive feedback
information for the designed BMI.

As shown in Figure 7A, the desired position of the agonist muscle i has been achieved in both
cases for the neurophysiological system. The result is consistent with a prior neurophysiological
experiment where it was shown that a trained monkey (in the absence of visual feedback) can reach
the desired target position in the presence and in the absence of proprioception [31].

Next we studied the performance of the closed-loop BMI (decoder) (in the presence of the natural
proprioceptive feedback information) and the open-loop BMI (decoder) (in the absence of the natural
proprioceptive feedback information) shown in Figure 6. For this, we simulated (1)–(10), (12) and (14).
Here we assumed that the limb dynamics is the same for the neurophysiological system and the BMI.
For the open-loop BMI, we again set θ = 0 and ρ = 0.

Figure 7B shows the position trajectory of the agonist muscle i (pi(t)) in the presence and in the
absence of the natural proprioception for the closed-loop and the open-loop BMI.

It is clear from Figure 7B that the decoder performance degrades substantially when the decoder,
trained with the closed-loop data, is applied on the open-loop system. Since the decoder was trained
with the closed-loop firing activity of the area 4 “OPV”, “DVV” and “OFPV” neurons, the firing activity
of these neurons must have changed significantly in the absence of the natural proprioception feedback
information. To see this, we plotted the firing activity of these neurons in the presence and in the
absence of the natural proprioception feedback information for the BMI design shown in Figure 6.
Figure 7C shows the firing activity of the area 4 “OPV”, “DVV” and “OFPV” neurons and the area 5
“PPV” neurons in the presence and in the absence of the natural proprioceptive feedback information.

As shown in Figure 7C, the firing activity of cortical neurons deviates significantly from the
closed-loop activity in the absence of the natural proprioceptive feedback information. Since the
weights of the designed decoder were not adapted to accommodate these significant deviations in the
firing activity of the area 4 neurons, the decoder performance degrades substantially in the absence of
the natural proprioceptive feedback information. These results clearly show that there is a necessity for
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designing an artificial proprioceptive feedback to regain the closed-loop performance of the designed
decoder in the absence of the natural proprioceptive feedback.

6. Artificial Proprioceptive Feedback Design

As shown in Figure 2, the area 5 “PPV” neurons receive the position feedback information
through the primary (Ia) muscle spindles afferents. These neurons then use this proprioceptive
feedback information to compute the present position vector command. In the absence of the natural
proprioceptive feedback pathways, this feedback information is lost. In order to compensate the lost
feedback information of the area 5 “PPV” neurons, we design an artificial sensory feedback in a model
predictive control framework. The goal is to recover the closed-loop performance of the decoder
(the Wiener filter based decoder with ∆M(k) as the extracted information) by providing the designed
optimal artificial sensory feedback to the “PPV” neurons in the absence of the natural proprioceptive
feedback pathways. Note that we are not designing artificial feedback to compensate the loss of
sensory feedback to the area 4 “IFV” and “SFV” neurons in this study. Thus in the absence of the
natural sensory feedback, these neurons remain inactive during our analysis.

6.1. Model Predictive Control

Model predictive control (MPC) is an optimal control strategy that explicitly incorporates a
dynamic model of the system as well as constraints in determining control actions. At each time k,
the system measurements are obtained and a model of the system is used to predict future outputs
of the system Ok+l+1|k, l = 0, 1, 2, · · · , Np − 1 as a function of current and future control moves
Ik+l|k, l = 0, 1, 2, · · · , Nc − 1. How far ahead in the future the predictions are computed is called the
prediction horizon Np and how far ahead the control moves are computed is called the control horizon
Nc. Figure 8 illustrates the idea of prediction and control horizon in a model-based receding horizon
control strategy.

Figure 8. Prediction and controller move optimality in MPC.

Using the predictions from the model, the Nc control moves Ik+l|k, l = 0, 1, · · · , Nc − 1 are
optimally computed by minimizing a cost function Jk over the prediction horizon Np subject to
constraints on the control inputs as well as any other constraints on the internal states and outputs of
the system as follows:

min
Ik+l|k ,l=0,1,··· ,Nc−1

Jk (19)
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subjects to constraints on control inputs and the system. A typical quadratic objective cost function
may be of the form

Jk =
Np−1

∑
l=0
{[Ok+l+1|k − Pk+l+1|k]

TQ1[Ok+l+1|k − Pk+l+1|k]}+
Nc−1

∑
l=0
{IT

k+l|kR1 Ik+l|k}. (20)

Here, Pk+l+1|k is the output to be tracked. The matrices Q1 and R1 are positive semidefinite
and positive definite weighting matrices respectively which determine the relative importance of the
tracking objective versus control effort. Only the first optimally computed move Ik|k is implemented
out of m computed optimal moves at time k. At the next time k + 1, new system measurements are
obtained and the optimization problem is solved again with the new measurements. Thus, the control
and prediction horizon recede by one step as time moves ahead by one step. The measurements at
each sampling time provide feedback for rejecting inter-sample disturbances, model uncertainty and
noises, all of which cause the model predictions to be different from the true system output.

6.2. Firing Rate Based Closed-Loop BMI Design

In order to recover the closed-loop (natural) performance of the decoder, we formulate two control
problems in this section. In the first problem, we design an optimal artificial sensory feedback to
stimulate the population of area 5 “PPV” neurons such that the position trajectory of the agonist
muscle i matches the position trajectory obtained in the presence of the natural proprioception during
the reaching task. We call this “Problem 1”. Although we are not treating the visual feedback in this
work, this position trajectory tracking problem can be considered equivalent to the BMI experiments
where the visual feedback is used by the subject to make online corrections in the trajectory during the
reaching task in the absence of proprioception. In the second problem, the goal is to match the average
firing activity of the agonist population of “PPV” neurons to its natural firing activity by designing an
optimal artificial feedback to stimulate the agonist population of the area 5 “PPV” neurons. We call
this “Problem 2”. This firing rate trajectory tracking problem can be considered equivalent to the BMI
experiments where the primary somatosensory area (S1) neurons are stimulated artificially to restore
the natural proprioception information. Figure 9A,B show the design of a closed-loop BMI operation
during the reaching task for problem 1 and problem 2 respectively.

As shown in Figure 9A,B, for both problems we use the MPC strategy (described above) to design
the optimal artificial sensory feedback and formulate the following control problem for the systems
shown in Figure 9A,B:

min
I(k|k),I(k+1|k),··· ,I(k+Nc−1|k)

Jp(k) (21a)

such that

I(k + l | k) ∈ [−0.5, 0.5] f or 0 ≤ l ≤ Nc − 1, (21b)

I(k + l | k) = 0 f or Nc ≤ l ≤ Np − 1. (21c)

Here, I(k + l | k) for l = 0, 1, · · · , Nc − 1 is the designed artificial sensory input.

Jp(k) = ∑
Np−1
l=0 (O(k + l + 1 | k)− P(k + l + 1 | k))2 is the cost function. Note that O(k + l + 1 | k)

and P(k + l + 1 | k) are scalars in our case with Q1 = R1 = 1 (see Equation (20)). In case of Problem 1
(see Figure 9A), the measured output of the system O(k | k) at a given time k is the position of the
agonist muscle i, i.e., pi(k | k). P(·) represents the desired position trajectory. In case of Problem 2
(see Figure 9B), the measured output of the system O(k | k) at a given time k is the average firing
activity of the area 5 “PPV” neurons associated with the agonist muscle i, i.e., xi(k | k). P(·) represents
the desired average firing activity of the area 5 “PPV” neurons.
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To solve the control problem (21), we first compute the desired position and firing activity
trajectory for Problem 1 and 2 respectively. For this, we simulate (1)–(5), (6a), (7), (10), (12) and (14).
It should be noted that we have included only the natural sensory feedback (Ia) to the area 5 “PPV”
neurons through Equation (6a) for computing the desired trajectory. Thus in the absence of natural
proprioception to the area 4 “IFV” and “SFV” neurons, qi(t) = fi(t) = 0 in (10). Next we compute
pi(k + m + 1 | k) and xi(k + m + 1 | k) for m = 0, 1, 2, · · · , Np − 1 for Problem 1 and 2 respectively.
For this, we use a model of the system given by (1)–(4), (10), (12) and (14) along with the following
modified firing activity dynamics of the “PPV” neurons:

dxi(t)
dt

= (1− xi(t))max{Θyi(t)− I(k + l | k), 0}

− xi(t)max{Θyj(t) + I(k + l | k), 0}.
(22)

Here, I(k + l | k) is constant during t and t + 10 ms i.e., between the sample time. Note that the
average firing activity of the primary (“Ia”) muscle spindles afferents is set to 0 in (22) (see (7) for
the comparison).

A

B

Figure 9. Model Predictive Control (MPC) based closed-loop BMI for Problem 1 and Problem 2.
(A) shows the design for “Problem 1”. Here the model predictive controller designs the “Artificial
Feedback” to stimulate “PPV” neurons such that the system output (“Single Joint Position” trajectory)
mimics the “Desired Joint Position” trajectory; (B) shows the design for “Problem 2”. Here the model
predictive controller designs the “Artificial Feedback” to stimulate “PPV” neurons such that the system
output (“PPV Neurons Firing Rate” ) mimics the “Desired PPV Neurons Firing Rate”.
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With this, we solve the optimization problem (21) numerically in MATLAB for both problems.
We use the MATLAB optimization function “fmincon” with the sequential quadratic programming
“sqp” algorithm. For both problems, we set Nc = 5 and Np = 30. Figure 10A shows the performance of
the controller in tracking the desired position trajectory of the agonist muscle i for “Problem 1”.
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Figure 10. Performance of the designed closed-loop BMI in tracking the desired position trajectory
(“Problem 1”, Figure 9A). (A) shows the position trajectory of the agonist muscle i in the presence of
the designed artificial sensory feedback (solid line, blue) and the natural sensory feedback (dotted line,
red); (B) shows the velocity trajectory of the agonist muscle i in the presence of the designed artificial
sensory feedback (solid line, blue) and the natural sensory feedback (dotted line, red); (C) shows the
average firing activity of a population of the cortical area 4 “DVV” neurons (ui(t)), “OPV” neurons
(yi(t)), “OFPV” neurons (ai(t)), and the cortical area 5 “PPV” neurons (xi(t)) in the presence of the
artificial sensory feedback (solid line, blue) and the natural sensory feedback (dotted line, red).

As shown in Figure 10A, the controller performs well in tracking the desired position trajectory.
Also the stimulation of the area 5 “PPV” neurons by the designed optimal artificial sensory feedback
recovers the closed-loop velocity trajectory, as shown in Figure 10B. Thus the designed optimal artificial
sensory feedback is sufficient in recovering the closed-loop performance of the decoder in the absence
of the natural proprioceptive feedback pathways. Next we wonder if the designed optimal artificial
sensory feedback in “Problem 1” also recovers the natural average firing activity of the cortical neurons.

Figure 10C shows the average firing activity of the cortical area 4 and 5 neurons during the
reaching task. As shown in this figure, the average firing activity of the cortical area 4 and 5 neurons
during the artificial stimulation differs significantly from the natural one. This shows that although the
artificial stimulation of the “PPV” neurons through the design of “Problem 1” recovers the closed-loop
performance of the decoder, it fails to recover the natural firing activity of the cortical neurons.

Next we study the performance of the designed controller for “Problem 2” (see Figure 9B).
Remember that the objective of the controller here is to track the natural average firing activity of the
area 5 “PPV” neurons by designing optimal artificial sensory input to the “PPV” neurons. Figure 11A
shows the average firing activity of the cortical area 4 and 5 neurons.

As shown in the bottom right plot of Figure 11A, the designed controller performs well in tracking
the natural firing activity of the area 5 “PPV” neurons. Moreover, the stimulation results in recovering
the natural firing activity of the area 4 cortical neurons.

Figure 11B,C show the position and velocity trajectory of the agonist muscle i during the
movement. As shown in these figures, the decoder recovers the closed-loop (natural) performance in
this case. This shows that the designed controller in “Problem 2” not only recovers the closed-loop
performance of the decoder but also recovers the natural firing activity of the cortical neurons through
the optimal artificial stimulation.
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Figure 11. Performance of the designed closed-loop BMI in tracking the desired firing rate trajectory
(“Problem 2”, Figure 9B). (A) shows the average firing activity of the cortical area 4 “DVV” neurons
(ui(t)), “OPV” neurons (yi(t)), “OFPV” neurons (ai(t)), and the cortical area 5 “PPV” neurons (xi(t)) in
the presence of artificial sensory feedback (solid line, blue) and the natural sensory feedback (dotted line,
red); (B) shows the position trajectory of the agonist muscle i (pi(t)) in the presence of artificial sensory
feedback (solid line, blue) and the natural sensory feedback (dotted line, red); (C) shows the velocity
trajectory of the agonist muscle i (vi(t)) in the presence of artificial sensory feedback (solid line, blue)
and the natural sensory feedback (dotted line, red).

6.3. Intracortical Micro-Stimulation Based Closed-Loop BMI Design

In the previous section, we focused on designing optimal artificial proprioception stimuli in the
form of average firing rates. However in experimental BMIs studies, intracortical micro-stimulation
(ICMS) based currents in a charge-balanced biphasic waveform are typically used to stimulate cortical
sensory neurons and thus to provide artificial sensory feedback during closed-loop operation of
BMIs [3,14,32].

Therefore, we modified the MPC-based closed-loop BMI design shown in Figure 9A which
allowed us to use such waveform of currents in the present firing activity based framework, as shown
in Figure 12.

Figure 12. Receding horizon controller based closed-loop BMI design I. Here the receding horizon
controller designs the “Artificial Feedback” stimulating current in a charge-balanced biphasic waveform
to stimulate “Network of Spiking Neurons” such that the system output (“Single Joint Position”
trajectory) mimics the “Desired Joint Position” trajectory.
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We modeled the “Network of spiking neurons” in Figure 12 by a recurrent network of the
Integrate-and-Fire neurons with dynamics [33]

τk
dvk(t)

dt
= −vk(t) + Rs Ik(t) (23a)

Ik(t) = Is
k(t) + IE(t) (23b)

Is
k(t) = −gk(t)(vk(t)− E) (23c)

gk(t) =
Nk

∑
l 6=k=1

∑
f

wlK(t− t f
l ) (23d)

K(t− t f
l ) =

ql
τl
(t− t f

l )exp(−
t− t f

l
τl

)Θ(t− t f
l ), (23e)

where vk(t) is the membrane potential of neuron k at time t, τk is the membrane time constant of neuron
k and Rs is the membrane resistance. Ik(t) is the total input current to the neuron k and is the sum of
the synaptic current Is

k(t) and the stimulating current IE(t). vk(t) is reset to vr whenever vk(t) exceeds
a constant firing threshold vth and an action potential is assumed at this time. gk(t) ≥ 0 is the excitatory
conductance and E is the excitatory membrane reversal potential. Nk is the total number of presynaptic
neurons to the neuron k, wl is the weight of the synapse from the lth neuron to the post-synaptic neuron
k, t f

l is the time of the f th incoming action potential from the lth presynaptic neuron, K(t− t f
l ) is the

stereotypical time course of postsynaptic conductance following presynaptic spikes, ql is the maximum
conductance transmitted by the lth neuron, and Θ(t− t f

l ) is the heavy-side function.
We considered a fully recurrent network of 3 excitatory neurons to represent both the agonist

population and the antagonist population of neurons. Network parameters for both populations are
provided in Appendix A.1. We computed the average firing rate from the spiking activity of both
agonist and antagonist populations as the ratio of the number of spikes in a time window of Ts = 30
ms and the total number of neurons in individual population, i.e., 3.

We used a rectangular charge-balanced biphasic waveform shown in Figure 13 to design the
stimulating current. Here a1, a2, d1, d2, d3 and d4 characterize a single biphasic pulse of the current IE(t).
The symmetric form of this current minimizes tissue damage, prevents irreversible electrode corrosion
and avoids release of toxic metal oxides [34]. This form of current is also the accepted practice
in various microstimulation applications such as vestibular prosthesis [35], cochlear implant [36],
FES [37,38], DBS [39], retinal prosthesis [40], and BMIs [3,14].

Figure 13. Charge-balanced Intra-cortical Micro-stimulation (ICMS) current in a biphasic waveform.
Here the net current

∫ T
0 I(t)dt = 0 for T = ∑4

i=1 di.
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We formulated the following optimal control problem in the MPC framework to recover the
closed-loop (natural) performance of the decoder:

min
βββ(k|k),βββ(k+1|k),··· ,βββ(k+Nc−1|k)

Jp(k), (24a)

such that

a1(k + l | k) ∈ [0, Amax] f or 0 ≤ l ≤ Nc − 1, (24b)

a2(k + l | k) ∈ [Amin, 0] f or 0 ≤ l ≤ Nc − 1, (24c)

di(k + l | k) ≥ 0 f or i = 1, 2, 3, 0 ≤ l ≤ Nc − 1, (24d)

nt(k + l | k) ∈ {1, 2, 3, · · · } f or 0 ≤ l ≤ Nc − 1, (24e)

nt(k + l | k)
4

∑
i=1

di(k + l | k) = Ts f or 0 ≤ l ≤ Nc − 1, (24f)

d2(k + l | k)a1(k + l | k) = d3(k + l | k)a2(k + l | k) f or 0 ≤ l ≤ Nc − 1. (24g)

Here, βββ(k + l|k) = [a1(k + l | k), a2(k + l | k), d1(k + l | k), d2(k + l | k), d3(k + l | k), nt(k + l | k)]′ for
l = 0, 1, 2, · · · , Nc−1. (·)′ is the transpose of a vector. Jp(k) = ∑

Np−1
m=0 (O(k +m+ 1 | k)− P(k +m+ 1 | k))2

is the cost function. Nc and Np are the control and the prediction horizon respectively. a1(k + l | k),
a2(k+ l | k), d1(k+ l | k), d2(k+ l | k), and d3(k+ l | k) for l = 0, 1, · · · , Nc− 1 characterize a single biphasic
pulse of current IE(t) shown in Figure 13. Ts is the decoder sample time. nt(k + l | k) for l = 0, 1, · · · , Nc− 1
is the number of biphasic pulse in the sample time Ts.

In this work, we set Amax = 10,000, Amin = −10,000, Ts = 30 ms, nt(k + l | k) = 1, Np = 30, and
Nc = 15. Using the constraints (24f) and (24g) and nt(k + l | k) = 1, our optimization variables reduced
to βββ(k + l|k) = [a1(k + l | k), d1(k + l | k), d2(k + l | k), d3(k + l | k)]

′
for l = 0, 1, 2, · · · , Nc − 1. We used

a modified particle swarm optimization (PSO) algorithm within the parallel computing toolbox of
MATLAB to solve the optimization problem (24) (see Appendix A.2 for details). Figure 14A,B show the
performance of the designed controller (24) in tracking the desired position and velocity trajectories of
the agonist muscle i.

As shown in Figure 14A, the controller performs well in tracking the desired position trajectory
(although not perfect). Also the stimulation of the area 5 “PPV” neurons by the designed optimal
artificial sensory feedback in the form of biphasic waveform recovers the closed-loop velocity trajectory,
as shown in Figure 14B. We note that the controller performance is poor compared to the firing rate
design shown in Figure 10.

Figure 14C shows the average firing activity of the cortical area 4 and 5 neurons during the
reaching task. As shown in this figure, the average firing activity of the cortical area 4 and 5 neurons
during the artificial stimulation differs significantly from the natural as we also observed in Figure 10C.
This shows that although the artificial stimulation of the “PPV” neurons through the design of ICMS
current (approximately) recovers the closed-loop performance of the decoder, it fails to recover the
natural firing activity of the cortical neurons. Figure 14D shows the firing rate trajectory of the agonist
and antagonist population of the spiking network.
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Figure 14. Performance of the designed closed-loop BMI in tracking the desired position trajectory
(Figure 12). (A) shows the position trajectory of the agonist muscle i in the presence of the designed
artificial sensory feedback (solid line, blue) and the natural sensory feedback (dotted line, red);
(B) shows the velocity trajectory of the agonist muscle i in the presence of the designed artificial
sensory feedback (solid line, blue) and the natural sensory feedback (dotted line, red); (C) shows the
average firing activity of a population of the cortical area 4 “DVV” neurons (ui(t)), “OPV” neurons
(yi(t)), “OFPV” neurons (ai(t)), and the cortical area 5 “PPV” neurons (xi(t)) in the presence of
the artificial sensory feedback (solid line, blue) and the natural sensory feedback (dotted line, red);
(D) Firing trajectory of the agonist and the antagonist population of the spiking network.

7. Discussion

7.1. Tracking Firing Rate of Neurons which Encode Sensory Information Recovers the Natural Performance
of BMI

In this article, we have designed optimal artificial sensory feedback in a control-theoretic
framework to recover the closed-loop performance of a brain-machine interface (BMI) during voluntary
single joint extension task. This is the first systematic attempt to incorporate artificial proprioception
in BMIs towards stimulation enhanced next generation BMIs. Our approach differs from recent
closed-loop BMI system modeling approaches where the focus has mainly been on the analysis of
closed-loop BMIs within optimal feedback control framework [17,18]. Two control problems, namely,
the position trajectory tracking problem and the cortical sensory neurons average firing rate tracking
problem, have been investigated towards designing an optimal artificial sensory feedback for the
BMI in the receding horizon control framework. Our position trajectory tracking problem designs
the artificial proprioceptive feedback which differs from the natural proprioceptive feedback and can
potentially be learned by the BMI user as shown in [3,15]. The cortical sensory neurons average firing
rate tracking problem designs the natural proprioceptive feedback through external stimulations [14].
Our results shows that tracking the natural firing activity of the cortical sensory neurons using an
external stimulating controller is the appropriate approach towards recovering the natural performance
of the motor task. Such an approach requires a complete understanding of how our brain encodes
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the sensory information. In the absence of a complete understanding of neural encoding, the position
trajectory problem provides a more practical way to incorporate artificial sensory feedback in BMIs
and thus to close the BMI-loop as also recognized in [15].

7.2. Generalization beyond Tracking Problems

We formulated trajectory tracking control problems to design optimal artificial sensory feedback
wherein we assumed that the desired trajectory (position or firing rate) is known. Obtaining such an
information a priori may not be feasible in BMI motor tasks. Nevertheless, our proposed framework,
based on optimal feedback control, can be generalized to design the necessary sensory feedback and
thus close the BMI-loop using the available information such as the desired end-point of the arm
effector and various realistic constraints. For example, one can formulate a control problem in the
model predictive control framework to minimize the error between the current position and the desired
position along with penalizing the derivative of the total force to stabilize the position while ensuring
the smoothness of the movement. Such control problems within the optimal control framework have
been studied in the context of sensorimotor control [18,41].

7.3. Limitations

In this article, we used an experimentally validated psycho-neurophysiological cortical circuit
model of a single joint extension/flexion task to design a BMI. The model provided a basis to investigate
the role of proprioceptive feedback in single joint tasks and to design optimal artificial sensory feedback
in a BMI using the model predictive control framework. However, this model limited our investigation
to a single sensory modality as it does not include visual feedback and learning. For example, we
have not investigated how our design will get affected in the presence of visual feedback and any
form of cortical learning of a motor task. Since our designed controller is adaptive in nature, the
designed artificial sensory feedback will adapt with the learning. It may also be possible that the
design controller can help in the initial learning of the BMI task by guiding the movement and thus
can reduce the learning effort of the motor task.
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Appendix A

Appendix A.1 Model Parameters for Recurrent Spiking Networks (Equation (23))

We used the following parameters to model the “Network of Spiking Neurons”: Nk = 2,
τk = 10 ms, Rs = 0.04, vr = −65 mV, vth = −45 mV, E = 0. For the agonist population, ql and
τl for l = 1, 2, 3 were set to {16.9610, 17.7975, 16.2787}, and {5.1071, 7.5474, 7.8020}, respectively; the

weight matrix wl was set to

 0 0.9572 0.1419
0.1576 0 0.4218
0.9706 0.8003 0

. For the antagonist population, ql and τl for

l = 1, 2, 3 were set to {17.8244, 13.7881, 17.8530} and {5.8355, 6.6406, 7.8725}, respectively; the weight

matrix wl was set to

 0 0.1419 0.7922
0.4854 0 0.9595
0.8083 0.9157 0

. It should be noted here that the total number of

neurons in the network for each population is Nk + 1.
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Appendix A.2 Particle Swarm Optimization Algorithm

We solved the optimization problem (24) using a particle swarm optimization (PSO)
algorithm [42–44]. Briefly, an individual particle S′ (S′ ∈ {1, 2, · · · , S′n}) in the PSO is composed
of three vectors:

1. Position in the Dn-dimensional search space (constraints set) XS′ = {XS′1, XS′2, · · · , XS′Dn};
2. Best position that it has individually found PS′ = {PS′1, PS′2, · · · , PS′Dn};
3. Velocity VS′ = {VS′1, VS′2, · · · , VS′Dn}.

All the particles are originally initialized in a uniform random manner throughout the search
space. The velocity is also initialized randomly. These particles then move throughout the search space
and the PSO updates the entire swarm at each iteration k′ by updating the velocity and position of
each particle in each dimension. We have used the following update rule:

VS′D(k
′ + 1) = ω(k′)VS′D(k

′) + Cpε1(k′)(PS′D(k
′)− XS′D(k

′)) + Cpε2(k′)(PgD(k′)− XS′D(k
′)), (A1)

XS′D(k
′ + 1) = XS′D(k

′) + VS′D(k
′ + 1). (A2)

Here Cp is a constant. We set Cp = 2.0. ε1 and ε2 are independent random numbers which
are uniquely generated in (0, 1) at every update for each individual dimension D = 1, 2, · · · , Dn.
Pg(k′) = {Pg1(k′), Pg2(k′), · · · , PgDn(k

′)} is the global best position at iteration k′.
As shown in Figure 13, we have 6 control inputs to be designed (a1, a2,d1, d2, d3, d4).

Using constraints (24f) and (24g), we reduce the number of control inputs to be designed to 4.
In particular, we design a1, d1, d2 and d3. In other words, the optimization problem (24) has 4× Nc

independence decision variables. Thus, the particle position XS′D is composed of a1, d1, d2, d3.
The particle fitness function is the same as the cost function Jp(k) at each sample time. ω(k′) in
each step is updated using

ω(k′) = 0.2 + k′
1.8− 0.2

K′max
. (A3)

Here, K′max is the maximum number of iteration.
Throughout our work, we consider only one biphasic waveform in each sample time Ts = 30 ms.

To satisfy the constraints (24e), (24f) and (24g) while updating the velocity and position of each particle
through (A1) and (A2), we design some additional constraints which are imposed during the process
of particle generation as follows (Algorithm 1):

Algorithm 1

1: if k′ = 1, randomly generate the particle position XS′ = (a1, w1, w2, w3) for each particle S′

satisfying (24b) and (24c); if k′ > 1, update the particle position a1, d1, d2, d3 by (A1) and (A2);
2: check a1, if a1 satisfies constraint (24b), hold it, if not, let a1 equal the nearer bound;
3: check d2. Using (24f) and (24g), obtain d3 ≥ a1d2

Amax
, d3 ≤ Ts − d2 and d2 ≥ 0. This implies

d2 ∈ [0 Ts×Amax
Amax+a1

]. Since d2 is an integer, d2 ∈ [0 int( Ts×Amax
Amax+a1

)]. Here, int(·) denotes rounding up. If

w2 satisfies this constraint, let d2 = int(w2); if not, let dw2 equal the nearer bound;
4: check d3. d3 ∈ [int( a1d2

Amax
) Ts − d2]. If d2 satisfies this constraint, let d3 = int(d3); if not, let d3 equal

the nearer bound;
5: check if d1 ∈ [0 Ts − d2 − d3]. If d1 satisfies this constraint, hold it, if not, let d1 equal the

nearer bound.

We implement the following Algorithm 2 to solve the optimization problem (24):
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Algorithm 2 Offline stage

1: given the parameters of the system model and the network of spiking neurons, compute the

desired position trajectory R(·);
2: provide Amax, Amin and Ts of the biphasic waveform of charge-balanced ICMS currents;
3: set the particle number S′n and iterations K′max;
4: provide the simulation steps Kmax.

Online stage, for each k > 0:

1: compute the particle position XS′ (S′ = 1, 2, · · · , S′n) such that the constraints (24b)–(24g) are

satisfied via Algorithm 1;
2: if k′ = 1, calculate O(k | k), O(k + 1 | k), · · · , O(k + Np − 1 | k) and the fitness function Jp(k) for

each particle XS′ . Update PS′(k′) and Pg(k′), then go to step 5; else, go to step 3;
3: update ω(k′) using (A3) and the particle position XS′(k′) using (A1) and (A2);
4: choose the control and the prediction horizon as Np and Nc respectively. Calculate O(k | k), O(k +

1 | k), · · · , O(k + Np − 1 | k) and the fitness function Jp for each particle XS, and update P′S(k
′)

and Pg(k′);
5: if k′ = K′max, let the control inputs u(k) equal Pg(k′), and go to step 6; else, let k′ = k′ + 1 and go to

step 2;
6: if k > Kmax, go to step 7; else, let k = k + 1 and go to step 1;
7: impose control inputs u(k), get the system outputs and terminate the program.

For our simulations, we set Sn = 96, K′max = 30, Kmax = 49. We used Np = 6 and Nc = 3
(k = 1, 2, · · · , 16) till t = 480 ms and Np = 30 and Nc = 15 (k = 17, 18, · · · , 49) for t > 480 ms.
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