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Abstract: Applications like robots which are employed for shopping, porter services, assistive
robotics, etc., require a robot to continuously follow a human or another robot. This paper
presents a mobile robot following another tele-operated mobile robot based on a PID
(Proportional–Integral-Differential) controller. Here, we use two differential wheel drive robots;
one is a master robot and the other is a follower robot. The master robot is manually controlled
and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth
module receives the user’s command from an android application which is processed by the master
robot’s controller, which is used to move the robot. The follower robot receives the image from the
Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y
positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the
x, y, and z locations of the master robot, the follower robot finds the angle and distance between the
master and follower robot, which is given as the error term of a PID controller. Using this, the follower
robot follows the master robot. A PID controller is based on feedback and tries to minimize the error.
Experiments are conducted for two indigenously developed robots; one depicting a humanoid and
the other a small mobile robot. It was observed that the follower robot was easily able to follow the
master robot using well-tuned PID parameters.
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1. Introduction

Robots are increasingly being used in home and office environments for a variety of tasks. One of
the application areas of these robots is as ‘personal assistants’. The robots may be used by the human
master to take commands as the human moves, to carry items of interest for the human, and to
complete manipulation tasks that the human specifies, etc. Common applications include robots as
porters to carry luggage, robots to transport goods from one place to other, and robots to help the
human in a supermarket or a shopping mall, etc. All of these applications require a robot to follow a
human. Sometimes, the robot may be required to follow another robot instead.

The master robot is an android Bluetooth-based robot which is designed by us with Arduino
and the HC-05 Bluetooth module. Social Mobile Autonomous Research Test bed (SMART) is a mobile
robot that was designed in IIIT Allahabad for social interaction. The robot has a differential wheel
base for mobility, two controllable arms for human interaction, a vision system, and a speaker set. The
current capability of the robot includes a tour of the laboratory when starting from a fixed location,
without tracking humans. This project is a step towards making SMART a robot assistant that is
capable of following people. As the first step, this paper proposes a mechanism wherein SMART is
made to follow another robot. The paper demonstrates the capability of SMART to follow a master

Technologies 2017, 5, 34; doi:10.3390/technologies5020034 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
http://dx.doi.org/10.3390/technologies5020034
http://www.mdpi.com/journal/technologies


Technologies 2017, 5, 34 2 of 17

robot, which can be extended to following humans by developing a human recognition system [1,2].
Another motivation is from swarm robotics, where slave robots do the work and follow the master
robots. The main motivation of this project is to use this knowledge in SMART.

The slave robot uses 3-D vision to detect the master robot, using a Kinect sensor that obtains a
depth image along with a monocular camera image known as the RGB-D image. The Kinect measures
the depth by a triangulation process [3]. The RGB-D images are well suited to solve the ego-motion (3D
motion of a camera within an environment) estimation problem of an agent [4]. Modern day robots are
primarily vision driven. Computer Vision essentially deals with image processing techniques for noise
removal, the detection of the area of interest, and recognition of the object of interest [5]. Further vision
techniques can be used to know the position of an object or to localize the object of interest. In our
case, the follower robot senses the master robot with the help of Kinect sensors. In this project, the
computer vision plays a major role in detecting, recognizing, and localizing the master robot through
the 3D camera of the slave robot.

Every sensor of the robot reports the readings in its own frame of reference. Similarly, every
actuator of the robot obtains inputs in its own frame of reference. Transformations enable conversions
between the frames of reference. In this paper, the follower robot finds the master robot, but the located
position needs to be transformed from the image coordinate frame to Kinect’s coordinate frame, and
ultimately, the follower robot’s frame of reference. This is done based on transformation techniques
with the help of the Kinect calibration matrix.

The problem of robot control relates to the ability to guide the robot such that the traced trajectory
of the robot is as close as possible to the desired trajectory. Closed loop control systems are widely
used, which obtain feedback in the form of an error signal and send corrective signals to the robot such
that the error is reduced.

In this paper, we use an RGB image of the master robot taken from the Kinect mounted on the
slave robot for detection and depth values for finding the distance between the master and slave robots.
Both the master and follower are mobile robots, so every time, the distance between the master and
follower varies. The follower has to maintain the minimum distance and the orientation towards the
master is conducted by the RGBD image processing. The follower robot follows the master based on
the detections in the RGB image and the depth.

A lot of research has been carried out in the field of robot following, especially in the field of
differential wheel robots. A low computational cost method for terrestrial mobile robots that uses a
laser scanner for following mobile objects and avoiding obstacles was presented by Martinez et al. [6].
The authors demonstrated a simple technique that employed a laser scanner for object following, path
tracking, and obstacle avoidance that was integrated in the outdoor mobile robot Auriga-α.

Breivik and Fossen [7] presented a novel guidance-based path following approach for wheeled
mobile robots. In this paper, the authors developed guidance laws at an ideal, dynamics-independent
level. The robot followed a path based on these guidance laws. The authors presented simulation
results for a unicycle-type WMR (Differential wheel robot).

Jamkhandikar et al. [8] have demonstrated the efficient detection and tracking of an object in real
time using color. Here, the authors took images simultaneously from the webcam and then applied
Euclidean color filtering to each image. Using this approach, the moving object color was segmented in
the image. After gray scaling and binarizing, the object was covered by the contour and displayed on
the computer. The scale and rotation invariant, as well as faster processing, were the main advantages
of this algorithm.

The implementation of a proportional integral derivative (PID) controlled mobile robot was
presented in the work of Rubay at et al. [9]. A motor does not change its rpm linearly with pulse width
modulation. They used a Proportional Integral Differential (PID) control loop to solve this problem.
Using an optical sensor, they ascertained the speed of the DC motor of the differential drive robot,
identified the error, and implemented the PID controller. They controlled the speed of the DC motors
with pulse width modulation from 0 to 255 using Arduino Uno Board.
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An Android Phone Controlled Robot Using Bluetooth [10], Bluetooth-Based Android Controlled
Robot [11], and BlueBO: Bluetooth Controlled Robot [12] are a few robots which are controlled by
android and Bluetooth. In the above three papers, the robots connect to android through the Bluetooth
module so that the user can directly control the robot with an android mobile application. This android
application sends the user given commands to the Bluetooth module in the robot and according to
that, the robot will move.

Currently in the literature, all of the high level behaviors of robots are displayed on mobile
robots that come with a rich set of sensors and less noisy actuators, with a heavy price tag. Even if
the problems of service robotics are solved using these robots, the major problem is that they will
remain too expensive for most of the customers, while the benefits will not match the costs. Hence, the
motivation behind this work is to enable cheap indigenously developed robots which display nearly
the same behaviors, while coming at a significantly lower cost. The sensing may not be rich or the
sensors deployed may be highly noisy. In this direction, what is displayed in the manuscript is the
ability to follow another robot, which could be a person or an object. The same behavior is displayed
in the literature for mobile robots using high resolution lidars, stereo cameras, and IMUs, with off
board computation in the form of a cluster. The aim is not to beat the performance of these algorithms,
but to show a similar performance using far less sensing and computing. It can be seen that a lot of
research also exists for such low cost robots. Extensive research is conducted for primitive problems
like following a line, following a pre-defined trajectory, following a light source or such easily sensible
features, and using proximity sensors to wander or move towards a direction, etc. However, all of this
research and its easy extensions do not scale up to the problem of autonomously navigating the robot
for the applications of the level of service robotics. Such low cost indigenously built robots face errors
at every stage and therefore, the robots are much harder to control, which is the challenge focused upon
in this paper. The novelty is to be able to tune and use a PID controller in highly noisy conditions, with
minimal feedback. This is a major step towards the use of low cost robots for sophisticated behaviors.

2. Methodology

This section discusses the overall approach. First, we have to move the master robot and the
follower robot then follows the master robot. Figure 1 shows the working principle of the tele-operated
master robot. Figure 2 shows the total working of the follower robot.
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Figure 2. Motion of the follower robot.

As is shown in Figure 1, the master robot receives instructions through Bluetooth communication
from the android mobile by the user. If the received commands are valid, the master robot is moved by
the actuators. If no command is received from the user, the robot stops.

The aim of the follower robot is to follow the master robot by recognizing it through the color
filtering. After finding the master, the follower calculates the master robot’s x, y, and z coordinates
from the RGBD Kinect image [13]. Here, x, y, and z are the coordinates in the reference frame of the
Kinect sensor, which is mounted on the follower robot (SMART). If the z value is more than a certain
threshold, using the x, y, and z differential values, the wheel velocities are found through the PID
controller. Using these velocities, the follower robot follows the master robot.

2.1. Tele-Operating the Master Robot

The master robot is the tele-operated robot which is designed based on Arduino and the HC-05
Bluetooth module. An Android app connects to the HC-05 Bluetooth module. The information
received through the Bluetooth will be read by the Arduino board. The Arduino board compares the
received values with the teleoperation robot and sends inputs to the L293D motor driver. The motor
driver amplifies the signals and gives motion to the motors. Since we are using an HC-05 Bluetooth
module, the master controlling range is approximately 10 m. The working philosophy is given in
Figure 3a. The master robot is covered with green colored paper, as shown in Figure 3b, so that it
can be recognized by the follower robot by using color filtering. According to the environment, it is
possible to change the color of the follower robot.
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2.2. Vision

The vision module is a part of the follower robot and is responsible for recognizing and locating
the master robot. The master robot is assumed to be of a single color, not otherwise present in the
environment. This is achieved by wrapping the master robot with colored paper. A color detection filter
is used, which is a median filter whose ranges are calibrated prior to the start of the experimentation.
The master robot is recognized as the single largest block, with a size greater than a certain threshold.
The center of the area of the block is taken as the center of the robot. Let <u, v> be the detected
master robot in the camera’s frame of reference. This needs to be used to control the robot using the
angle to the master in the follower robot’s frame of reference. The derivation of that angle is based
on transformations.

Let the calibration matrix of Kinect be given by Equation (1).

C =

 fx 0 cx 0
0 fy

0 0
cy 0
1 0

 (1)

where fx and fy are the focal points with respect to the X-axis and Y-axis, and cx and cy represent the
center of the projection with respect to the X-axis and Y-axis.

The image coordinates are [u v 1]T , denoting the position of the master robot in the image
coordinate axis system. The position of the master in Kinect’s frame of reference is [x y z 1]T .
The conversion is given by Equation (2). Here, z is directly obtained as the depth value from the Kinect.

 u
v
1

 =

 fx 0 cx 0
0 fy

0 0
cy 0
1 0

 ×


x
y
z
1

 (2)

As shown in Figure 4, consider a coordinate axis system XF YF ZF centered at the follower
robot with the ZF axis facing the direction of motion of the robot, XF ZF as the ground, and YF
being located vertically above. Let the master be located at a direction of θ in this coordinate system.
Let the coordinate axis system of the follower robot be centered at the Kinect, since the Kinect is
horizontally mounted on the follower robot. Practically, there will be a small translation factor between
the coordinate axis system of the Kinect and the center of mass of the follower robot, which barely
affects the steering mechanism, while the speed control has an equivalent parameter that can be tuned.
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The calculation of the angle to the master robot is given by Equations (3)–(6). The superscript F denotes
the follower (Kinect) frame of reference, while the sub-script L stands for the leader robot.

tan θ =
xF

L
zF

L
(3)

uF
L =

xF
L

zF
L

fy + cx (4)

tan θ =
UF

L − cx

fx
(5)

θ = tan−1

(
UF

L − cx

fx

)
(6)
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The follower moves so as to keep θ as close as possible to 0, and so as to maintain a constant
distance from the master robot.

2.3. PID Control

The control of the robot may be divided into a steering control and a speed control. First, the
steering control is discussed. The steering control uses a Proportional-Integral-Differential (PID)
controller, which is a control loop feedback mechanism. In PID control, the current output is based
on the feedback of the previous output, which is computed so as to keep the error small. The error is
calculated as the difference between the desired and the measured value, which should be as small as
possible. A correction is applied whose numeric value is based on the sum of three terms, known as
the proportional term, integral term, and derivative term. Such a control scheme is used to control the
differential wheel drive follower mobile robot, which is a highly nonlinear multi-input/multi-output
system. Using PID, the velocities of two differential wheels are found. The derivation formulas of
the two velocities are given in Equations (7)–(10). Here ωP, ωI , and ωD represent the proportional,
integral, and differential terms, respectively.

ωP = kPθ (7)

ωI = kI( θ(t + ∆)− θ(t) ) (8)

ωD = kD ∑t
t=0 θ(t) (9)

ω = ωP +ωI +ωD (10)

ω = kPθ + kI(θ(t + ∆)− θ(t)) + kD ∑t
t=0 θ(t) (11)

where ω is the angular speed or the steering control input, kP is the proportional constant, kI is
the integral constant, kD is the differential constant, and θ is the angle between the follower and
master robots.
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The speed control of the robot takes as error, the distance between the leader and the follower.
The follower should not follow the master very closely as this is not socially acceptable and because
the sudden turns would cause risks due to the uncertain movement of the leader. Further, the
distance cannot be very large as the follower may easily lose contact with the leader robot. Hence a
comfortable threshold distance (dmin) is to be maintained from the leader. The input velocity is given
by Equation (12), where d is the current distance between the master and the slave robots.

v = (d − dmin) (12)

The linear (v) and angular (ω) speeds are used to compute the speeds of the two wheels of the
differential wheel drive follower robot, given by (13) and (14).

v2 = rω + v (13)

v1 = 2v − v2 (14)

where r is the half distance between two wheels, v1 is the velocity of the first wheel, and v2 is the
velocity of the second wheel.

3. Results

3.1. Tele-Operation of the Master Robot

Our android application that we have designed for the Bluetooth communication of the robot is
used to check the tele-operation capability of the master robot. We only control the master robot with
this application. This application has a special feature which can be used to live stream the master
robot, and we can control it. This application is designed on the platform of eclipse android SDK. This
is connected to the robot’s HC05 Bluetooth module and sends the user commands. The application is
shown in Figure 5.
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3.2. Simulation Results

We first present the results of the control module. Before applying the control algorithm on a
physical robot, simulations using a custom built simulator had to been done. Using this, we checked
whether the work was feasible or not, and if it was feasible, it could then be implemented on a physical
robot. In the simulation setup, we took all units to be similar to the physical setup area and operated
the robots with speeds similar to the speed of the master and follower robots. We considered a 3 × 3 m
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region as where the real robot moves, and correspondingly, 100 × 100 pixels in the simulation are taken
as being equivalent to the real environment. The master robot speed is 5 cm per second in practice, so
in the simulation, we made it 1.67 pixels per second. Additionally, follower robot speed should not
surpass 1.67 pixels per second, so we used a threshold value of 1.67 pixels per second.

The simulations were done on shapes like a circle, line, ellipse, and square for the P controller,
PD controller, PI controller, and PID controller. The results of selective simulations are shown in
Figure 6. In all simulations, the constants are taken as kp = 23.33 rm−1s−1 (radians meter−1sec−1),
kd = 1.67 rm−1s−1, and kI = 0.033 rm−1s−1. In all cases, the leader was kept sufficiently ahead of the
follower. The black one is the leader robot and the pink one is the follower robot. The results are also
available as a video at [14].
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Figure 7 shows the results on the use of a P controller of the circular path. The first sub-plot
compares the X values of the follower and the master robots. The second sub-plot compares the
Y values of the follower and the master robots. The third sub-plot indicates the error θ value and how
it changes in the simulations. The last sub-plot indicates the distance between the master robot and the
follower robot. We can observe that after reaching the threshold value, the distance is constant. It must
be noted that the problem is not controlling a system with a static goal point, in which case the system
eventually reaches the goal point with a small error. The master robot acts as a goal for the following
robot. The master robot keeps moving abruptly, and therefore, from a control perspective, the goal
point keeps changing, making sure that no convergence to a zero error occurs. The error metric is the
correlation between the trajectories of the master and the slave. This further needs account for the
fact that in the simulations, the master robot can follow trajectories like a square, which do not obey
the non-holonomic constraints of the slave robot, and hence, smoothening of the curve is not really
an error.

Technologies 2017, 5, 34 8 of 17 

 

The simulations were done on shapes like a circle, line, ellipse, and square for the P controller, 

PD controller, PI controller, and PID controller. The results of selective simulations are shown in 

Figure 6. In all simulations, the constants are taken as kp = 23.33 rm−1s−1 (radians meter−1sec−1), kd = 

1.67 rm−1s−1, and kI = 0.033 rm−1s−1. In all cases, the leader was kept sufficiently ahead of the 

follower. The black one is the leader robot and the pink one is the follower robot. The results are also 

available as a video at [14]. 

  
(a) (b) 

Figure 6: Results for controller on simulations: (a) In circular path; (b) In square path. 

Figure 7 shows the results on the use of a P controller of the circular path. The first sub-plot 

compares the X values of the follower and the master robots. The second sub-plot compares the Y 

values of the follower and the master robots. The third sub-plot indicates the error 𝜃 value and how 

it changes in the simulations. The last sub-plot indicates the distance between the master robot and 

the follower robot. We can observe that after reaching the threshold value, the distance is constant. It 

must be noted that the problem is not controlling a system with a static goal point, in which case the 

system eventually reaches the goal point with a small error. The master robot acts as a goal for the 

following robot. The master robot keeps moving abruptly, and therefore, from a control perspective, 

the goal point keeps changing, making sure that no convergence to a zero error occurs. The error 

metric is the correlation between the trajectories of the master and the slave. This further needs 

account for the fact that in the simulations, the master robot can follow trajectories like a square, 

which do not obey the non-holonomic constraints of the slave robot, and hence, smoothening of the 

curve is not really an error. 

 

Figure 7. P controller of a circle. 

Figure 8 describes the P controller of an elliptical path. The individual sub-plots are as 

explained earlier. From the first and second sub-plots, we can observe the elliptical path. The last 

Figure 7. P controller of a circle.



Technologies 2017, 5, 34 9 of 17

Figure 8 describes the P controller of an elliptical path. The individual sub-plots are as explained
earlier. From the first and second sub-plots, we can observe the elliptical path. The last graph is not
constant; it shows that in the elliptical path, the follower robot can’t move with a constant speed.
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Figure 8. P controller of an ellipse.

Figure 9 displays the P control of a linear path. As is explained in the previous graphs, the
sub-plots are in the same order. From the first two graphs, we can observe the approximate linear path.
Here, the error θ is almost constant because it is a linear path. The distance between the follower and
master is also near to constant with less variation from 0.5 m to 0.55 m in 80 s because no fluctuations
are observed in the linear path.

Technologies 2017, 5, 34 9 of 17 

 

graph is not constant; it shows that in the elliptical path, the follower robot can’t move with a 

constant speed. 

 

Figure 8. P controller of an ellipse. 

Figure 9 displays the P control of a linear path. As is explained in the previous graphs, the 

sub-plots are in the same order. From the first two graphs, we can observe the approximate linear 

path. Here, the error 𝜃 is almost constant because it is a linear path. The distance between the 

follower and master is also near to constant with less variation from 0.5 m to 0.55 m in 80 s because 

no fluctuations are observed in the linear path. 

 

Figure 9. P controller of a line. 

Figure 10 describes the P controller of the square path. The sub-plots are again in the same 

order. We can observe more fluctuations of X and Y than in the circular, elliptical, and linear paths, 

Figure 9. P controller of a line.



Technologies 2017, 5, 34 10 of 17

Figure 10 describes the P controller of the square path. The sub-plots are again in the same order.
We can observe more fluctuations of X and Y than in the circular, elliptical, and linear paths, because
when the master is following a square path at the edges, the follower tries to follow in the curved path.
From the last graph, we can observe that no constant distance is maintained in between them.
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Figure 10. P controller of a square.

Figure 11a–d show the PD controller of circle, ellipse, linear, and square paths, respectively. All of
them also have the same properties as the P controller. Simulations are completed with all P, PD, PI,
and PID controllers to find out which one is the best controller.
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Figure 12a,b show the results of a PI controller of circle, ellipse, linear, and square paths. All four
graphs show similar properties like the P and PD controllers. Figure 13a,b show the results of the PID
controller of circle, ellipse, linear, and square paths. The PID controller also shows similar properties
in all graphs like the P, PD, and PI controllers.Technologies 2017, 5, 34 12 of 17 
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3.3. Analasis of PID Control

In the practical observations, we first applied P, PD, PI, and PID controllers, rather than directly
applying the PID controller. In the observations, when we applied the P controller, the follower robot
received some jerks in its motion. When using the PD controller, those jerks decreased in number, and
when using the PI controller, the frequency of jerks also decreased comparatively, but the follower
didn’t receive a smooth motion. When using the PID controller, the jerks are decreased to a greater
extent than when employing P, PD, and PI controllers, and the follower robot moved almost as
accurately as the master. Among all of the controllers, PID resulted in the least amount of errors. In the
simulation, we also acquired results with very slight errors for all controllers, but among them, PID is
the best.

The most difficult part in PID control is tuning the kP, kD, and kI values. By tuning the
physical robot and in simulations, we got kP, kD, and kI values of 0.7 rm−1s−1, 0.05 rm−1s−1 , and
0.001 rm−1s−1 , respectively. For these constant values of PID, our follower robot follows the leader
most accurately.

3.4. Results on the Real Robots

After the simulation, the experiments are repeated for a physical setup consisting of the two real
robots. The results are shown in Figure 14. The results can be better visualized as a video, which is
available in [14]. In the video, the green robot is the master robot and the robot on the back side is
the differential wheel follower robot (known as SMART). As discussed earlier, the master robot was
designed as a teleoperation robot with Arduino, a Bluetooth module, and an android mobile. The
follower robot was only designed on Arduino, but the entire process was conducted on the laptop on
the python platform. It takes an RGBD image from Kinect, which is mounted in front of it. Through
a python arduino simulation, the velocity of the two motors is sent to the follower robot. Image
processing and the PID controller are controlled on the laptop on the python open cv platform.
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4. Conclusions

In this paper, robot following based on computer vision and PID control for a differential wheel
robot was presented. For this, we designed two robots; one worked as a master and was controlled by
the user through manual control based on Android and Bluetooth. The master consisted of an Arduino
UNO board and HC05 Bluetooth module. The second robot worked as a follower robot. We used
the SMART robot of the IIITA Robotics laboratory as a follower. It was somewhat bigger and more
convenient to hold Kinect, a laptop, and Arduino. By using Kinect for the master robot, we produced
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an RGBD image, which was used to identify and localize the master robot and the master robot was
followed by the follower robot using a PID controller.

Through our experiments, it was shown that the follower robot could follow the master robot
with minimum errors. First, we performed the simulation work, identified the minimum error values
(of angle θ and distance (d), and then implemented the physical model according to the simulation
values. The physical model also worked correctly with minimum error values.

In this project, we did not consider any obstacles in its path. However, in reality, there will be
some static or dynamic obstacles in the path. In our case, the follower robot was not designed to stop
or to take another path without missing the master robot. Therefore, our future work aims to overcome
obstacles as well. Using Kinect, we can find obstacles from the depth values. After finding those
obstacles with the help of motion planning algorithms we will design obstacle-free paths. Further, the
aim is to use Extended Kalman Filters for tracking the master and slave robots so that the system can
work even if the master robot is not in sight and to eliminate any errors.
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