
technologies

Article

Applying Semantics to Reduce the Time to Analytics
within Complex Heterogeneous Infrastructures

André Pomp † , Alexander Paulus †, Andreas Kirmse †, Vadim Kraus † and Tobias Meisen *

Institute of Information Management in Mechanical Engineering, RWTH Aachen University, 52068 Aachen,
Germany; andre.pomp@ima.rwth-aachen.de (A.P.); alexander.paulus@ima.rwth-aachen.de (A.P.);
andreas.kirmse@ima.rwth-aachen.de (A.K.); vadim.kraus@ima.rwth-aachen.de (V.K.)
* Correspondence: tobias.meisen@ima.rwth-aachen.de; Tel.: +49-241-80-911-00
† These authors contributed equally to this work.

Received: 15 August 2018; Accepted: 4 September 2018; Published: 8 September 2018
����������
�������

Abstract: In today’s age of modern information technology, large amounts of data are generated every
second to enable subsequent data aggregation and analysis. However, the IT infrastructures that
have been set up over the last few decades and which should now be used for this purpose are very
heterogeneous and complex. As a result, tasks for analyzing data, such as collecting, searching,
understanding and processing data, become very time-consuming. This makes it difficult to
realize visions, such as the Internet of Production, which pursues the goal of guaranteeing the
availability of real-time information at any time and place in an industrial setting. To reduce the
time to analytics in such scenarios, we present a data ingestion, integration and processing approach
consisting of a flexible and configurable data ingestion pipeline as well as a semantic data platform
named ESKAPE. The ingestion pipeline provides an abstraction to all tasks related to data acquisition.
The main goal is, therefore, the controllable access to data and meta information contained in machines
and other systems on the shop floor. Additionally, it provides the possibility to forward the collected
data to a configurable endpoint, such as a data lake. ESKAPE acts as one of those endpoints enabling
semantic data integration and processing. By annotating data sets with semantic models originating
from the Semantic Web, data analysts are able to understand, process and discover these data sets
more efficiently. ESKAPE features a three-layered information storage architecture consisting of a
data layer for storing integrated raw data sets, a layer containing user-defined semantic models to
describe the contextual knowledge necessary to interpret the stored data and a top layer formed by
a continuously evolving knowledge graph, combining semantic information from all present semantic
models. Based on this storage system, ESKAPE enables the flexible annotation as well as efficient
search and processing of data sources without losing the ability of analyzing and querying the
underlying raw data with analytic tools. We present and discuss our approach and its benefits and
limitations based on a real-world industrial use case.

Keywords: data ingestion; data lake; information extraction; time to analytics; semantic data platform;
semantic modeling; knowledge graph; applied semantics

1. Introduction

Modern information technology has led the way to an era of ubiquitous information
availability in our private lives. Large amounts of data are generated every second to enable the
subsequent collection, storage, usage and analysis of this data for various applications. The enterprises
that focus on analyzing this data and create products out of it follow a green-field approach that enables
them to set up infrastructures that are exactly designed for this purpose. However, the application
of these methods in already existing environments proves to be challenging. IT infrastructures

Technologies 2018, 6, 86; doi:10.3390/technologies6030086 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0003-0111-1813
https://orcid.org/0000-0001-8117-9660
http://www.mdpi.com/2227-7080/6/3/86?type=check_update&version=1
http://dx.doi.org/10.3390/technologies6030086
http://www.mdpi.com/journal/technologies

Technologies 2018, 6, 86 2 of 29

have been set up over the last few decades, tailored to the needs of specific tasks. Enterprises run
whole landscapes of very heterogeneous and complex infrastructures. Trying to apply these new
innovative data driven methods often is limited by the design of the systems, but must now be enabled
exactly for this purpose. One area in which such environments can be found is the industrial sector.
In industrial settings, those infrastructures consist, for instance, of legacy devices as well as modern
machines, different network zones and heterogeneous storage systems, data formats and models.
As a result, tasks for analyzing data, such as collecting, accessing, searching, understanding and
processing data, become very time-consuming. This makes it difficult to realize visions, such as the
Internet of Production (IoP) [1], which pursues the goal of guaranteeing the availability of real-time
information at any time and place. To reach this goal, data must be available and accessible to every
participant in such a scenario.

However, in current industrial settings, this is not possible. For working on an analytical
use case, it is, for instance, required to first identify potential data sources and the system that might
contain them. Once those candidates are identified, the next step is to actually access the systems,
extract the data and understand it, which is another challenge. In the past, the objective of collecting
data that is usable and accessible has not been pursued. Hence, most companies either do not collect
data from the shop floor or they collect their data in isolated silos, like databases or file systems.
Therefore, one of the most challenging tasks of data analytics is the acquisition of data. For every
analytic use case, this data acquisition task has to be repeated over and over again for any of the
existing systems, such as machines on the shop floor or databases.

Solutions currently in use and applied for this problem are either the introduction of a data
catalog that indexes all available data sources, or the centralization of the data storage. For centralizing
the storage of different data sources, various solutions have already been proposed by researchers
and have been appropriately adopted and implemented by the industry. Data warehouses
enable the centralization of structured data sources, like relational databases, by following
a schema-on-write approach. Although this solution has the advantage of a pre-defined and fixed
schema, it lacks the capability of storing unstructured data and it suffers from a decreased flexibility,
which is necessary in current data analytics and machine learning scenarios. For instance, adding a new
system to a data warehouse or changing existing systems by adding new sensors requires the adaption
of the existing data model. To overcome these limitations, modern data lakes, which follow a schema
on read approach, allow for storing both structured and unstructured data. In addition, they offer the
flexibility that modern data analytics and machine learning processes require. At the time of retrieval,
the data consumer has to define how he wants to structure the data, tailored to the requirements of
his analytical application. However, data lakes do not offer the possibility to easily access, find and
understand all underlying data sources. The result is a data lake filled with heterogeneous data
sets leading to a data swamp [2]. Thus, finding and understanding all available data sets is another
challenge for the employees of a company, as it is almost impossible if the necessary domain knowledge
is missing, especially when it comes to combining data points from different data sources. The reason
for this is that a data lake itself does not contain any information about the relationships between
different data sources. All these drawbacks result from the fact that the data stewards, who store the
data in the lake and are responsible for the data, usually do not belong to the group of data scientists or
application developers, who are going to use the data later on. Thus, the implicit context knowledge of
data stewards needs to be committed alongside with each single data set to allow analysts to interpret
the received values later on. The interoperability of data sources can only be achieved if the parties
involved develop a common understanding of the overall system. Therefore, an entity is required that
is able to support all the users and their divergent perspectives on the same subject. The capabilities
of this entity should range from supporting the description of a source system to the provisioning of
a query interface bridging different views of the world.

To support people in establishing a common understanding, the usage of data catalogs,
which allow to index data sources, can be helpful. In this area, different commercial meta-data

Technologies 2018, 6, 86 3 of 29

management solutions as well as research tools and approaches exist that provide better accessibility,
searchability and comprehensibility. For instance, following the research approach of the Semantic Web,
this knowledge can be expressed using semantic models that are defined by the data stewards
upon the data sets. The concepts and relations used within the semantic model represent the data
stewards’ view of this data source. Those semantic models are usually based on a reference ontology.
The mapping between the data attributes and the concepts of the semantic model is done by converting
the data into a different format, e.g., RDF (Resource Description Framework) resulting in a semantic
data integration where each data attribute and raw value is mapped to a concept of the underlying
ontology. In this case, the set of semantic models combined with the corresponding ontology build an
index over all data sources available. The index allows users to search and understand data sets inside
the lake by their semantic representation instead of raw (and potentially cryptic) data labels.

While this approach builds a solid foundation for describing heterogeneous data sets within a data
lake, it limits the variety and granularity of information that can be expressed during the semantic
modeling process at the same time. Due to the underlying ontology and the implicit formalism
associated with it, the data stewards are bound to the pre-defined vocabulary when building
their model.

To achieve the objectives of the Internet of Production, it becomes necessary to focus on the
challenges of collecting, finding, understanding, and accessing data sources in large enterprise
production settings. To reduce the time to analytics for data sources, we present a data ingestion,
integration and processing approach consisting of a flexible and configurable data ingestion pipeline
that enables controllable access to data and meta information contained in machines and other
systems on the shop floor and forwards the data to a configurable endpoint, such as a data lake.
Instead of just ingesting the data into a raw data lake, we feed it into our semantic data platform,
called Evolving Semantic Knowledge Aggregation and Processing Engine (ESKAPE) [3,4], which
enables the semantic annotation of data sets and performs a semantic data integration. ESKAPE
features a three-layered architecture consisting of raw data storage, a semantic annotation to store data
sets and an implementation of a knowledge graph that serves as an index. The knowledge graph offers
data stewards the capability to reuse semantic concepts and relations for their modeling process, which
is similar to an ontology, while also enabling users to introduce new semantic concepts and relations on
demand, leading to a continuously evolving knowledge graph. However, increasing the degree of
freedom during modeling leads to new challenges, such as inconsistencies or contradictions that
may arise during the modeling and data integration. Hence, a flexible architecture with well-defined
building blocks is required in order to deal with the new arising challenges by providing a flexible
semantic data integration. We present and discuss our approach and its benefits and limitations based
on a real-world industrial use case. Here, we show how our data ingestion pipeline in combination
with ESKAPE reduce the time to analytics in this use case.

The remainder of this paper is organized as follows: first, we define the term time to analytics
in Section 2. Next, we present our real world industrial setting in Section 3. Based on the presented
setting, we discuss the functionality of our ingestion pipeline in Section 4 and the features and design
of ESKAPE in Section 5. Afterwards, we discuss how we reduce the time to analytics in the described
setting in Section 6 and elaborate on current limitations. Finally, we present the current state of the art
in Section 7 before we conclude and give a short outlook in Section 8.

2. Time to Analytics

By the term time to analytics, we mean the total amount of time that passes from starting to
collect data, e.g., from a machine on the shop floor, until a data scientist is able to analyze the data of
this machine. This agrees with the definition of [5] who define the time to analytics as “the time
between when an enterprise gets data to when the right stakeholder has access to that data for analysis—both
initially and ongoing”. In our case, this process involves the connection of a new system, the storage of
the data in an appropriate data storage system, the description of meta data as well as the time the

Technologies 2018, 6, 86 4 of 29

analyst requires for finding, understanding and preparing the data. We do not consider the actual
time that is required for collecting enough amounts of data as this time depends on both the use case
and the connected system. In addition, we only consider technical hurdles that impact the time to
analytics. This means that we do not consider bureaucratic efforts that may be required for connecting
new systems. Examples include the application for technical user accounts, the permission to connect
a new system, firewall activations or the application for required resources, such as servers, on which
the ingestion agents may be deployed (cf. Section 3). Even if these bureaucratic processes are a
challenge in the real world that needs to be focused on in the future, they differ from enterprise to
enterprise. Furthermore, most of these steps, such as requesting resources or technical users, are only
one-time tasks, which are relevant solely for the first connected data source of a plant and network
zone.

3. Industrial Setting

In this section, we describe an industrial setting based on a real-world use case, which we are
going to use as a demonstration for the concepts that follow. First, we explain the scenario in general
(cf. Section 3.1). Afterwards, we highlight the specific aspects of production divisions (cf. Section 3.2)
and data acquisition (cf. Section 3.3) in more detail.

3.1. General Introduction

In order to better understand and grasp the complexity of the complete data ingestion and
surrounding conditions, we start with the description of an industrial setting. This setting represents a
class of manufacturing settings consisting of a common setup of a typical multi-site manufacturing
company and the involved production processes. Figure 1 shows the general overview of the scenario
considered here.

Figure 1. Scenario of multiple factories and their two separate network zones, production (grey) and
office (blue).

The scenario is based on a grown manufacturing ecosystem. A typical production site was
built decades ago and as the portfolio changed, the factories were adapted to the needs of the
current specification of the product. The production processes are often automated and the
tools and machine in such a mass production scenario are generally expensive and therefore

Technologies 2018, 6, 86 5 of 29

re-purposed as long as possible. Given this fact, acquiring new machines is a big investment into the
future, where their time of operation is typically in the magnitude of decades. One unique property of
this scenario therefore deals with the restrictions imposed by interoperability with legacy devices.
This means that these existing devices have to be integrated and it is not possible to just start from
scratch and build everything right from the ground up. In contrast to the green-field scenario, this fact is
referred to as the brown-field approach, since one has to deal with the existing and grown environment.

One concrete example for such a scenario could be a mainstream car manufacturing.
Car manufacturers produce multiple car models. A car is produced by multiple separate production
divisions. The manufacturing process continues for the lifetime of a car model. Once a new model is
introduced, some machines and tools will be replaced by model specific ones, while others are just
adapted to the needs of the model. Therefore, the lifetime of a machine is bound by the life-cycle
of a product model and only changes when restructuring for a completely new model or a bigger
upgrade. In the car example, this translates to a face-lift model of a car that occurs in a shorter time
frame (currently just 1–3 years) than a completely new updated version of a car model.

Another aspect we consider in our scenario is the distributed fashion of a manufacturing
company itself. For global companies, the aspect of geographically distributed factories that operate on
their own is another vital aspect. This distribution may be motivated by various reasons like
financial aspects or regional consumer requirements. Although the general structure of the distributed
production sites are similar and the sites often produce the same general product, there are variances
and differences in each dedicated process. They not only produce other parts or assemble another
product, the machines are naturally of different age and wear levels. Furthermore, regional factors
such as working hours, legal requirements or the stability of the electric network have to be regarded.
Additionally, timing optimization of the production has to deal with different time zones and the
information of location is important. All of these are factors that have to be considered for the
time to analytics.

We regard a company with multiple geographically distributed production sites. Each site has
at least two separate network zones. The manufacturing process consists of multiple distinguishable
divisions providing their own dedicated, potentially proprietary data management systems.
The following sections highlight some specific aspects of the scenario.

3.2. Production Divisions

In our scenario, we consider that, in one site, i.e., one factory, the product is produced in multiple
sequential and/or parallel stages by dedicated and specialized divisions. Therefore, at each location,
we have divisions that match the requirements of the product. While some divisions may be present at
every location, some may be only used in specific locations. Each division is responsible for one
specific step in the process of creating the product. Figure 2 shows an example for one production
site and the interaction of the corresponding divisions. Here, we see the existing material flow of the
production process along with the lack of data flow in the process from one division to the next.

As a concrete example, we look again at the automobile industry. There are many divisions
involved in the creation of an automobile, however, for the sake of simplicity, we focus on some of the
most well known ones. Consider these divisions in the automobile industry: logistic, body shop, paint
shop and assembly.

The logistics division receives orders for cars to be built, it orders the required materials and it is
responsible that the other manufacturing divisions have enough resources to do their job. After the
materials are available, metal sheets will be pressed and cut into body parts, which will be used in
the body shop to assemble the body of the car. Depending on the model, there are multiple paths
that the raw materials and parts can take on their way into the final product. In the paint shop, the
body will be painted according to the colors ordered by the customer. Painting also does not consist
of one simple step. There are multiple sub steps involved, e.g., the application of primers, adhesion,
coating and other layers of chemicals specific to the model or the paint. Finally, in the assembly

Technologies 2018, 6, 86 6 of 29

division, we find again a highly dynamic process. Depending on the configuration of the ordered car,
different components are going to be put together. For example, one order contains special leather
seats while another customer wants the premium satellite navigation system. Therefore, based on the
configuration of the car, the assembly is often unique to one specific car, where not all steps have to be
taken for every product.

Figure 2. Example for the divisions in the production scenario with the material flow. Additionally,
showing data sources from different layers of the automation pyramid and their stakeholders.

Each of these steps in the production process have a different semantical concept for the same thing.
In the body shop and paint shop, it is the bare metal body as a part of the car, whereas, in assembly
and logistics, it is a car. This results in different designations of the parts, which all end up in the end
product, as the sum of all parts.

However, on an abstract level, similar steps are carried out at each location and could be
considered for analytical applications. The most prominent problem for analytics from a global
perspective is the interoperability between the data silos used at the different divisions and locations.
There is very strict separation of data sources in enterprises like this. Each division is working as
a sovereign unit. The operators of the divisions are focused on the optimal operation of their tasks.
There are systems in place responsible for the operation and the monitoring of these specific tasks.
The data there is stored inside one or multiple dedicated systems—silos dedicated to a specific division.
Even on a division level, each subtask potentially is operated in a similar fashion. The problem
becomes even more evident if we consider that the production sites may not be located in the same
country. This global distribution gives each system a country-specific touch. Starting with trivial
differences like the language and different time zones, other non-trivial differences may include
country-specific regulations.

Therefore, there are data silos distributed across the whole company often containing similar
process information, inaccessible or not compatible. Thus, the production scenario considers the
problems related to the interoperability of semantically similar data sets coming from physically
separated divisions.

3.3. Brown-Field Data Acquisition

Another important aspect of our production scenario is related to the separation of computer
and communication networks. The typical IT setup in industrial settings is to secure and separate
the production shop floor from business office computers. Current standards by the International
Organization for Standardization and International Electrotechnical Commission, such as ISO/IEC
27002 [6] or [7], are suggesting the use of technical barriers like firewalls and audited access controls.
However, despite the security aspect, these restrictions oppose the endeavors of an Industry 4.0,
which demands a full and seamless interconnection of machines and information systems along the

Technologies 2018, 6, 86 7 of 29

manufacturing hierarchy and thereby represents a major challenge. This challenge is also considered by
various research studies [8,9] regarding the brown-field scenario and how to include existing devices
into the digitalization. However, this task is not the focus of our work, and we focus on how to acquire
the data of such devices despite or in conformity with the given restrictions.

The data sources in our settings can be generally divided into the categories production critical and
non-critical. The automation pyramid defines up to five hierarchy levels: field, control, supervision,
management and enterprise of the communication layers on the production network. All systems that
are located above the control level are considered to be non-critical with regards to the production
process itself. If these systems are non-operational, the manufacturing operation still proceeds
and is unaffected. Although these levels will get more blurry or get combined with progressing
digitalization of the Industry 4.0 movement, the basic aspect of production criticalness will still
remain. Therefore, we have systems with a low direct process impact at the top and systems that are
directly and physically controlling machines on the bottom field level. Data sources in the non-critical
category can be accessed arbitrarily. The most intensive task when accessing these systems is related to
network access restrictions. Interested parties often can request direct access to these systems and
will then receive a read-only view without much hassle. These systems are often located in networks,
which are already close to the office zone. In the critical area, however, we are getting closer to
the actual machines themselves. Source systems in this category have a direct controlling aspect.
There are aspects like real-time control, i.e., deterministic bounds on response times these systems
have to consider. Arbitrary access to these systems will have a direct impact on the production process.
In the worst case, the production will come to a stop. The pyramid also reveals that unfortunately
most of the data is being generated at the lower layers. Upper layers will only receive condensed
information or aggregated reports, such as key-performance indicators (KPI) that are updated on a
lower frequent basis. For instance, if we consider an assembly robot, we could be interested in all
kinds of data points from this device. Live access to this device will create a massive stream of
continuously changing values, which could potentially overload the bandwidth of the networking
as well as crippling its original purpose of controlling the robot. For such systems, it is essential to a
have a controlled access, guaranteeing a deterministic load on the network infrastructure.

Furthermore, this variance of systems on the hierarchical levels is only one part of the diversity
with a different access mechanism. The field level consists mainly of streaming data in contrast to
the more rarely-changing batch natured data on the higher levels. The time-dependent control
operation on the shop floor deals with different requirements than the reporting layer on the
enterprise level. However, also on each of these levels a great variety of systems is put in place.
The different requirements of the specific layers create the need for various protocols, formats,
storage or communication approaches. Especially, due to the brown-field scenario with a multitude of
legacy devices on the field level, a wide zoo of technologies exist even at one plant. The problem is
present in all the levels up to the enterprise level, where, for example, different dashboard and
reporting systems as well as storage techniques are used for specific analytic tasks. Everything is
uniquely tailored to a specific job and thus to requirements at hand.

The industrial environment, as considered in this paper, therefore consists of a grown ecosystem,
containing a variety of different data sources. These sources primarily serve the specific needs of
the business areas and their tasks. The tasks deal with a wide range of data properties like
volume, velocity and variety. Since an analytical use case requires access to the data contained in
such a system, an approach is required that can also handle a large number of very specific
system-dependent requirements.

4. Data Ingestion Pipeline

In this section, we describe an ingestion pipeline compatible with the industrial scenario
described in Section 3. In general, the ingestion pipeline is built around the concept of dynamically
reconfigurable agents (cf. Section 4.1), which access a source system and retrieve the relevant

Technologies 2018, 6, 86 8 of 29

data points, acting as an intermediary for all plant data acquisition plans. These agents require
configuration (cf. Section 4.2) in order to operate and connect to a data source system and
handle the specific data ingestion, retrieving data along with its meta information, such as the
data schema. This agent concept is based on the general integration architecture previously
published in Kirmse et al. [10]. The previous work presents a basic abstraction architecture of data
sources over a modularized framework. So far, it lacks the semantic integration and is therefore
extended with the connection to ESKAPE (cf. Section 5). Figure 3 shows schematically how the
agents connect to different systems using configurable connectors for arbitrary systems, how they
store the collected data in a buffering system and forward it to a data consumer. Agents cooperate
universally across geographic locations, divisions and network zones and thereby help to reduce
the complexity overhead of organizational as well as multiple connections to the same source
(e.g., spaghetti network topology).

Data Lake

ESKAPE

3rd Party

Figure 3. Ingestion agents and their interaction with the source and target system.

4.1. Ingestion Agents

As described in the previous section, accessing data sources on the lower levels of the automation
pyramid has to be coordinated in order to prevent the collapse of the production. The concept of
an agent acting as a single data customer for those systems relieves the need to negotiate multiple
agreements between multitudes of interested parties. A single coordination instance also counters
the problem of creating many connections to the systems, opening firewalls for every connection
or maintaining access restrictions. Since there are many systems without this single coordinator,
the management overhead will increase exponentially. In the sense of the Industry 4.0, interconnectivity
is the goal to be achieved. However, if these connections are made in an uncoordinated manner,
they cause more problems than benefits. Therefore, the agent also acts as a new access point for parties
interested outside the scope of the data lake ingestion pipeline. The agent retrieves the data and
stores it in an intermediate storage, which is potentially dedicated to a production site. In general,
the agent is equipped with a buffering system implemented by a message queue system to decouple the
systems load, such as the Advanced Message Queuing Protocol (AMQP) [11]. AMQP is an open source
message-oriented broker based publish–subscribe protocol for reliable message exchange. The AMQP
broker acts as a buffer and an access point to high frequency data. A default endpoint of the agent
is the connection to the semantic data platform ESKAPE (cf. Section 5). The communication from
the agent to ESKAPE is thus handled over AMQP, where ESKAPE is one consumer of the messages
published by the different agents. A newly started agent automatically uses the Representational State

Technologies 2018, 6, 86 9 of 29

Transfer Application Programming Interface (REST API) of ESKAPE to notify about a new data source,
which includes the credentials (user name/password) and connection details (such as the topic) of the
AMQP broker. Later on, ESKAPE subscribes to the AMQP topic and receives the data that is sent by
the agent (cf. Section 5).

The agent is a piece of software that can potentially run on any machine and can be deployed
depending on the specifications of the production site. For the implementation, we rely on the Java
programming language and its multi-platform and modularization capabilities. Additionally, we rely
on the Spring framework [12] as an abstraction of the operational boilerplate code. This approach
covers a wide range of deployment scenarios as agents can be run on a containerized service
architecture located on or off the premises. They can be deployed on edge devices or on dedicated
machines. For example, in order to deal with network congestion, the agent could run on an industrial
computer close to the field device, reducing the network traffic from the device through the whole
production network. Simultaneously acting as a gateway to a potential separated ingestion network,
one agent can access a multitude of data sources at once. Depending on the load of the agent, it is also
possible to deploy a multitude of agents, accessing single systems or even subsets of one system.
Thus, the agent approach is highly scalable. The distribution of agents in the complete integration
context will be described in more detail in Section 5.

As described in Section 3, the agent has to consider different kinds of source systems. The first
category of source systems are classical database systems. These data sources are often used by
systems at the upper layers of the automation pyramid, for example, Enterprise Resource Planning
(ERP) systems or Manufacturing Execution Systems (MES). Database systems provide a standardized
interface for access. These interfaces are often based on dialects of the Structured Query Language
(SQL). Although there exists the SQL standard defined in ISO/IEC 9075 [13] and extended by ISO/IEC
13249, different variants are still in use. For example, database providers add additional features
to the language or change the syntax. Listing 1 shows an example for the same query on three
different systems:

Listing 1: The different Structured Query Language (SQL) dialects for ”get the first 10 rows of
table ’table’ ”.

SELECT * FROM table LIMIT 10; -- SQL -standard
SELECT TOP 10 * FROM table; -- MSSQL
SELECT * FROM table WHERE ROWNUM <= 10; -- Oracle

There are system dependent specifications that require the agent to handle different database
systems differently. The query language is only the first difference. Another concern is the data
type used by these databases. Each system is providing a different set of data types where some
are compatible with each other while others are not. The agent homogenizes these differences and
provides an abstraction to all these systems.

When accessing the data from database systems, they are usually already heavily loaded and
therefore the task of retrieving data is a batch job with defined time constraints. Thus, the agent
can access, within the coordinated limits, a batch of data points in the source systems. The access
method is based on the polling principle. Hence, for batch data access, the agent needs to be limited
to a certain polling frequency and polling batch size. This polling can occur on tables as well as
views inside the database system as long as reading access is granted. For more critical database
systems, also a strictly defined query can be set. Other systems, which fall under the batch category,
are file-based systems—for example, a shared network folder or an File Transfer Protocol (FTP) server
where some files are located.

The second category of source systems is concerned with systems mainly located at the lower
levels of the automation pyramid. At the base level, these systems are machines on the shop floor.
In contrast to the first category, these data sources provide a continuous stream of data points.
The agent therefore needs to be connected to these systems continuously and perform a stream

Technologies 2018, 6, 86 10 of 29

ingestion process. Current standards for data access on the machine level include interfaces like
Open Platform Communications Unified Architecture (OPC UA [14]) or Message Queue Telemetry
Transport (MQTT [15]). The principle of OPC UA currently involves the connection to a dedicated OPC
UA server. Today, an OPC UA server is often integrated into the Programmable Logic Controller (PLC)
directly providing access to certain register values. However, since OPC UA is an extension to the
classical data access (Distributed) Component Object Model (COM/DCOM) OPC, there exist so-called
wrappers that also enable the direct access of such legacy devices within OPC UA [9]. The benefit
of UA is the information description of the values with a meta model consisting of blueprint objects
defined by the standard and extensible by vendors. OPC UA allows for registering for certain value
change events, e.g., the value changed by a certain percentage. The agent can therefore be configured to
listen for such an event and provide the resulting values. In practical use cases, the agents will register
for a certain change event and then read a group of values once the event value changes. For example,
the PLC is tracking the current product. Once the tracking identifier changes, the agent will read out
the values of some sensors connected to the PLC to get a continuous stream of process start states.
Another common standard is the MQTT protocol, where the agent subscribes to certain topics and
will receive updates immediately after something was published to the subscribed topic. The MQTT
protocol is very lightweight and has a small footprint, specifically tailored to small low energy devices,
which also benefits its use in the smart home context. The data itself is arbitrary. Therefore, no explicit
description of the contained information is given, unless this is realized with the hierarchical topic tree.

In general, the agent performs its data acquisition tasks and transfers data from one
point to another. Additionally, it is also capable of detecting changes to the source system and
react to recoverable changes of the source system. Thus, the agent is a skeleton, which comes with
a pre-defined set of capabilities. How it behaves solely depends on the configuration. The design of
the ingestion agent allows for a flexible extension in order to handle arbitrary future and legacy source
systems. In order to add a new agent for an arbitrary and specific data source, only the specifics of the
communication have to be implemented. This includes the specifics of connecting and data access,
for example, implementing a specific protocol or polling mechanism. The agent framework provides
the environment to transmit data via AMQP to any possible endpoint.

4.2. Configuration

The configuration is the description of a data source for the agent. The idea of the
configuration is to have an abstraction level and ease of connection by not having to deal with the
specifics of the individual system, but focus on the relevant part of data access. In order to be able to
connect to a data source, the location and access credentials need to be provided. Furthermore,
the description of the data itself and what data pieces the agent has to ingest have to be specified.
This connection information is part of a preliminary configuration. An automatic tool can use this
information in order to connect with the data source. The content of such a configuration is shown
exemplary in Figure 4.

In case of Relational Database Management Systems (RDBMS), the tool does an automatic
detection of all tables and identifies their index fields in order to detect newly arriving data points
as well as changes in the data. The change detection requires an updated field value, such as a last
modification timestamp or principal of re-adding the whole entry (table row) with a new unique
identifier. For the OPC UA protocol, the detection tool performs a complete server browse in order
to list all readable nodes and for MQTT a complete tree browse of available topics. Afterwards, it
allows for precisely defining trigger values on which data points, defined as a reading group, should
be ingested. The trigger can either be time-based as an interval trigger (also CRON) or value change
based for a deadband-value. Here, the variance in a specified data value defines the reading process,
which can also be a step counter of the machine states.

The resulting configuration by the automatic tool is a default configuration for this system,
which can be used without further modifications. The agent uses this configuration for the continuous

Technologies 2018, 6, 86 11 of 29

and ongoing ingestion of data along with its data schema that it extracts specifically from the
source system. Additionally, the user can further enhance and modify this configuration and tweak the
polling time as well as batch sizes according to the requirements of the system. Some RBDMS already
have stressful times during maintenance times, where additional data load would increase the time or
also hinder their default operation. Also limiting the size of transferred data can assure the proper
utilization of network infrastructure by stretching heavy peak traffic to a flat but continuous flow of
data packets. This can also concur with transfer jobs that already limit available network capacity and
thereby shift the load to a less used time window.

«enumeration»
DialectType

standard
Oracle
MSSQL
...

UANode

- id: String
- name: String

IntervalTrigger

-interval: int

...

Table

- name: String
- field: String

RDBMS

- database: String
- type: DialectType

MQTT

- topic: String

«enumeration»
ValueChangeType

absolute
percentage

ValueChangeTrigger

-deadband: int
-type: ValueChangeType

OPC UA

- namespace: String

Trigger

-pollSize: int

CronTrigger

-cronTime: cronSyntax

DataSourceDescription

-host: String
-port: int
-user: String
-pass: String

Figure 4. Diagram of the building blocks for the modular agent configuration describing a data source.

The configuration thus is a crucial part of the reduction in time to analytics, when the system is the
only source of the data needed for a specific analytics. If the source is already defined by a configuration
description, it only has to be changed if the available data schema is also changed. The configuration
has to be done only one time for a data source to be ingested into the semantic data platform.

In summary, the described ingestion concept leverages the problems of accessing data source
systems providing a flexible and scalable solution for the wide range of data sources available in an
environment of complex and heterogeneous infrastructures like the IoP.

5. Semantic Data Platform

ESKAPE, previously published by Pomp et al. [3,4], is a semantic data platform that connects data
stewards and data scientists. The goal of ESKAPE is to semantically integrate different heterogeneous
data sources into its data lake. Therefore, ESKAPE is capable of collecting data from different sources
(e.g., file systems, AMQP, HTTP, Twitter, ...) in various formats (e.g., Extensible Markup Language
(XML), JavaScript Object Notation (JSON), Comma-separated values (CSV), Avro, ...). It offers a REST
API to register new data sources and a user interface to monitor and manage all registered data sources.
To increase the usability and comprehensibility of registered sources for users such as data scientists,
ESKAPE uses semantic annotations in the form of semantic models that are stored alongside the data
sets. Therefore, data stewards are responsible for creating semantic models for all the data sources that
are added to ESKAPE. This enables data scientists to search, process and extract the available data
sources based on their semantic meanings rather than on their raw data attributes.

Figure 5 gives an overview about the interaction between ESKAPE and the ingestion agents,
which are described in Section 4.1. On each plant, multiple agents collect data from different
heterogeneous data sources, such as database systems, machines or file directories. As described in
Section 4.1, the data that is collected by the agents is ingested into ESKAPE via AMQP. If an
agent is started for the first time, it registers itself as a new data source at ESKAPE via a REST call.

Technologies 2018, 6, 86 12 of 29

Afterwards, ESKAPE reads the data from the newly registered data source, analyzes its schema and
presents it to the responsible data steward. Based on the detected schema, the data steward has to
create a semantic model for it by using ESKAPE’s web client. Each created semantic model is added to a
knowledge graph that is maintained by ESKAPE. Thus, ESKAPE’s knowledge graph continuously
evolves based on the semantic models created by all the data stewards. Based on the created semantic
models, ESKAPE performs a semantic data integration into the data lake. This integration links the raw
data attributes to the semantic information covered in the knowledge graph resulting in a semantic
data lake, which we define as follows:

Plant 1
BI Zone

Office

Plant 2

Office
Integra�on

Web Client

Favorite Tools

Seman�c Data Lake
& Speed Layer

Query
& Data Extrac�on

Seman�c Search
View Crea�on

Inges�on
Agent

Inges�on
Agent

Inges�on
Agent

Integra�on
Pipeline

Data Lake
Writer

Inges�on
Agent

Add Data Sources
Define Seman�c
Models
Search Data SourcesKnowledge Graph

& Data Source
Management

Produc�on

Office

Produc�on

0
11110111
01110
1101

SLT
Format

CSV Upload

Ingest

Ingest

Ingest

Ingest

Figure 5. Overview about the overall architecture consisting of the data ingestion agents in the plants
and the ESKAPE platform running in the Business Intelligence (BI) zone.

Definition 1. A semantic data lake extends the capabilities of a traditional data lake by storing semantic
descriptions alongside the records. It consists of raw data storage containing the data, a precisely defined
mapping between the data attributes and their semantic representation, and a vocabulary that defines the
available semantic concepts and their relationships.

As storing data sets with semantic models requires the data to be integrated in specific formats
supporting those kinds of modifications, ESKAPE defines its own data format, named Semantic Linked
Tree (SLT). The SLT format is a JSON-based data format that links the semantic information of the
knowledge graph to the raw data values (cf. Section 5.1.4). This enables us to add semantic information
to the raw data values within the data format.

The Internet of Production is aiming to establish an infrastructure where data can be used
based on the needs of the data consumer. The concept is premised on the concept of highlighting the
research object from use case specific perspectives, called digital shadows. These digital shadows
should only consist of relevant information described in terms the consumer is familiar with.
ESKAPE incorporates this vision by enable a flexible semantic description and extraction of data sets.
Also leveraging, by considering semantic processing, that the data consumer could also be a machine,
envisioning semantic machine to machine communication.

Technologies 2018, 6, 86 13 of 29

In Section 5.1, we give an overview of the general three-layered information storage architecture
with detailed looks into the single components and their technical realization. Afterwards, we give in
Section 5.2 an overview of how data scientists can query and extract the data from ESKAPE.

5.1. Information Storage Architecture

The previous publications [3,4] about ESKAPE gave only an overview of the core functionalities
and concepts of ESKAPE. Although ESKAPE’s semantic data storage has already been mentioned in
these publications, it has not been fully described. The following sections describe in detail how the
ingested data is stored in the data lake and how the engine converts the raw data lake into a semantic
data lake using semantic annotations. We call this storage model information storage as it is capable of
storing and providing more than plain data.

Our general information storage architecture incorporates three layers. The arrangement of layers
can be seen in Figure 6, whereas the lowest layer holds the raw integrated data, the middle layer stores
the attached semantic models and the top layer is formed by the knowledge graph. The bottom layer,
which we call data layer, resembles a data lake and only consists of unconnected data sets that are only
labeled by an ID and have no further information attached to them.

Figure 6. Overview of the three-layered information storage model containing the raw data at the
lowest level, attached semantic models and topped by the knowledge graph.

The intermediate layer, called the semantic layer, holds a semantic model for each of the data sets
stored in the underlying data layer. Those semantic models are created during the initial addition of
the data into the information storage. The creation is done by a data steward who possesses the
domain and context knowledge necessary to annotate the new data sets. Thus, a semantic model
represents the data stewards understanding of a data source and serves as a description of the
data contained in the data sets, allowing data consumers, who might not be familiar with the data,
to understand its meaning.

The top layer, which we call the knowledge layer, combines all semantic models into one repository,
called knowledge graph. As elements from the knowledge graph can be used in multiple semantic models,
the knowledge graph provides linkage between those data sets. Furthermore, the knowledge graph is
extended by newly added semantic concepts/relations and thus is able to adapt to the users’ needs.
Elements of the knowledge graph can be reused during the modeling process and therefore serve
as anchors when relating different distinct semantic models and data sets. This way, the knowledge
graph can serve as an index of all information that is available in the system.

In the following, we present the single layers in a more detailed way and describe the technical
challenges and techniques used to realize the information storage.

Technologies 2018, 6, 86 14 of 29

5.1.1. Semantic Layer

A main prerequisite of storing data with semantic annotations is the definition of suitable semantic
elements to form a semantic model of a data set. In our architecture, semantic models serve two purposes.
First, they give a formal meaning to the content of the data set and second provide an abstraction layer
to the raw data. Semantic models consist of semantic concepts and give information on how the values
represented by the model are to be interpreted. Additionally, they provide information about the
relations between those concepts. A data set with a provided semantic model can be used by people
not familiar with the original data as the semantic model provides the necessary context knowledge.

In our architecture, semantic models build the customization layer between the underlying
knowledge graph and the raw data of the data provider. Semantic models consist of so-called Entity
Types and Relations.

An Entity Type is a provider defined entity used for modeling that can be freely labeled and
described to represent the provider’s view on the data set. During the modeling process, an Entity Type
can either be mapped to a data attribute of the current data set directly or it can specify, generalize or
combine other Entity Types. Exemplary data attributes can be the column of a table (e.g., in a CSV file)
or a leaf node in a hierarchical data set (e.g., JSON-based data sets). When the user creates the Entity
Type, the user can freely choose a label. For example, if the user creates an Entity Type and maps it to a
data attribute, the label of the Entity Type could be either adopted from the data attribute or it can
be renamed according to the user’s needs. In addition to a label, a data provider can also add an
additional description. Thus, each Entity Type is unique and independent of each other. It is not
universally valid and will not be shared with any other model. However, it allows for specifying
more useful information on a given data attribute enabling data analysts to get a more fine-grained
description of the modeled entity. Figure 7 shows some links of data attributes to Entity Types,
e.g., ‘hum’ and ‘humidity’. If and only if an Entity Type is linked to an attribute, the Entity Type
also contains information on how the value stored in this attribute is to be syntactically handled.
The Data Type specifies whether the attribute values contain Numbers, Strings, Booleans or Binaries.
This information originally does not belong to the semantic model but is nevertheless stored in our
Entity Types, which therefore not only contain semantic data but serve as a more flexible modeling tool.
Once an Entity Type has been defined for a data attribute, it will overshadow that attribute’s original
label. The attribute will only be referenced by its semantic annotation from that time on. Following
this approach, in our Information Storage, Entity Types serve as the central elements to form semantic
models as they represent the data sets meaning more closely and from a user’s perspective.

To ensure the universal understandability of an Entity Type, each Entity Type is mapped to an
Entity Concept associating the Entity Type with a globally valid semantic. This enables reasoning over
multiple data sets. In general, an Entity Concept can be taken from any available vocabulary, such as
an ontology. However, in our case, all concepts are obtained from the Knowledge Graph to enable
knowledge expansion. Therefore, Entity Concept labels cannot be changed by the user. An Entity
Concept does either already belong to the knowledge graph or the user defines a new one which is
added to the knowledge graph (cf. Section 5.1.2). Examples can be seen in Figure 7, e.g., the Entity
Concept identifier (upper part of each node) is assigned to the user-defined Entity Type reading ID
(lower part) to preserve its universal meaning while the custom Entity Types label defines which type
of ‘identifier’ is actually meant.

To add more context to a semantic model, the data provider can define additional relations
between Entity Types as shown in Figure 7. In our semantic models, Relations can only be defined for
Entity Types and can have any semantic meaning, e.g., ‘has’, ‘consistsOf’, ‘isA’ to name a few common,
but also more specific ones like ‘measures’, ‘relatesTo’ or any other user customized label. Similar to
Entity Types, each relation is mapped to a Relation Concept (cf. Section 5.1.2), which is either already
present in the knowledge graph or introduced by the user on-demand. In contrast to Entity Types, it is
not possible to define different labels or descriptions for Relations. Hence, Relations always inherit the
properties of their linked Relation Concept.

Technologies 2018, 6, 86 15 of 29

Figure 7. Detailed view of a data source and its connected semantic model giving a semantic
description of the information contained in the data set. The semantic model consists of Entity
Types only, which are extended by Entity Concepts contained in the Knowledge Graph. The data
type, which can be seen in Entity Types that model a data attribute, defines how the data in this
attribute is to be interpreted (String, Number, Boolean, Binary, ...).

5.1.2. Knowledge Layer

The knowledge layer forms the topmost layer of the information storage and incorporates
(semantic) data from all semantic models into a single knowledge graph. We do not use any public
ontology since there does not exist any ontology that covers all the concepts and relations that
may be required in such flexible enterprise settings. This is the reason why we decided to follow a
bottom-up approach instead of a traditional top-down approach based on ontologies. As defined by
Gruber [16], ontologies are the explicit and formal specification of a shared conceptualization. Today,
humans decide in discussions and meetings what relations and concepts will be added to the ontology.
Instead of letting humans define the ontology by discussing their shared conceptualization explicitly,
ESKAPE builds its knowledge graph based on the semantic models created by the different data
stewards. Similar to traditional ontologies, this knowledge graph builds an explicit and formal
specification of a shared conceptualization. However, the shared conceptualization is based on the
explicit and formal specification of all individual conceptualizations provided by the data stewards as
semantic models. Each data steward defines his conceptualization of a data set as a semantic model
and ESKAPE merges all defined conceptualizations into the knowledge graph which then results in
the shared conceptualization of all data stewards and data sources. Thus, the knowledge graph gets
updated and grows with newly added models. To combine the defined semantic models, ESKAPE is
supervised by external knowledge bases, such as WordNet, BabelNet or existing public ontologies as
well as domain specific sources. Thus, the knowledge graph functions as an index of all semantic
knowledge that is available in the storage. As the knowledge graph is more than an traditional
ontology, we define it as follows:

Definition 2. A knowledge graph is a dynamic system consisting of a continuously evolving internal knowledge
base that interacts with an internal reasoning engine. The internal knowledge base features a local knowledge
area learned from user-provided semantic models, and a universal knowledge core, which is supervised by the
internal reasoning engine with the help of external knowledge bases. This universal knowledge core includes

Technologies 2018, 6, 86 16 of 29

signature features of an ontology, and is continuously evolved by the knowledge evolution component, which
adopts knowledge from the local knowledge area. Before the knowledge is adopted, it is validated by the knowledge
validation component.

This definition is based on the knowledge graph model presented by Ehrlinger et al. [17], and adds
several crucial components to describe our vision of a knowledge graph in detail. Figure 8 shows a
graphical representation of our definition and illustrates the two essential components that we define,
called knowledge base and reasoning engine, and their sub-features as well as the two different
sources of knowledge. These are external knowledge bases providing universal fact knowledge,
and user-provided semantic models, which provide locally valid knowledge that especially holds
for the data sets they are assigned to. As soon as axioms from the local knowledge become accepted
(i.e., if many users use them and therefore share the same opinion), the knowledge evolution component
learns their significance and adopts them into the universal knowledge core. This information is
then used to validate future statements from users. In addition, we plan to develop a Knowledge
Inference component in the future, which will be responsible for deriving new knowledge from existing
knowledge. We introduce this novel definition as existing definitions in related works are either too
crude and too diverse or contradictory [17]. The reason for this is that researchers either use the term
knowledge graph to describe different features or use distinct terms that are interchangeable with each
other, although they have distinct particular meanings in other works.

Universal

Knowledge

Local

Knowledge

Semantic Models

Knowledge Base 1

…

Knowledge Base 2

Reasoning Engine

Knowledge

Validation

Knowledge

Evolution

Knowledge

Inference

Knowledge Base N

Knowledge Base

Knowledge Graph

Figure 8. The components that we identify for our knowledge graph. We extend the proposal of
Ehrlinger and Wöß [17] with more details and additional components.

On the implementation side, the knowledge graph consists of so-called Entity Concepts and
Relation Concepts and refers to all available semantic models. Entity Concepts serve as globally unique
semantic descriptors, which identify a generic or specific mental concept, such as identifier or person.
An Entity Concept consists of a main label, a description, a number of synonym labels as well as whether
the concept was obtained from an external knowledge base or if it was introduced by a user when it
was missing. During the semantic modeling process, an Entity Concept is attached by the user to an
Entity Type to describe its semantics. Hence, there exists an edge from the knowledge graph’s Entity
Concept to that specific Entity Type. If a concept is reused multiple times, the knowledge graphs
concept has multiple outgoing links to all Entity Types in which the concept is used.

Technologies 2018, 6, 86 17 of 29

Besides the named Entity Concepts, the knowledge graph contains so-called Relation Concepts.
Those are semantic concepts that are used to define different relations between Entity Types in semantic
models. A common example is the isA Relation Concept that indicates a preamble relationship between
two Entity Types. The Relation Concept also holds all limitations that apply to relations using it, e.g.,
transitivity or asymmetry. By storing those attributes, the label and a common description at a single
place inside the information storage, it is ensured that all relations using a specific Relation Concept
(e.g., isA) provide the same semantic meaning. Similar to Entity Concepts, Relation Concepts can
be created during the modeling process, allowing users to depict the world exactly as they wish to.
If a Relation Concept is used a couple of times for a Relation between two Entity Types in different
semantic models, the knowledge graph creates this Relation explicitly between two Entity Concepts of
the knowledge graph. This enables suggesting this Relation to other users in the future.

If conflicts occur, these have to be solved, either manually (for small scale graphs) or automatically,
e.g., by relying on external knowledge bases or by checking usage frequency. A major focus of our
current research is to develop tools, techniques and heuristics to build a stable knowledge graph from
various inputs. Opposite to semantic concepts, which usually do not influence each other and might
peacefully coexist alongside in the same graph (duplicates and other problems are unwanted but not
harmful to the graph’s consistency), relations are far more complex constructs and can cause multiple
problems like violations of unidirectionality, contradicting relations or unwanted cyclic references
(A isA B isA C isA A).

As all semantic concepts and their deducted relations are represented in the knowledge graph,
it enables the system to provide searching, mapping and accessing tasks. Searching is simplified as
all data concepts are stored in a single place and users do not have to crawl all available data sets.
Mapping allows users to find similarities between distinct semantic models. This can, for example,
be used to find substitute data sources or combine multiple data sources to a single one using nothing
but the semantic annotations, a process we call semantic processing. As our knowledge graph is a
representation of available (semantic) concepts and relations, its contents are provided to the user
during the modeling process (cf. Section 5.1.1).

5.1.3. Semantic and Knowledge Layer Implementation

For the implementation of the semantic and knowledge layer, we choose a property graph
database to model all semantic entities of our semantic models and the knowledge graph. Using a
graph database allows for immediate modifications to the graph and furthermore the extension of
single nodes to hold more data in case we need to change the underlying data model. We use
Neo4J [18] as technology as it is the current state of the art property graph database [19]. We use
version 3.4.1 of Neo4J, one of the latest versions as of writing this paper.

Figure 9 shows the graph representation of the semantic model shown in Figure 7. As mentioned in
Section 5.1.2, relations are not single instances but are connected to a Relation Concept which defines
the type of relation that is represented by that edge. This enables us to add additional information to
each relation. For instance, we could add a property that models a period of validity or one that
indicates which user introduced the relation.

For abstraction, Apache TinkerPop [20] in combination with the graph traversal language
Gremlin is used to build sophisticated drivers. This enables our semantic data platform to be
compatible with any graph database that has TinkerPop support.

Technologies 2018, 6, 86 18 of 29

E

E

E

E

E

E
E

EE

E

E

E

E

E

E

E

E

E

E

humidity

reading

weather
reading

consistsOf
measures

station

weather
stationgenerates

humidity

temp

temperature

weather
reading

Entity
Concept

generates

Relation
Concept

station

Entity
Type

Relation

E

Generic
Edge

Figure 9. Partial representation of the semantic model shown in Figure 7 in the Neo4J database.
The semantic model node is hidden for clarity but is connected to all Entity Types and Relations.

5.1.4. Data Layer

Although the semantic data platform ESKAPE is capable of integrating data sets of different
formats (e.g., CSV, XML, JSON), we demonstrate the data integration based on an abstract data set
supplied in JSON. Listing 2a shows this example. Integrating data into the data storage is done in a
multi-step process (cf. Figure 10). In the first step, called Schema Analysis, the original data set is
analyzed w.r.t. the data structure and inconsistencies in the model between multiple data points.
A data point represents a single point of data (e.g., a single reading or status report) in the data
set—for instance, in a table, each row corresponds to a single data point. Based on all available data
points, we extract a data schema for that data set and use it as a starting point for the annotation.
Should any inconsistencies be detected (e.g., different data types for values of the same data attribute),
those are marked in the schema and have to be resolved by the user during the modeling process.

Figure 10. Schematic view of the integration process to add data to the information storage.

The schema is then handed over to the user interface (UI), which allows the user to adjust the data
structure and values to his needs. During the modeling process, the user can perform the following
operations:

Technologies 2018, 6, 86 19 of 29

• Splitting primitive values on patterns: If one attribute (e.g., string) encodes multiple information
that should be annotated separately, a split into an arbitrary but fixed amount of attributes,
based on regular expressions, is possible. All instances of said attribute are split the same way
and the semantic model is extended accordingly. For example, data attributes where each data
value follows the same pattern (e.g., xxx–yyyy–zz) could be split into three data attributes (e.g.,
xxx yyyy zz) where each of those attributes can be annotated separately.

• Split lists based on patterns: Similar to primitive values, a list, which might occur in some
data representations like JSON, can also be split based on a pattern. This is necessary if lists
contain multiple elements that are not semantically equal or have a repeating pattern. An example
would be [timestamp, latitude, longitude, latitude, longitude, ...]. Using a pattern, this can be split
into a list of multiple homogeneous objects containing the desired values like [{latitude, longitude},
{latitude, longitude}, ...] with the timestamp either assigned to each value or be stored as a new data
attribute. The goal of this step is to convert the heterogeneous list into a list of homogeneous
objects which can be safely annotated.

• Removing prefixes and suffixes: If any leading or trailing part of an attribute’s value is occurring
repeatedly and can be ignored before storing the value, this can be selected to be dropped during
integration to keep the stored data as clean as possible.

• Removing and filtering attributes: If an attribute that is contained in the data should be
completely ignored, this can be indicated during the modeling phase. No Entity Type will
then be assigned to that attribute, thus it will be dropped during the integration as it could not be
accessed later on.

Besides these operations, ESKAPE offers well-defined interfaces to add further operations later on.
Furthermore, the UI allows the user to do the actual creation of their semantic model for the data
set at hand. Starting with a visualization of the detected data schema, it follows a drag and drop
pattern to allow users to create their models as simple as possible. We refer to [3] for additional and
more detailed information.

If all modifications and annotations have been done, a temporary semantic model for the data set
and an Integration Config containing the desired data set changes is created (cf. Figure 10). An additional
Semantic Config is created alongside them and allows for mapping the integrated data to the semantic
model and vice versa later on (cf. Section 5.1.5). The temporary semantic model is handed to a service
which creates a new semantic model in the Neo4J database and a data source in the semantic data
platform ESKAPE. Afterwards, each data point in the raw data set is processed according to the
Integration Config. Additionally, the integration process includes procedures for flattening objects
and a baseline syntactic homogenization. The flattening object reduces the complexity of the data
hierarchy resulting in the original structure being lost during the process. However, as the data is
maintained and viewed by their semantic representation only afterwards, some original data structures
are not needed anymore. Due to the syntactic homogenization (e.g., ensuring that a data attribute
marked as number can be parsed as a valid number), we can assure that all data attributes that have
been annotated during the modeling are actually present in the data. Syntactic homogenization is
done using common patterns and heuristics for selected data types (e.g., Boolean Value). If a value
cannot be converted or parsed, this information is explicitly stored in the integrated data points,
thus rendering this value as potentially unusable later on. However, we do not perform a semantic
homogenization as the semantic model should contain all information to treat the data accordingly
later on (e.g., the semantic model should contain the unit if the linked Entity Concept is Temperature
and if this temperature holds for all data values of this data set).

Technologies 2018, 6, 86 20 of 29

Listing 2. Transformation of a raw JavaScript Object Notation (JSON) data point to the Semantic Linked
Tree (SLT) format. (a) Raw JSON data of a single data point of a data set to be integrated into the
information storage. (b) Structure of an integrated data point in SLT format. The ’d’ value object has
been flattened to single values. (c) Semantic configuration example. Maps Entity Type IDs to instances
of SLT node entries identified by the URI member (* indicates a set of children). (d) Resulting integrated
SLT. Entity Type and data type are not serialized as they are defined by the Semantic Config.

(a)

{
"a": "1",
"b": "foo",
"c": [
{
"c1": "t1",
"c2": "t2"
}, {
"c1": "t3",
"c2": "t4"
}
],
"d": {
"d1": "t5",
"d2": "true"
}
}

(b)

SLTObject{
key0 : SLTValue{
EntityType {252} ,
Number ,
"1"
},
key1 : SLTValue{
EntityType {621} ,
String ,
"foo"
},
key2 : SLTObjectSet{
key0 : SLTObject{
key0 : SLTValue {
EntityType {134} ,
String ,
"t1"
},
key1 : SLTValue{
EntityType {136} ,
String ,
"t2"
}
} ,[...]
},
key3 : SLTValueSet{
key0 : SLTValue{
EntityType {834} ,
String ,
"t5"
},
key1 : SLTValue{
EntityType {835} ,
Boolean ,
"true"
}
}
}

(c)

{
{
"entityTypeID" : "252",
"dataType" : "Number",
"URI" : "#DS01 .1"
},
{
"entityTypeID" : "621",
"dataType" : "String",
"URI" : "DS01 .2"
},
{
"entityTypeID" : "134",
"dataType" : "String",
"URI" : "DS01 .3/*/ DS01 .4"
},
{
"entityTypeID" : "136",
"dataType" : "String",
"URI" : "DS01 .3/*/ DS01 .5"
},
{
"entityTypeID" : "834",
"dataType" : "String",
"URI" : "#DS01 .6"
},
{
"entityTypeID" : "835",
"dataType" : "Boolean",
"URI" : "DS01 .7"
}
}

(d)

{
"@t": "o",
"#DS01 .1": {
"@t":"v",
"v":"1"
},
"#DS01 .2": {
"@t":"v",
"v":"foo",
},
"#DS01 .3":{
"@t":"hos",
"v": [{
"@t":"o",
"#DS01 .4": {
"@t": "v",
"v": "t1"
},
"#DS01 .5": {
"@t": "v",
"v": "t2"
}
} ,[...]
]
},
"#DS01 .6": {
"@t":"v",
"v":"t5",
},
"#DS01 .7": {
"@t":"v",
"v":" true",
}
}

5.1.5. Mapping SLT to Semantic Models

When storing SLT data in a serialized form, the Entity Type and data type are not serialized
alongside the content. Thus, as this information is common across all integrated data points,
those values are stored in a separate file, called the Semantic Config. An example config can be
seen in Listing 2c. It contains a mapping from the node IDs used in the SLT file to IDs of Entity
Concepts in the associated semantic model. The nodes are identified by the URI member. It defines
a path along the different IDs and uses as a wildcard to indicate a set. Thus, ‘#DS01.3/*/#DS01.4’
matches all Elements below the ‘#DS01.3’ node (which contains a list) that have a label equal to
‘#DS01.4’. The data type is stored alongside the other information. Decoupling the stored data from
its semantic meaning allows for quick modifications like extending the semantic model or changing
labels or descriptions without having to modify all integrated files.

Each entry in one of the SLT files for a single data source is built the same way, with only the
values changing for each data point. The Semantic Config is a general mapping of the SLT schema to
semantic entities stored in the semantic model. To parse SLT, the Semantic Config is read, and each
data point is deserialized using the information stored in the serialized SLT and the Semantic Config.
If a specific data type is defined in the Semantic Config, e.g., Number, the value is parsed to that type
during the process. This procedure induces that, if the format of the files changes in an unforeseen
way, the integration will fail during the processing of a streamed data source. As this can only occur

Technologies 2018, 6, 86 21 of 29

on streaming data sources, those have to be treated with additional care to not corrupt the models.
In case of a change in the data point structure, the integration will therefore cease to operate and notify
the user to specify a new data source, including an updated model. Already integrated data will be
preserved during this process and is available for future processing.

We realized the data layer using a Hadoop Distributed File System (HDFS), which stores raw
data in preparation for batch integration and schema analysis as well as the integrated data sets and
the semantic config for each data source. All data can be accessed using Apache Hive or AMQP
after a selection of data sources based on semantic elements. For further information about the used
technologies, we refer to [4], although some parts may have changed in the meantime.

5.2. Data Exploration and Extraction

Exploring the available data in ESKAPE is currently possible by searching data sources
available to the user for specific content like Entity Types or concepts. This search is more than a mere
filtering process on semantic models but a query to the knowledge graph. This allows the platform to
not only return candidate data sources containing the specific model searched for but also similar and
linked ones. This includes synonyms, hyponyms and other strongly related concepts. Upon entering
the search term, the user is presented with a selection of possibly matching data sources which can
then be explored by examining the associated semantic model.

Once a suitable semantic model has been found, the data can be extracted in manifold ways.
For any defined data source, the user has the opportunity to either create a stream-based processing
pipeline with an emitter step at the end or to create a static view using Apache Hive. Figures 11 and 12
(partly) show the configuration masks for both tasks. Processing pipelines can be assembled in a drag
and drop fashion with the ability to configure each step. In Figure 11, this is done using a pipeline
consisting of a stream collector which parses a data source into a stream, a JSON converter to form
every data point into a JSON object and an AMQP emitter which publishes the data to a given exchange.
Extraction via Hive is shown in Figure 12, providing a preview of a defined Hive view which can be
accessed using the users favorite data exploration or processing tool (e.g., Tableau). Next to AMQP
and Hive, there are other formats to extract data from ESKAPE like a plain file download containing
all data points of a data source, e.g., in line-delimited JSON.

Figure 11. Data extraction using an Advanced Message Queuing Protocol (AMQP) emitter in a
processing pipeline.

Technologies 2018, 6, 86 22 of 29

Figure 12. Preview window during data extraction using Hive views to query with external tools.

6. Discussion and Limitations of the Time to Analytics Reduction

To reach our goal of reducing the time to analytics, our approach first focuses on solving the
challenges of accessibility, flexibility, findability and understandability. Figure 13a gives an overview of
how possible approaches solve these challenges. Starting from a brown-field of data silos, there are
two concepts, which are complementary in regard to the metrics we consider. The concepts are either
introducing a centralization of the data storage or a data catalog. The former solution is strictly
concerned with solving the problems around accessibility, whereas the latter proposes concepts that
deal with understandability and findability regardless of the accessibility of the system.

Technologies 2018, 06, 0 22 of 29

Figure 12. Preview window during data extraction using Hive views to query with external tools.

6. Discussion and Limitations of the Time to Analytics Reduction

To reach our goal of reducing the time to analytics, our approach first focuses on solving the
challenges of accessibility, flexibility, findability and understandability. Figure 13a gives an overview of
how possible approaches solve these challenges. Starting from a brown-field of data silos, there are
two concepts, which are complementary in regard to the metrics we consider. The concepts are either
introducing a centralization of the data storage or a data catalog. The former solution is strictly
concerned with solving the problems around accessibility, whereas the latter proposes concepts that
deal with understandability and findability regardless of the accessibility of the system.

Finding &
Understanding

Finding &
Understanding

Finding &
Understanding

Flexibility

Accessing

Data
Warehouse

Data Lake

0
11110111
01110
1101

Centralized
Storage

Data Silos

Data Catalog

Data Catalog

(a) Improve Data Silos

Completeness Completeness

Consistency

Expandability Expandability

Seman�c
Modelling

... ...

SimplicityExpressiveness

Usability

0110
1101
1011

Periodic
Update

On-Demand
Update

?!

Tagging

Sta�c
Vocabulary

A T
L R

Dynamic
Vocabulary

A T
L R

Sta�c
Vocabulary

A T
L R

Dynamic
Vocabulary

A T
L R

Data Catalog

(b) Improve Data Catalogs

Figure 13. Overview about possibilities to improve data silos and data catalogs.

Since data access is a crucial factor in an ecosystem where users offer data that are
analyzed by others, our approach aims to reduce the time that is required for making data accessible
from existing legacy systems, such as shop floor machines, existing databases or other available
data sources. Hence, our approach focuses on centralizing the data storage to mitigate that every
available system feeds data into a dedicated database resulting in data silos that are distributed
across the entire enterprise. However, at the moment, this means that all affected systems must be
connected manually to the data lake. Therefore, one has to develop an application for each system
that transfers the data into the data lake. Based on the experience that we made in our real world
scenario, we identified that typical databases in such scenarios have around 400 tables with 10 to
100 columns each. Usually, it results in a large effort to connect such system table-wise to the data
lake. Using the agent we presented in Section 4.1, it takes around ten minutes to connect a new
system to either a raw data lake or to other systems, such as ESKAPE. This time mainly depends on

Figure 13. Overview about possibilities to improve data silos and data catalogs.

Since data access is a crucial factor in an ecosystem where users offer data that are
analyzed by others, our approach aims to reduce the time that is required for making data accessible
from existing legacy systems, such as shop floor machines, existing databases or other available
data sources. Hence, our approach focuses on centralizing the data storage to mitigate that every
available system feeds data into a dedicated database resulting in data silos that are distributed
across the entire enterprise. However, at the moment, this means that all affected systems must be
connected manually to the data lake. Therefore, one has to develop an application for each system
that transfers the data into the data lake. Based on the experience that we made in our real world
scenario, we identified that typical databases in such scenarios have around 400 tables with 10 to
100 columns each. Usually, it results in a large effort to connect such system table-wise to the data
lake. Using the agent we presented in Section 4.1, it takes around ten minutes to connect a new
system to either a raw data lake or to other systems, such as ESKAPE. This time mainly depends on

Technologies 2018, 6, 86 23 of 29

the size of the data source system, e.g., topic/node tree or amount of tables, and thus the automatic
scanning process as the preparing step of an agents default configuration explained in Section 4.2.
Hence, the automatic configuration creation tool, is the first step towards reducing the time to analytics.

Since the scenario described in Section 3 is very flexible, i.e., new systems, especially sensors,
may be added at any time, it is not recommended to rely on a fixed data warehouse approach.
Hence, our approach focuses on building a data lake. This mitigates the creation of an enterprise-wide
data schema, which would be associated with a high effort for constructing and maintaining. However,
raw data lake systems still have the problem of finding and understanding the desired data sources.
Hence, our approach focuses on building a data lake that additionally stores the required meta
data in a data catalog (cf. Figure 13a). Therefore, we proposed ESKAPE. As soon as the data points are
collected from the systems, the data stewards can add them to ESKAPE, which is a manual process
so far. This is not an automatic process because ESKAPE provides the ability to perform additional
data transformation steps before the data points are integrated. This allows, for example, to infer
additional information from the collected data, such as inferring a language from a data attribute that
contains text.

After ESKAPE has performed the schema analysis (cf. Section 5), the data steward has to
semantically annotate the data. Figure 13b gives an overview about possible approaches. We decided to
annotate data with semantic models instead of a simple tagging approach. Semantic models offer a
much more detailed definition of the meaning and relationship of data attributes than conventional
tagging systems. This leads to a higher expressiveness. However, this trade-off results in a higher effort
for the data steward. Depending on the number of present data attributes and the desired level of detail
that the semantic model should have, this step takes the most time. To reduce the required time to a
minimum, ESKAPE supports the user with suggestions for possible semantic concepts, data types, etc.,
which already reduces the time that is required for creating semantic models. Nevertheless, it may
still take up to 15 min for creating a sophisticated semantic model, which is much longer than simply
tagging a data source with a few tags.

We are aware that this is a limitation of our approach as it takes additional time. However,
creating semantic models is a one-time task for each data source and the time saved later therefore
outweighs the initial required effort as each data scientist who has to find and understand this
data source will save time. This is also an essential difference to existing meta-data management
solutions (cf. Section 7), which focus on either simple tagging approaches or on automatic collection
of meta-data derived, e.g., from the database schema. To mitigate the initial creation of a static
vocabulary, which has the same drawbacks regarding time consumption as setting up a data schema
for a data warehouse, our approach is based on a dynamic vocabulary that evolves over time.
However, using dynamic vocabularies can either be updated on-demand or periodically, such as
every month (cf. Figure 13b). The latter has the advantage that it reaches the same consistency as
static vocabularies. However, it restricts the data steward to describe information that is missing
from the current vocabulary. This leads to a delay for publishing the data source. Thus, ESKAPE
focuses on an on-demand vocabulary expansion (the knowledge graph) based on the semantic models
that are added by the data stewards. This means that no delay will occur for publishing a data set.
Nevertheless, this on-demand expansion has the disadvantage that it may lead to inconsistencies or
undefined relationships. Therefore, our research in ESKAPE also focuses on automatically detecting
and aligning of vocabularies, e.g., by detecting synonyms based on the framework provided by
Paulus et al. [21], whereas current tagging systems or the automatic collection of meta-data do not
deal with the alignment of the used terms/labels of the vocabulary. This reduces the effort for manual
alignment of vocabularies.

Besides the time that we save in the data provision process, our developed approach also
enables the data scientist to search, retrieve and extract their desired data more efficiently. Due to the
maintained knowledge graph and the automatic identification of synonyms, our approach offers a very
efficient search across all data sources that were registered in ESKAPE. In addition, the knowledge

Technologies 2018, 6, 86 24 of 29

graph allows for drawing conclusions among the relationships between different data sets. Identifying
these relationships is not possible with solutions that solely rely on tagging systems that do not maintain
any vocabulary alignment. After finding the data, ESKAPE offers data scientists the functionality to
access the data via SQL or to extract the data in a desired format (cf. Section 5.2). These two steps
reduce the necessity to perform certain data pre-processing steps and thus simplify the work of a data
scientist. In addition, they enable the data scientist to get related data sets in the same data format
and with the same data attribute names, which is not possible when working with data silos or raw
data lakes. In the future, we plan to introduce additional semantic processing steps that will cover
additional transformation tasks, such as converting temperatures or extract additional information.
This will be possible since the semantic models in combination with our semantic data integration
provide all the necessary information to automatically perform such steps. This will additionally
decrease the time to analytics, as it further simplifies the data pre-processing.

Altogether, our approach targets the time to analytics reduction by centralizing the data storage,
simplifying the data collection of existing systems, providing different methods for defining exhaustive
semantic annotations for data sources without relying on a static vocabulary. All these actions lead to a
time to analytics reduction as they solve the problems of accessing, understanding and finding data
sources without limiting the flexibility, expandability or usability (cf. Figure 13). While this approach
introduces some complexity in the initial integration of new data sources, it is most beneficial for the
continuous implementation of analytic use cases.

7. Related Work

Due to our goal of collecting data from the shop floor and other connected systems and making
these data available to data scientists, many different research topics are related to our work. These are
data ingestion, meta-data management and semantic modeling as well as semantic data integration.

In the area of data ingestion, various reference architectures for classical data integration
approaches exist. The importance here is the difference between integration and ingestion, where, in
integration data, transformation occurs into a consolidated target schemata, and the ingestion deals
with the homogenization of the access layer by consolidating the data. For the classical data integration
into Data-warehouse systems, the Extract-Transform-Load (ETL) process is well defined in terms of
information management systems [22–24].

Pääkkönen et al. [25] introduce a generic data integration reference architecture, which is
mapped against the different infrastructure elements of tech-giants proven environments (Facebook,
Twitter, Netflix, etc.). The architecture consists of the base elements ‘Data Source’, ‘Data extraction’,
‘Data loading and preprocessing’, ‘Data processing’, ‘Data Analysis’, ‘Data loading and transformation’,
‘Interfacing and visualization’, and ‘Data storage’. It thus represents the basic and connecting
building blocks for a generic data integration infrastructure and emphasizes its necessity. However,
this approach is not tailored nor specific to Industrial context and therefore not directly applicable to
shop floor systems. Since the concepts are derived from green-field approaches, they do not consider
factors like production criticality or support for legacy devices on the brown-field. Specifically,
the production criticality is a factor that must be considered. An analytic use case is only useful if the
production is able to benefit from it. A production stop caused by uncontrolled access to systems and
devices is certainly not beneficial.

Specifically tailored to the problems of the shop floor, data integration is the approach proposed
by Bonci et al. [26] for database-centric cyber-physical production systems (CPPS). Their idea is
to use lightweight database synchronization with a distributed replication on every CPS device.
They introduce a swarmlet concept that facilitates the publish and subscribe paradigm for Internet of
Things devices, which thereby extends the central database to a service-oriented architecture similar to
an Enterprise Service Bus. However, the requirement is that each system has enough (computational)
power to perform such operations in this regard and to get a full picture of the production process that
the interconnection over different network zones is possible.

Technologies 2018, 6, 86 25 of 29

More tailored towards the shop floor are the reference architecture models RAMI4 and the
Industrial Data Space. The RAMI4.0 model proposed by the German VDI [27] is a three-dimensional
model based on the layer structure of the Smart Grid Architecture Model [28]. The base model is
extended by a life cycle and value stream dimension with an additional hierarchy level. The architecture
focuses on the data acquisition step of Industrial Big Data and only partially addresses subsequent
steps like data storage, access and analysis. Their suggestion is a so called ‘Administration Shell’,
which handles the devices meta-data management (head) and data transfer (body). Thereby, they turn
single devices into I4.0 objects that should enable easier data access.

The ‘Industrial Data Space’ developed by the Fraunhofer society [29] introduces a five-layer
structure and defines roles within a data ecosystem. They describe each role based on the required
functionality and depending on the layer inside the model. Base roles are the data provider and
data user, which refer in our terms to the data steward and analyst. Moreover, they also define
the terms of broker, appstore operator and certification authority. The reference architecture is an
approach to establishing key features along roles and assigning responsibilities in the data space on
a higher level without providing an actual solution to the specific problem of data analytics in an
industrial setting.

To achieve the goals of finding data sources, understanding them in their entirety and
accessing them, we can differentiate between approaches that build up data catalogs, which just contain
the meta-data of all added data sources, and approaches where an actual centralized data integration
takes place, which means that the raw data are stored in a new data format. In both cases, we can
further differentiate between approaches that rely on the principles originating from the Semantic
Web and approaches from the research area of database and information systems. For instance, in the
case of the Semantic Web, one could build a semantic data integration system by annotating data
with semantic models built based on a fixed vocabulary (e.g., an ontology) and storing the integrated
data in the standardized RDF format.

The community around databases and information systems focuses on providing sophisticated
meta-data management systems. Here, the construction of data catalogs is a wide-spread approach for
managing data sets that are available in different systems, such as databases, file systems or data lakes.
For instance, Quix et al. proposed in [30] the system GEMMS, which is a generic and extensible
meta-data management system that was developed for managing data lakes. Instead of integrating
the data into a common format, their system focuses solely on managing the data in an own meta
model where annotations can also be enriched with additional semantic concepts extracted from,
e.g., an ontology. This enables users to find exactly the data they are looking for. Compared to our
approach, Quix et al. [30] focus solely on finding the data, whereas our approach also deals with the
additional semantic data integration where each data attribute is directly linked to the corresponding
semantic concept. In addition, we perform a syntactic homogenization that enables us to directly
identify data points that do not correspond to the defined data type.

A similar approach is followed by Hai et al. [2] in another work, named Constance. In this paper,
the authors presented an intelligent data lake solution that discovers and extracts meta-data from data
sources. In addition, the system annotates the data with additional semantic information. Compared to
our approach, the authors do not perform a semantic data integration. Instead, they focus their work
on rewriting queries whereas our approach transforms the data into the unified SLT format and stores
them in the underlying data lake.

Besides approaches originating from the research community, commercial solutions, such as
Microsoft Data Catalog [31] or Informatica Enterprise Data Catalog [32], exist. The Microsoft
Data Catalog, which is a commercial solution, allows users to collaboratively add tags to data sources as
well as to data attributes. Users can simply choose from existing tags or define new ones in the process.
To support the data steward during the annotation process, the user interface offers an auto-completion
functionality. However, the tool does not care about the alignment of tags (e.g., by suggesting already
existing synonyms) like we do in our work. By contrast, the Informatica Data Catalog enables the

Technologies 2018, 6, 86 26 of 29

tagging of data attributes with so-called Data Domains. These Data Domains represent a semantic
meaning and can be assigned to data attributes. Several of those can also be aggregated to more
complex Data Domains, resulting in a basic semantic model (e.g., a person has a first name, last name
and an e-mail address). Similar to the Microsoft Data Catalog, the Data Domains can be created by
users. However, it is possible to manually define synonyms. The user interface allows for manually
assigning a Data Domain to a data attribute supported with an auto-complete function as well as
acknowledging automatically identified ones.

Instead of just constructing data catalogs, other solutions also focus on integrating the data,
which has the advantage that the data is available more quickly when requested by a data scientist.
Informatica offers additional data integration for their Data Catalog by extending this product with
further products, such as the Informatica Enterprise Data Lake [33]. Here, the data are moved from the
original data source (e.g., a database) into the data lake.

Following the approach of the Semantic Web, using semantic annotations or models to describe
data sources is a widespread approach for managing meta-data and understanding the meaning of data.
Here, the annotations are created based on fixed vocabularies, such as taxonomies or ontologies.
Knoblock et al. propose in multiple papers [34,35] a platform, called KARMA, that enables
the semi-automatic mapping of structured data sources into the Semantic Web. Their approach
integrates heterogeneous data sources, such as CSV or Excel Files, into RDF triples which build the
mapping between a raw data point (RDF object) and the corresponding semantic type (RDF subject).
The semantic model is generated based on an underlying Web Ontology Language (OWL) ontology.
Besides KARMA, other solutions rely on RDF and pre-defined ontologies for integrating mapped
data. Prominent examples are smart data platforms, such as the Anzo Semantic Data Lake [36] or
OpenLink’s Virtuoso [37].

There are also several commercial platforms that follow the idea of adding semantics/meta
data to raw data sources and, optionally, can perform an additional data integration. Examples are the
knowledge platform provided by MAANA [38], the MANTRA Smart Data Platform [39], or kSpheres
provided by Kinor Technologies [40]. Unfortunately, those platforms do not state how they achieve
the task of a semantic data integration, i.e., they do not provide any information about the used
vocabulary or if they designed their own data format or rely on, e.g., RDF.

8. Conclusions

In this paper, we focused on dealing with the challenges of collecting, finding, understanding
and accessing data sources in large enterprise production settings to achieve the objectives of
guaranteeing the availability of real-time information at any time and place as stated by the Internet of
Production. Therefore, we aimed at reducing the time that passes from collecting data to analyzing
data. As a solution, we based our approach on the concepts of centralizing the data storage in a
modern data lake architecture. We first presented concepts for data ingestion, data integration and
data processing consisting of a flexible and configurable data ingestion pipeline. The first step in
the pipeline was covered by an ingestion agent, which collects data from machines on the shop floor
or other related systems (e.g., databases) and feeds the data into ESKAPE. By just configuring and
deploying this agent, we are capable of gathering data from a variety of systems. Instead of just
ingesting the data into a raw data lake, we additionally presented a semantic data platform, called
ESKAPE, which enables data source stewards to semantically annotate and integrate the ingested
data. For that, ESKAPE features a three-layered architecture consisting of a raw data storage, semantic
annotations for stored data sets and an implementation of a knowledge graph which serves as an index.
Compared to traditional meta data management solutions, ESKAPE’s knowledge graph evolves over
time based on the semantic models and data sources that are added. Based on the created semantic
models, data scientists are able to find, understand, and extract the data from the different data sources.
To show the benefits of our approach, we discussed it with regard to a real-world use case in which
we deployed our data ingestion agents and ESKAPE. Here, we showed that our approach is capable

Technologies 2018, 6, 86 27 of 29

of reducing the overall time to analytics by saving time during the connection of new data sources,
the data collection, as well as for accessing, finding and understanding the data sources. However,
we are also aware that our approach introduces an additional step for creating the semantic models
which may be time-consuming. Nevertheless, we argue that this step is only a one-time task and the
support offered by ESKAPE, e.g., by recommending semantic concepts, already focuses on reducing
this additional required effort to a minimum. Thus, the time saved in the other steps outweighs the
time that is required for creating sophisticated semantic models.

Future Work

From the ingestion perspective, we will focus on extending the connector pool providing the
possibility to access even more system. Similarly, we would like to extend the configurable access
patterns. In the context of ESKAPE, we will focus on improving the creation and maintenance of
the knowledge graph. With a rising number of participants in ESKAPE, the number of modeling
approaches increases, thus rendering the resolution of conflicts and inconsistencies more difficult.
Instead of strengthening the graph by only including external knowledge bases that model world or
domain knowledge, we also want to learn from the data that are annotated with semantic concepts.
This will enable us to learn the representation of semantic concepts. In addition, we want to extend
ESKAPE to include the import and export of semantic data from and to common formats like RDF to
ensure compatibility and transfer of knowledge across system borders. Moreover, we would like to
make more use of the semantic models. Although practically usable, ESKAPE’s extraction methods do
not unlock the full potential of the semantic information available. For future developments, we are
planning on developing a more flexible query processing engine to yield even better results by
unlocking all features of the knowledge graph and reducing the amount of manual work needed to
extract the required data. For example, we aim to implement a processing of data sources (e.g., combine,
filter) using semantic models instead of data attributes. This semantic processing, which will be based
on a user’s query input, will enable data scientists to perform additional data analysis steps directly
on the ESKAPE platform and thereby save additional time. This would allow the user to use more
natural language constructs when formulating a query, which will eventually return the desired data
set(s) directly instead of only presenting suitable data sources.

Author Contributions: The general concept for enabling analytic use cases with the help of an semantic integration
approach was developed by all authors collectively. A.K. and V.K. developed and implemented the specifics of
the reconfigurable data ingestion agents for industrial data integration use cases. A.P. (André Pomp) and A.P.
(Alexander Paulus) are responsible for the semantic modeling of data, i.e., the development and evaluation of
ESKAPE. The discussion on time to analytics and related work was also compiled by all authors equally.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. RWTH Aachen University. Digital Connected Production. 2017. Available online: https://www.rwth-
campus.com/wp-content/uploads/2015/01/Broschuere-Cluster-Productionstechnik-20170508-web.pdf
(accessed on 6 September 2018).

2. Hai, R.; Geisler, S.; Quix, C. Constance: An Intelligent Data Lake System. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD’16, San Francisco, CA, USA, 26 June–1 July 2016;
ACM: New York, NY, USA, 2016; pp. 2097–2100.

3. Pomp, A.; Paulus, A.; Jeschke, S.; Meisen, T. ESKAPE: Platform for Enabling Semantics in the Continuously
Evolving Internet of Things. In Proceedings of the 2017 IEEE 11th International Conference on Semantic
Computing, ICSC, San Diego, CA, USA, 30 January–1 February 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 262–263.

https://www.rwth-campus.com/wp-content/uploads/2015/01/Broschuere-Cluster-Productionstechnik-20170508-web.pdf
https://www.rwth-campus.com/wp-content/uploads/2015/01/Broschuere-Cluster-Productionstechnik-20170508-web.pdf

Technologies 2018, 6, 86 28 of 29

4. Pomp, A.; Paulus, A.; Jeschke, S.; Meisen, T. ESKAPE: Information Platform for Enabling Semantic Data
Processing. In Proceedings of the 19th International Conference on Enterprise Information. SCITEPRESS—
Science and Technology Publications, Porto, Portugal, 26–29 April 2017.

5. Moghe, P. Time to Analytics: The New Metric for Data Management. In Bloomberg Professional Services
2016. Available online: https://www.bloomberg.com/professional/blog/time-to-analytics-the-new-metric-
for-data-management/ (accessed on 6 September 2018).

6. Technology, I. ISO/IEC 27002:2013—Information Technology—Security Techniques—Code of Practice for
Information Security Management; Technical Report; International Organization for Standardization: Geneva,
Switzerland, 2013.

7. Calder, A. Information Security Based on ISO 27001/ISO 27002: A Management Guide - Best Practice; Van Haren
Publishing: Reading, UK, 2009.

8. Khan, M.; Wu, X.; Xu, X.; Dou, W. Big data challenges and opportunities in the hype of Industry
4.0. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

9. Chuanying, Y.; He, L.; Zhihong, L. Implementation of migrations from Class OPC to OPC UA for data
acquisition system. In Proceedings of the 2012 International Conference on System Science and Engineering
(ICSSE), Dalian, Liaoning, China, 30 June–2 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 588–592.

10. Kirmse, A.; Kraus, V.; Hoffmann, M.; Meisen, T. An Architecture for Efficient Integration and
Harmonization of Heterogeneous, Distributed Data Sources Enabling Big Data Analytics. In Proceedings
of the 20th International Conference on Enterprise Information Systems, Funchal, Madeira, Portugal,
21–24 March 2018; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2018; Volume 1,
pp. 175–182.

11. Vinoski, S. Advanced Message Queuing Protocol. IEEE Internet Comput. 2006, 10, 87–89. [CrossRef]
12. Spring. Available online: https://spring.io (accessed on 6 September 2018).
13. Technology, I. ISO/IEC 9075 Database languages—SQL; Technical Report; International Organization for

Standardization/International Electrotechnical Commission: Geneva, Switzerland, 2008.
14. Rinaldi, J. OPC UA—The Basics: An OPC UA Overview for Those Who Are Not Networking Gurus; Amazon:

Great Britain, UK, 2013.
15. Standard, O. MQTT Version 3.1.1. 2014. Available online: http://upfiles.heclouds.com/123/ueditor/2016/

07/14/184e2dd5bc35bd9de59abc740665faac.pdf (accessed on 6 September 2018).
16. Gruber, T. What is an Ontology. WWW Site. 1993. Available online: http://www-ksl.stanford.edu/kst/

whatis-an-ontology.html (accessed on 24 January 2018).
17. Ehrlinger, L.; Wöß, W. Towards a Definition of Knowledge Graphs. In proceedings of the SEMANTICS 2016,

Leipzig, Germany, September 13–14 2016.
18. The Neo4j Graph Platform. Available online: https://neo4j.com (accessed on 6 September 2018)
19. DB-Engines Ranking. Available online: https://db-engines.com/de/ranking/graph+dbms (accessed on

6 September 2018).
20. Apache TinkerPop. Available online: https://tinkerpop.apache.org (accessed on 6 September 2018).
21. Paulus, A.; Pomp, A.; Poth, L.; Lipp, J.; Meisen, T. Gathering and Combining Semantic Concepts from

Multiple Knowledge Bases. In Proceedings of the 20th International Conference on Enterprise Information, Madeira,
Portugal, 21–24 March 2018; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2018.

22. Hohpe, G.; Woolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions;
Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2003.

23. Goodhue, D.L.; Wybo, M.D.; Kirsch, L.J. The impact of data integration on the costs and benefits of
information systems. MiS Q. 1992, 16, 293–311. [CrossRef]

24. Cox, M.; Ellsworth, D. Managing Big Data for Scientific Visualization; ACM Siggraph: New York, NY, USA,
1997; Volume 97, pp. 21–38.

25. Pääkkönen, P.; Pakkala, D. Reference architecture and classification of technologies, products and services
for big data systems. Big Data Res. 2015, 2, 166–186. [CrossRef]

26. Bonci, A.; Pirani, M.; Longhi, S. A database-centric approach for the modeling, simulation and control of
cyber-physical systems in the factory of the future. IFAC-PapersOnLine 2016, 49, 249–254. [CrossRef]

https://www.bloomberg.com/professional/blog/time-to-analytics-the-new-metric-for-data-management/
https://www.bloomberg.com/professional/blog/time-to-analytics-the-new-metric-for-data-management/
http://dx.doi.org/10.1109/MIC.2006.116
https://spring.io
http://upfiles.heclouds.com/123/ueditor/2016/07/14/184e2dd5bc35bd9de59abc740665faac.pdf
http://upfiles.heclouds.com/123/ueditor/2016/07/14/184e2dd5bc35bd9de59abc740665faac.pdf
http://www-ksl.stanford.edu/kst/whatis-an-ontology.html
http://www-ksl.stanford.edu/kst/whatis-an-ontology.html
https://neo4j.com
https://db-engines.com/de/ranking/graph+dbms
https://tinkerpop.apache.org
http://dx.doi.org/10.2307/249530
http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://dx.doi.org/10.1016/j.ifacol.2016.07.608

Technologies 2018, 6, 86 29 of 29

27. Measurement, V.S.; GMA. Reference Architecture Model Industrie 4.0 (RAMI4.0). 2016.
Available online: https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_
architectural_model_industrie_4.0_rami_4.0.pdf (accessed on 6 September 2018).

28. Group, C.C.E.S.G.C. Smart Grid Reference Architecture. 2011. Available online: http://www.pointview.
com/data/files/1/636/2181.pdf (accessed on 6 September 2018).

29. Society, F. Reference Architecture Model For The Industrial Data Space. 2017. Available online:
https://www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/industrial-data-space/Industrial-
Data-Space_Reference-Architecture-Model-2017.pdf (accessed on 6 September 2018).

30. Quix, C.; Hai, R.; Vatov, I. GEMMS: A Generic and Extensible Metadata Management System for Data
Lakes. In Proceedings of the CAiSE’16 Forum at the 28th International Conference on Advanced Information
Systems Engineering, Ljubljana, Slovenia, 13–17 June 2016.

31. Microsoft Corporation. Microsoft Data Catalog; Microsoft Corporation: Redmond, WA, USA, 2018.
32. Informatica Corporation. Enterprise Data Catalog; Informatica Corporation: Redwood City, CA, USA, 2018.
33. Enterprise Data Lake| Big Data | Data Lake | Informatica US. Available online: https://www.informatica.

com/products/big-data/enterprise-data-lake.html (accessed on 6 September 2018).
34. Gupta, S.; Szekely, P.; Knoblock, C.A.; Goel, A.; Taheriyan, M.; Muslea, M. Karma: A System for Mapping

Structured Sources into the Semantic Web; Springer: Berlin/Heidelberg, Germany, 2015; pp. 430–434.
35. Knoblock, C.A.; Szekely, P.; Ambite, J.L.; Goel, A.; Gupta, S.; Lerman, K.; Muslea, M.; Taheriyan, M.;

Mallick, P. Semi-Automatically Mapping Structured Sources into the Semantic Web. In Proceedings of the
Extended Semantic Web Conference, Heraklion, Crete, Greece, 27–31 May 2012.

36. Cambridge Semantics. Anzo Smart Data Discovery. 2016. Available online: https://www.
cambridgesemantics.com (accessed on 6 September 2018).

37. Open Link Software. Virtuoso. 2015. Available online: https://virtuoso.openlinksw.com (accessed on
6 September 2018).

38. MAANA. Knowledge Platform. 2018. Available online: https://www.maana.io (accessed on 6 September
2018).

39. Mantra. Smart Data Platform. 2018. Available online: http://www.altiliagroup.com/platform/mantra-
platform (accessed on 6 September 2018).

40. Kinor. kSpheres. 2015. Available online: https://www.kinor.com (accessed on 6 September 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
http://www.pointview.com/data/files/1/636/2181.pdf
http://www.pointview.com/data/files/1/636/2181.pdf
https://www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/industrial-data-space/Industrial-Data-Space_Reference-Architecture-Model-2017.pdf
https://www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/industrial-data-space/Industrial-Data-Space_Reference-Architecture-Model-2017.pdf
https://www.informatica.com/products/big-data/enterprise-data-lake.html
https://www.informatica.com/products/big-data/enterprise-data-lake.html
https://www.cambridgesemantics.com
https://www.cambridgesemantics.com
https://virtuoso.openlinksw.com
https://www.maana.io
http://www.altiliagroup.com/platform/mantra-platform
http://www.altiliagroup.com/platform/mantra-platform
https://www.kinor.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Time to Analytics
	Industrial Setting
	General Introduction
	Production Divisions
	Brown-Field Data Acquisition

	Data Ingestion Pipeline
	Ingestion Agents
	Configuration

	Semantic Data Platform
	Information Storage Architecture
	Semantic Layer
	Knowledge Layer
	Semantic and Knowledge Layer Implementation
	Data Layer
	Mapping SLT to Semantic Models

	Data Exploration and Extraction

	Discussion and Limitations of the Time to Analytics Reduction
	Related Work
	Conclusions
	References

