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Abstract: Positron emission tomography (PET) is an imaging technique that generates 3D detail of
physiological processes at the cellular level. The technique requires a radioactive tracer, which decays
and releases a positron that collides with an electron; consequently, annihilation photons are
emitted, which can be measured. The purpose of PET is to use the measurement of photons
to reconstruct the distribution of radioisotopes in the body. Currently, PET is undergoing a
revamp, with advancements in data measurement instruments and the computing methods used
to create the images. These computer methods are required to solve the inverse problem of “image
reconstruction from projection”. This paper proposes a novel kernel-based regularization technique
for maximum-likelihood expectation-maximization (κ-MLEM) to reconstruct the image. Compared to
standard MLEM, the proposed algorithm is more robust and is more effective in removing background
noise, whilst preserving the edges; this suppresses image artifacts, such as out-of-focus slice blur.

Keywords: image reconstruction; positron emission tomography; post-reconstruction; pre-reconstruction;
MLEM algorithm; EMG; kernel method; iterative algorithms

1. Introduction

Efforts are underway to improve the image reconstruction quality achieved by positron emission
tomography (PET) [1]. The purpose of PET is to provide 3D imaging of the administered tracer
distribution, which is believed to be associated with the distribution of activity of certain molecular
mechanisms underlying pathology or disease models [2]. More detailed PET scans require the injection
of a small amount of biologically-relevant material, such as glucose or oxygen, that has marked
radionuclides [3]. All of the isotopes used are radioactive with a rapid decomposition time by positron
emission. The most common isotope employed in PET is fluorine-18 [4]. This tracer is very useful
because of its long half-life (110 min) and because it disintegrates by emitting positrons having a low
positron energy that contributes to high-resolution imaging acquisition. The molecule accumulates
in cells that are most metabolically active, or if the molecule is receptor-specific, it collects in cells
where the receptors are present. This evaluation of the cellular and physiological function by nuclear
medicine can be effectively used to locate and determine the extent of a disease in the body. Nowadays,
a major set of PET applications is in oncology [5], cardiac imaging [6], and brain imaging [7]. With the
developments of specific radiotracers, several applications of PET in neurology have been found
during the last few years, such as dopamine neurotransmitter imaging in Parkinson’s disease and
tau imaging [8] in Alzheimer’s disease. PET works by a radioactive tracer that has been introduced
into the body, decaying to emit a positron β+, which can only travel a few millimeters (the positron
range [9]), before colliding with an electron. The antimatter–matter collision annihilates both particles
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and results in a pair of 511-keV gamma photons that travel in nearly opposite directions. A pair
of detectors is connected by a line of response (LOR) and is tuned to pick up photons within a
coincidence-timing window.

The annihilation events can be stored in list-mode format or in a 3D matrix according to the
position of their corresponding line of response. The process of acquiring the projection data is
called emission scan. The histogram data are said to lie in a sinogram or projection domain, and the
object to be scanned is said to lie in an image domain. The emission tomography uses the projection
data to reconstruct the spatial distribution of the radioisotope by taking into account the geometric
factors, noise properties, and physical effects. To estimate the radioactivity distribution accurately,
we must consider the effects of the attenuation that result from the photoelectric absorption effects
as a consequence of the interaction of the emitted gamma photons through the subject matter and
the gantry.

The PET image is reconstructed from the acquired projection data, but as the count of the projection
data declines, there is an increase in noise in the reconstructed PET image. The most simple method
used to reconstruct the PET image is the analytical method called filtered back-projection (FBP) [10].
Yet, because of the Poisson-distributed noise that is characteristic of projection data, FBP-reconstructed
PET images are often of low quality. Alongside regular reconstruction methods, noise smoothing can be
performed in the pre-reconstruction phase of the sinogram domain [11–15], in the post-reconstruction
phase of the image [16–18], or during the iterative process of statistically-based reconstruction [19].
An alternative method that incorporates prior knowledge into de-noising images is non-local means
(NLM) [20,21]. In general, applying denoising methods correctly and accurately post-reconstruction is
more difficult than within the reconstruction.

This paper uses the maximum-likelihood expectation-maximization (MLEM) algorithm to
reconstruct PET images [22,23]. Using MLEM for PET image reconstruction that has a noisy dataset
results in a noisy image. Therefore, to improve the quality of the image, we propose a novel
kernel-based image regularization technique. Of the various possible options of the kernel function,
an exponentially-modified Gaussian kernel was used [24–26]; this is comparable to conventional
MLEM reconstruction in terms of simplicity. Noise is modeled in the projection domain, where
independent Poisson random variables effectively model the PET data. The results indicated that the
proposed kernel-based MLEM (κ-MLEM) method provides effective reconstruction and resolution
results that exceed those generated by conventional MLEM and advanced pre-reconstruction methods.

In Section 2 of this paper, the novel MLEM kernel-based regularization image reconstruction
method is outlined. Section 3 presents the PET setup and the evaluation criteria for the quality of the
reconstruction. Results are presented in Section 4, together with a comparison of the κ-MLEM and
other methods. Section 5 is the conclusion.

2. Materials and Methods

2.1. Data Acquisitions and Sinograms

PET scans detect vast numbers of pairs of annihilation photons. The total number of pairs of
photons measured by a particular detector pair is proportional to the integrated radioactivity that
occurs along the line joining the detector pair. LORs pass through a single point in the patient body
and trace a sinusoid curve in the raw data histogram; hence the term sinogram for the raw data format.
A simple example of an object in the spatial domain and its corresponding sinogram are illustrated
in Figure 1.
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Figure 1. A simple object and the sinogram.

2.2. PET Data Corrections

Collecting PET data is not a perfect process. The photons emitted within the patient are attenuated
by photoelectric interactions; the efficiency of detector elements is variable, and together with recording
true coincidence events, random and scattered coincidences are accrued. To create a clinically-valuable
image and reliable quantitative information, these artifacts and errors need to be corrected.

Attenuation correction (AC) is the most important data adjustment [27]. The effect of encountering
dense or a greater quantity of material on the path between the annihilation site and the detector leads
to photon absorption or scattering. The result is an attenuation of photons in those environments
compared to photons that do not encounter such material. Images that are reconstructed from
projection data of photons in less dense areas of the body (e.g., the lungs) appear dark, as they have
emitted more photons than the surrounding tissue (e.g., the mediastinum), which is dense.

Random coincidences are also corrected [28]. These need to be estimated and minimized from
the collected measurements in each LOR to find the sum of scattered and true coincidences, which is
necessary for quantitative measurement.

2.3. Maximum-Likelihood Expectation-Maximization Algorithm

Following the acquisition and correction of PET data in the sinograms, an estimate of the in vivo
tracer distribution needs to be determined. This is a mathematically complex stage, and is covered in
detail in [29–31]. It is assumed that the object being imaged has a radionuclide distribution represented
by the matrix xj, where the index j denotes the location of an individual volume element (“voxel”) in
the object.

The purpose of the tomographic reconstruction algorithm is to calculate the radionuclide image
xj from the set of counts bi recorded by the external detector array circling the patient, where the
index i identifies the position of each detector element used in making our measurement from the
patient. In this mathematical derivation, the radionuclide image xj is represented as a matrix in which
each matrix element xj represents the radionuclide concentration at a point identified by the index
j. Similarly, the recorded radionuclide projection data bi are represented as a matrix, in which each
matrix element bi identifies both the angle and the location of the detector, where the data are recorded.

We assume that we know the probability Pij of a photon emitted in voxel j being detected by
detector i. The value of the detection probability Pij is directed by physical phenomena, such as
the geometric efficiency of the collimator, the attenuation provided by the material surrounding the
radioactive voxel j, and the detection efficiency of the imaging system.

The behavior of the imaging system can be represented by using a matrix equation that couples
the radionuclide concentration xj in the object to the complete set of detector measurements bi using
the known value of the probability elements Pij:
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·



x1

x2

· · ·
xj
· · ·
xN


(1)

As the values of bi can be measured with the detector array and since the value of the
probability elements Pij can be calculated from the physics of the imaging system, the matrix
equation Equation (1) can be mathematically inverted to solve for the radionuclide distribution
xj. In reference to matrix Equation (1), the radionuclide concentration xj is unknown, but a solution
can be assumed. Consequently, xj is the best estimate of the true radionuclide distribution.

Since the probability matrix Pij is known, it is possible to estimate the detector counts
(bi) that would be obtained for the estimated radionuclide distribution xj using the forward
projection operation:

bi =
N

∑
j=1

Pijxj (2)

Reconstruction is primarily founded on a mathematical model that relates parameters to the
observed and unobserved data. The mathematical model is based on the notion that emissions occur
according to a spatial Poisson point process inside the region of interest in the source. For each detector
position i, the appropriate model is a Poisson-distributed random variable bi [22]. The probability
matrix Pij is known from the detector array geometry, the attenuation provided by the material
system and the detection efficiency of the imaging system. Suppose yi is the expected values of
Poisson-distributed random variables bi where:

P(bi|yi) = e−yi
(yi)

bi

bi!
(3)

The expectation of the detected data is combined with the model parameters:

yi = E[bi] =
N

∑
j=1

xjPij (4)

Since the variables λij—the number of emissions in voxel j detected in detector i—are independent
Poisson-distributed random variables with the mean,

E[λij] = xjPij , (5)

the likelihood function is then:

L(x) =
N

∏
j=1

M

∏
i=1

e−xij
(xij)

λij

λij!
(6)

Although the sum in (6) is complicated, it shows that the log-likelihood is concave as a function
of x:

l(x) = log L(x) =
N

∏
j=1

M

∏
i=1
−xjPij + λij log xj + λij log Pij − log λij! (7)

The E-step is computed as:
λ
[k+1]
ij = E[λij|bi, x[k]] (8)
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Since we know that λij are Poisson-distributed random variables with mean x[k]ij and bi = ∑N
j=1 λij,

also Poisson with mean y[k]i = ∑N
j=1 x[k]ij , after some manipulations:

λ
[k+1]
ij =

bix
[k]
db

∑N
j́=1 x[k]

i j́

, j = 1, 2, · · · , N; i = 1, 2, · · · , M (9)

In the M-step, we maximize

0 =
∂

∂xj

N

∑
j=1

M

∑
i=1
−xjPij + λ

[k+1]
ij log xj + λ

[k+1]
ij log Pij − log λ

[k+1]
db !

→ x[k+1]
j =

M

∑
i=1

λ
[k+1]
ij Pij (10)

Combining the E and the M steps:
We start the algorithm with an initial guess x[0]j , and then, in each iteration, if x[k]j denotes the

current estimate of xj, the new estimate is defined as:

x[k+1]
j = x[k]j

M

∑
i=1

biPij

∑N
j́=1 x[k]

j́
Pi j́

(11)

The MLEM algorithm is summarized as:

1. Start with an initial estimate x[0]j satisfying x[0]j > 0, j = 1, 2, · · ·N,

2. If x[k]j denotes the estimate of xj at the kth iteration, define a new estimate x[k+1]
j by using

Equation (11),
3. If the required accuracy for the numerical convergence has been achieved, then stop.

2.4. Regularization

The expectation maximization algorithm is ill-conditioned, which means that enforcing the
maximization of the likelihood function may result in a solution with severe oscillations and
noisy behavior.

2.4.1. The Non-Local Means Filter

The NLM algorithm is a nonlinear spatial filter that uses a weighted average of the intensity of
adjacent pixels to adjust the intensity value of each pixel [20,21]. While comparisons of neighboring
pixels can be performed between pixels separated in the image by any distance, for the benefit of
computation speed, comparisons are typically limited to a narrow search window around the pixel
undergoing value adjustment.

Mathematically, this method can be described as:

y[k] =
1

CN
∑

n∈SW
W[k− n] · x[k− n] (12)

where y[k] is the new pixel value at coordinate k, CN is a normalization constant, SW is the search
window centered at k, x[k− n] is the original pixel value at the (k− n) coordinate within the search
window, and W[k− n] is the weight given the intensity value of x[k− n]. The weights are calculated as:

W[k− n] = exp(− ∑
m∈P

KG[
x[k−m]− x[(k− n)−m]

h
]2) (13)
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where P is the patch size around each pixel that is being compared, KG is a Gaussian kernel used to
reduce the weight in the similarity calculation given to patch pixels further from the center, and h
adjusts the intensity similarity-to-weight relationship.

2.4.2. The Anisotropic filtering

The anisotropic filter (AF) attempts to avoid the blurring effect of the Gaussian by convolving the
image x at j only in the direction orthogonal to Dx(j). The idea of such a filter goes back to [32]. It is
defined by:

AFhx(j) =
∫

Gh(t)x(j + t
Dx(j)⊥

|Dx(j)| )dt (14)

for j such that Dx(j) 6= 0 and where (j, l)⊥ = (−l, j) and Gh is the one-dimensional
Gaussian function with variance h2. The image method noise of an anisotropic filter AFh [20]
is x(j)− AFhx(j) = − 1

2 h2|Dx|curv(x)(j) + o(h2), where h is a filtering parameter (which usually
depends on the standard deviation of the noise), and curv(x)(j) denotes the curvature, the signed
inverse of the radius of curvature of the level line passing by j. This method noise is zero wherever x
behaves locally like a straight line and large in curved edges or texture. Consequently, the straight
edges are well restored, while flat and textured regions are degraded.

An extended discussion of the anisotropic filter for attenuation correction in PET can be found
in [11].

2.4.3. Proposed Kernel-Based Exponentially-Modified Gaussian Regularization

Inspired by the kernel-based image representation for PET images [25], we propose a new
kernel-based image regularization technique to improve the PET image reconstruction. We define xj as
a feature map for pixel j that is the output of the kernel, which is a mixture of two sets of information.
The first set is the input image, which has a matrix of pixels, where a pixel consists of an integer value
between zero and 80. The second set is the convolution kernel, which consists of a single matrix of
floating point numbers.

Convolution can be considered a mixing of information. This is achieved by taking an image
box from the input image that is the size of the kernel. This experiment uses a 256× 256 image and a
7× 7 kernel, so it would take 7× 7 boxes. An element-wise multiplication with the image box and
convolution kernel is performed, and the sum of this multiplication results in a single pixel of the
feature map, as depicted in Figure 2, by using a 3× 3 kernel.

 

Kernel 

Input Output 

Figure 2. Kernel feature extraction, calculating the box-wise multiplication with the image box and
convolution kernel.
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The image intensity at pixel j is represented by a linear combination of the kernels,

xj =
N

∑
l=1

κ(j, l) · χl (15)

where N is the total number of pixels in the image and χ is the kernel coefficient image. κ(·, · ) is a
kernel function encoding image prior information.

x = Kχ (16)

In Equation (16), each column of K can be considered as a basis function for image representation.
We proposed to use kernels including the exponentially-modified Gaussian [33]:

κ(x; µ, σ, δ) =
δ

2
e

δ
2 (2µ+δσ2−2x)er f c(

µ + δσ2 − x√
2σ

) (17)

where erfc is the complementary error function, defined as erfc(x) = (2
√

π) ·
∫ ∞

x e−t2
dt, and σ, µ, and

δ are the kernel parameters in the respective kernels.
In most instances, the kernel in the image is center-originated, indicating that the center point of a

kernel is κ(0, 0). For example, if the kernel size is five, then the array index of five elements will be −2,
−1, 0, 1, and 2. The origin is located at the middle of the kernel.

Because PET projection data bi are well modeled as independent Poisson random variables with
the log-likelihood function [34], the expectation E[bi] can be related to the unknown emission image
xj through:

yi = E[bi] =
N

∑
j=1

xjPij + r (18)

with P being the detection probability matrix and r the expectation of random and scattered events.
Substituting Equation (16) into (18), we obtain the following kernel-based forward projection model:

E[bi] =
N

∑
j=1

KχjPij + r (19)

Combining the kernel-based projection model and the standard MLEM algorithm [22] given in
Equation (11), it can be directly applied to find the ML estimate of χ because of (20). The resulting
kernelized EM update of χ at iteration (k + 1) is:

χ
[k+1]
j = Kχ

[k]
j

M

∑
i=1

biPij

∑N
j′=1 KPij′χ

[k]
j′ + r

(20)

3. Computer Simulation

3.1. Simulated PET Data (Setup)

To assess the overall performance of the proposed kernel regularization algorithm, we simulated a
PET scanner in a 2D mode, which has 420 crystals in each ring with each crystal having a cross-section
of 6.3× 6.3 mm2. A Hoffman brain phantom (Figure 3) [35] was used to simulate the radioactivity
distribution in a single slice of PET tracer through grey matter, white matter, and three tumors.
The digital design of the tumors in the phantom provides essential information about the reconstructed
images. To create a projection data, the simulated phantom image was forward projected using the
system matrix to generate the noise-free projection data. Once the simulated noise-free sinograms were
produced, a 30% uniform background was added to simulate mean randoms and scatters. The fraction
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of random and scatter was determined by counting them and dividing them by the total number of
counts. Independent Poisson noise was then introduced to the projection data with the expected total
number of events set to 300 k. All images were represented by 256× 256 pixels with a pixel size of
3× 3 mm2. All of the codes in the following experiments are implemented in MATLAB R2013a and
run on a desktop computer with i5-6600 @ 3.30 GHz 3.31 GHz Intel Core CPU and 8 GB memory.

50 100 150 200 250
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100

150

200

250
0

10

20

30

40

50

60

70

80

Figure 3. The Hoffman brain phantom, composed of gray matter, white matter, and three tumors.

3.2. Quality Evaluation

To evaluate the reconstructed results objectively, four image quality measurement parameters
were computed. These are listed below.

The mean square error is defined as [36]:

MSE =
1

MN

M

∑
j=1

N

∑
i=1

(xj,i − x′j,i)
2 (21)

The peak signal-to-noise ratio is defined as [37]:

PSNR = 10 log
2552

MSE
(22)

The signal-to-noise ratio is defined as [38]:

SNR =
∑M

j=1 ∑N
i=1[x

′
j,i]

2

∑M
j=1 ∑N

i=1[xj,i − x′j,i]
2

(23)

Normalized cross-correlation is defined as [39]:

NCC =
∑M

j=1 ∑N
i=1(xj,ix′j,i)

∑M
j=1 ∑N

i=1 x2
j,i

(24)

The test image’s grey level value is denoted by x, with x′ being the same value in the reconstructed
image. The lower MSE and greater PSNR, SNR, and normalized cross-correlation (NCC) values
indicate that the resulting reconstructed image is closer to the test image. The iteration number is a
further criterion that contributes to the iterative reconstruction algorithm, with smaller iterations being
preferable. Filled contour plots displaying isolines of the reconstructed images and the plot of the
profiles of reconstructed images’ comparisons were also used.
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4. Results and Discussion

In this study, the experimental kernel-based MLEM (κ-MLEM) algorithm was compared
against conventional MLEM [22], the penalized likelihood reconstruction regularized by anisotropic
diffusion filter (ADF) [17], the MLEM precondition reconstruction algorithm that was regularized
by non-local means (pre-NLM) and post-reconstruction de-noising methods applied post-MLEM
(post-NLM) [20]. One hundred and fifty iterations were applied to the MLEM algorithm used in
each of the regularization-based methods. Apart from the conventional MLEM algorithm, spatial
smoothing was used to enhance the quality of the image. All images were sized at 256× 256 pixels.
The box and neighborhood size were 7× 7.

We applied our technique to the Hoffman brain phantom, reconstructing the phantom erroneous
projections. Figure 4 shows the reconstructed images.

MLEM
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250

ADF-MLEM
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200

250

-MLEM
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250
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Pre-NLM
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Figure 4. Reconstructed images of the Hoffman brain phantom by different algorithms with
150 iterations. MLEM: maximum-likelihood expectation-maximization; κ-MLEM: the experimental
kernel-based MLEM; ADF-MLEM: the penalized likelihood reconstruction regularized by anisotropic
diffusion filter; Pre-NLM: MLEM precondition reconstruction algorithm that was regularized by
non-local means; Post-NLM: post-reconstruction de-noising methods applied post-MLEM.

As is shown, the visual quality of the reconstructed image of the phantom using the κ-MLEM
algorithm is comparable to the other methods. Indeed, compared to some, the experimental algorithm
preserves edges better. There is less noisy projection data, and the reconstruction is more accurate.
The method was able to detect the three tumors of different sizes, the smallest of which was not picked
up by ADF and pre-NLM and only faint in the post-NLM and conventional MLEM images. Sensitive
and reliable visualization of brain tumors is important for medical diagnosis and prognosis.

The effectiveness of noise removal for the test algorithm was comparable to that of the post-NLM
method; however, the intensity in the region of interest was appreciably higher in the latter. Compared
to the other methods, the κ-MLEM method generates a superior intensity profile, whilst preserving
the edges.

The SNR, MSE, PSNR, and NCC quality measurements of the reconstructed images derived from
the proposed algorithm and the other four reconstruction algorithms for the tumor regions of interest
(ROIs) of the Hoffman brain phantom selected with a rectangle in (Figure 3) are shown in Figure 5.
The minimum MSE achieved by all of the different methods for all iterations are shown Figure 5a.
The peak signal-to-noise ratio (PSNR) for each iteration is presented in Figure 5b. The normalized
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cross-correlation (NCC) and the signal-to-noise ratio values are shown in Figure 5c,d, respectively.
These data indicate that the measurements provided by κ-MLEM are of a higher quality than the other
methods tested. Compared to the performance parameters of the other regularization methods, those
of the proposed method were enhanced—especially at the lower number of iterations—and remained
almost constant after 100 iterations; for the conventional ADF-MLEM and pre-NLM, however, the
performance parameters began to decrease after 80 iterations. The data presented in these images
indicate that the κ-MLEM-generated images have the highest PSNR, SNR, and NCC at all iterations and
have a lower MSE; thus, the method outperforms the other methods, and this effect is heightened as the
iterations increase. We can see the post-NLM algorithm is clearly demonstrating a better performance
than all of the other alternative techniques and a performance quite close to the κ-MLEM method.
Indeed, the quality measurements of conventional MLEM at 150 iterations are not dissimilar to those
of κ-MLEM at 50 iterations (Figure 6). The lowest threshold number of iterations the technique needs
to create an acceptable reconstructed image is 20, making it fast as well as efficient. κ-MLEM is also
effective in removing star artifacts that are commonly generated by the conventional MLEM algorithm.
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Figure 5. Comparative analysis of reconstructing a Hoffman phantom using various reconstruction
methods by varying iteration number. MSE: mean square error; NCC: normalized cross-correlation;
PSNR: peak signal-to-noise ratio.
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Figure 6. Comparative analysis of reconstructing a Hoffman phantom using various reconstruction
methods by varying the iteration number.

The 1D line profile is the horizontal line that crosses the image in the two tumors, as shown in
Figure 7 for the middle tumor and in Figure 8 for the small tumor. Noisy images in uniform regions
are shown as spikes, as indicated by the conventional MLEM and post-NLM images; on the other
hand, κ-MLEM line profiles are closer to being noise-free. The experimental method also nullifies
aerial pixels, redistributing their values to pixels within the phantom. κ-MLEM reconstructed the ideal
profile more effectively than the other methods, and the image produced was a close approximation of
the original phantom image.
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Figure 7. 1D profiles corresponding to reconstructed images for the middle tumor.
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Figure 8. 1D profiles corresponding to reconstructed images for the small tumor.

To evaluate the performance of our proposed algorithm in the detection of tumors, we compare
the size of tumors of the original phantom and tumors of reconstructed images from different
algorithms. The reconstruction outcomes of the simulated phantom yielded the two rectangular
areas in Figure 9, which highlight the two smaller tumors. Subsequently, we used a threshold
equal to 75% to segment the tumors in PET images. The proposed algorithm successfully preserved
the edges of tumors. For example, the middle tumor edges were effectively preserved when
applying the proposed algorithm, whereas artifacts and deviations were more likely to occur with
the NLM-MLEM and conventional MLEM algorithm and appear distorted with the ADF-MLEM
algorithm, as shown in Figure 9. Furthermore, the intensity distribution within the middle tumor
was made more homogeneous by the proposed algorithm as compared to the conventional MLEM
algorithm. In addition to this, the proposed algorithm could enable the detection of the small tumor
with the same size of the original tumor, unlike other algorithms, which did not show tumors at all.
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Figure 9. Zoom-in of the tumors of the Hoffman phantom reconstruction achieved with
various algorithms.

5. Conclusions

The new reconstruction algorithm presented in this paper aims to improve the noise in PET
images. Based on conventional MLEM, the experimental algorithm uses a box-kernel of the
exponentially-modified Gaussian. The kernelized image model can incorporate prior information in
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the forward projection model κ-MLEM. The achievements of κ-MLEM were quantitatively superior,
and there was a significant reduction in noise at matched contrast when tested against conventional
MLEM and NLM regularization-based methods in PET simulations. Promising results were also
achieved when the algorithm was used to reconstruct a Hoffman phantom brain with tumors of
varying sizes. We believe that our method can make an important contribution to the diagnosis and
prognosis of brain tumors and has an application in clinical, education, and medical research.
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