
technologies

Article

A TensorFlow Extension Framework for Optimized
Generation of Hardware CNN Inference Engines

Vasileios Leon * , Spyridon Mouselinos, Konstantina Koliogeorgi, Sotirios Xydis,
Dimitrios Soudris and Kiamal Pekmestzi

School of Electrical & Computer Engineering, National Technical University of Athens, Athens 15780, Greece;
mouselinos.spur.kw@gmail.com (S.M.); konstantina@microlab.ntua.gr (K.K.); sxydis@microlab.ntua.gr (S.X.);
dsoudris@microlab.ntua.gr (D.S.); pekmes@microlab.ntua.gr (K.P.)
* Correspondence: vleon@microlab.ntua.gr

Received: 16 December 2019; Accepted: 9 January 2020; Published: 13 January 2020
����������
�������

Abstract: The workloads of Convolutional Neural Networks (CNNs) exhibit a streaming nature that
makes them attractive for reconfigurable architectures such as the Field-Programmable Gate Arrays
(FPGAs), while their increased need for low-power and speed has established Application-Specific
Integrated Circuit (ASIC)-based accelerators as alternative efficient solutions. During the last
five years, the development of Hardware Description Language (HDL)-based CNN accelerators,
either for FPGA or ASIC, has seen huge academic interest due to their high-performance and
room for optimizations. Towards this direction, we propose a library-based framework, which
extends TensorFlow, the well-established machine learning framework, and automatically generates
high-throughput CNN inference engines for FPGAs and ASICs. The framework allows software
developers to exploit the benefits of FPGA/ASIC acceleration without requiring any expertise on HDL
development and low-level design. Moreover, it provides a set of optimization knobs concerning the
model architecture and the inference engine generation, allowing the developer to tune the accelerator
according to the requirements of the respective use case. Our framework is evaluated by optimizing
the LeNet CNN model on the MNIST dataset, and implementing FPGA- and ASIC-based accelerators
using the generated inference engine. The optimal FPGA-based accelerator on Zynq-7000 delivers
93% less memory footprint and 54% less Look-Up Table (LUT) utilization, and up to 10× speedup
on the inference execution vs. different Graphics Processing Unit (GPU) and Central Processing
Unit (CPU) implementations of the same model, in exchange for a negligible accuracy loss, i.e.,
0.89%. For the same accuracy drop, the 45 nm standard-cell-based ASIC accelerator provides an
implementation which operates at 520 MHz and occupies an area of 0.059 mm2, while the power
consumption is ∼7.5 mW.

Keywords: machine learning; convolutional neural networks; model optimizations; weight
quantization; inference engine optimizations; dataflow optimizations; tensorflow; FPGA; ASIC

1. Introduction

In recent years, significant research has been conducted on the development and optimization
of Convolutional Neural Networks (CNNs), a class of Deep Neural Networks (DNNs) that excels
in computer vision tasks, such as object recognition [1] and classification [2]. However, such
applications belong to the Internet-of-Things (IoT) and high-end embedded system domains,
meaning that speed together with energy-efficiency and scalability are of high importance,
while general-purpose processors (i.e., CPUs, low-end GPUs) tend to become unfit for these tasks.
FPGA-based accelerators [3–6] have started to take their place as viable and promising solutions,
thus, investing in their efficient implementation forms an emerging highly valuable design paradigm.

Technologies 2020, 8, 6; doi:10.3390/technologies8010006 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0003-0503-8246
http://dx.doi.org/10.3390/technologies8010006
http://www.mdpi.com/journal/technologies
https://www.mdpi.com/2227-7080/8/1/6?type=check_update&version=2

Technologies 2020, 8, 6 2 of 15

ASIC implementations also provide significant gains in performance for DNNs [7–9], even though
they lack of reconfigurability.

However, due to the complexity and development overhead of the Hardware Description
Language (HDL) approach, the acceleration of CNNs has been extensively studied from the perspective
of High Level Synthesis (HLS) design. The authors in [10–12] propose frameworks that allow the user
to customize the design of a CNN based on a C high description and attempting to bridge the gap
between software and hardware design skills. The aforementioned frameworks are based heavily
on utilizing HLS CNN templates, tools and knobs, thus, they introduce performance overheads due
to higher behavioral design abstraction, and programmability overheads due to the need for deeply
understanding the architectural details. In this paper, the proposed framework surpasses the former
inefficiencies, as we provide an HDL library-based, aka highly optimized, approach for the automatic
generation of CNN inference engines, directly exposed to the TensorFlow programmer, thus, there is
no need for low-level design details.

In the current paper, we expand TF2FPGA [13], a TensorFlow-based framework offering
various optimization knobs and techniques to generate an FPGA-based CNN inference engine.
More specifically, we extend its capabilities in order to support a more user-friendly interaction
by providing a clearer and more expressive API to tune the accelerator. As a result, the interaction is
now performed by simply modifying the JSON file of the respective optimization/technique, contrary
to [13], where all the available optimizations and techniques are applied via manual work requiring
basic HDL knowledge. Overall, the current version of the framework allows software developers to
create hardware-based CNN accelerators without any expertise on the HDL development. Moreover,
the proposed expanded framework now supports standard-cell-based back-end for ASIC accelerators,
thus, the generated HDL inference engine does not target only FPGA-based accelerators as in [13].

The proposed framework allows software developers to reap the benefits of FPGA/ASIC
acceleration for their complex CNN models, while avoiding the learning curve of FPGA/ASIC design
and the time overhead of HDL development. Hardware and architectural optimizations as well as
available optimization techniques of HLS tools, are exposed to the software developer as tuning knobs
inside a pool of optimization capabilities. The software programmer has the option to enable or disable
the proposed optimizations depending on the requirements of the respective system and the use case.
The proposed framework enables automatic and transparent generation of high-throughput FPGA-
and ASIC-based CNN accelerators, by extending the well known TensorFlow [14,15] system with
automatic acceleration capabilities. It uses a Python inference engine generator that accepts as input
the CNN model description and its parameters, i.e., image size, kernel filter window size, number of
input and output feature maps etc., declared in a JSON file. The software developer can choose out of
a variety of optimization techniques including model architecture optimizations, weight quantization
techniques, inference engine optimizations, and dataflow optimizations that apply to the generic
CNN architecture. These optimizations can be applied incrementally and deliver a final accelerator
that fits the requirements w.r.t. the desired accuracy and performance trade-offs. We note that the
generated inference engine is a synthesizable VHDL code, ready to be deployed on an FPGA device or
synthesized with a standard cell library targeting a semi-custom ASIC.

The framework is validated using a LeNet CNN model [16] as use case, operating on data from
the MNIST dataset for handwritten digits recognition [17]. The optimization options and steps of
the framework are implemented for this network and result in two hardware accelerators with 93%
less memory footprint and 0.89% accuracy loss: (i) an FPGA-based accelerator with 54% less LUT
utilization and up to 10× speedup vs different GPU, CPU combinations, and (ii) an ASIC-based
accelerator which operates at 520 MHz, occupies 0.059 mm2 area and consumes ∼7.5 mW power.

Overall, the contributions of this work are summarized as follows:

1. an automatic TensorFlow-based framework, written in Python, which generates optimized
FPGA/ASIC-based CNN accelerators.

Technologies 2020, 8, 6 3 of 15

2. a variety of optimization knobs and techniques concerning the model architecture and the HDL
inference engine, allowing the tuning of the accelerator and the exploration of various trade-offs
in terms of hardware resources, performance and accuracy.

3. fully transparency in the generation of the hardware CNN inference engine, allowing the
software developers to create FPGA/ASIC-based CNN accelerators without any expertise on
HDL development.

4. an in-depth analysis and exploration of the framework capabilities using the LeNet model on the
MNIST dataset.

5. a strong experimental evaluation of the generated inference engine using industrial tools, i.e,
Xilinx Vivado [18] and Synopsys Design Compiler [19], for the the FPGA- and ASIC-based
accelerators, respectively.

The remainder of the paper is organized as follows. Section 2 provides an overview of the related
work. Section 3 describes the framework and each one of the proposed optimization techniques.
Section 4 introduces the utilized use case, describes how the framework was applied to this specific
network and provides experimental evaluation of all metrics of interest. Finally, Section 5 concludes
the paper.

2. Related Work

An extensive exploration of the merits of leveraging FPGA technology for accelerating CNNs
has been conducted and an overview of the most outstanding works has been reported on extended
surveys [20]. Works included in these surveys span from optimized HDL CNN implementations to
HLS-based designs in the most recent years and even mature CNN-to-FPGA toolflows.

A significant part of the literature accelerates CNNs by focusing on architectural and algorithmic
optimizations. Works from academia are built around the optimization knobs available in third-party
HLS tools, while leading third-party tool vendors provide dedicated products to support seamless
FPGA acceleration of TensorFlow or Caffe CNNs. In [11], an FPGA-based CNN inference accelerator
is synthesized from multi-threaded C software using the LegUp HLS tool. The use of HLS permits
a range of architectures to be evaluated, through exploration of the HLS provided tuning knobs.
The Vitis AI [21] is a specialized development environment for accelerating AI inference on Xilinx
embedded platforms and FPGAs. Vitis AI development environment supports the industry’s leading
deep learning frameworks like TensorFlow and Caffe, and offers comprehensive APIs to optimize and
compile trained networks to achieve the highest AI inference performance for the deployed application.

The authors in [12] present LeFlow, an open-source tool-kit that allows software developers to
implement deep neural networks on FPGAs without having any hardware development expertise.
The kit generates an LLVM IR from Tensorflow and imports it into an FPGA HLS tool after significant
manual transformations. All HLS optimizations are provided as tuning capabilities on the python
level. The authors in [22] propose a code generation tool that outputs fully synthesizable Verilog.
Their tool combines concatenate-and-pad (CaP) and overlap-and-add (OaA) techniques, which
significantly reduce the computational complexity of operations in CNN layers, and frequency
domain loop tiling techniques in order to generate high throughput CNN accelerators. These works
focus on application-specific optimization techniques leveraging the HLS tools built-in optimization
capabilities. Therefore, they require an in-depth understanding of the available techniques, as well
as with the architectural details of both the target device and the computational kernel. In our work,
this level of understanding and background knowledge is not necessary. We introduce a first level of
optimization upon creation of the model and target the model architecture through the adoption of a
wide-and-shallow version of the deep complex model. Therefore we tackle this way the computational
complexity of the model.

The work presented in [23] proposes a systolic array convolution architecture to achieve better
frequency and, thus, performance for CNNs on FPGAs. The optimization of the architecture is achieved
through an analytical model and a design space exploration scheme that examine mapping of data on a

Technologies 2020, 8, 6 4 of 15

Processing Element (PE) array, PE array shape and data reuse. These features are incorporated into an
end-to-end automation flow, that performs CNN design generation from high-level C code to FPGA.
The authors in [4] propose a framework that translates the input CNN to a sequence of instructions,
executed by the computation engine. The engine consists of an array of PEs and is independent of
the input CNN model. The authors also employ a data quantization strategy that is implemented in
a dynamic way across layers and takes place during the training phase. An extension of this work
is presented in [24], where the authors propose an end-to-end compiler that integrates optimizers
for graphs, loops and data layouts. The main optimization utilized targets fusion of graph parts,
operations, layers, operations across different kernels, etc., and exploring effective fusion strategies.
Regarding data management, the proposed strategy is to load all the data of kernels first and then
perform the convolution with popping out feature data sequentially. Ma et al. [25] present a register
transfer level compiler to automatically generate FPGA-based accelerators. The compiler leverages an
RTL module library that has been developed for different types of CNN layers and has been optimized
based on a strategy for parallel computation, data movement and memory access presented in [26].
A hardware–software co-design framework that leverages the reconfigurability of FPGAs to efficiently
implement a sparse CNN is presented in [27]. A data sparsification scheme optimizes the structure of
the sparse CNN during training phase based on memory allocation and data access regularization
and an architecture composed of multiple processing elements (PEs) implements the computation
parallelism and data reuse feature. Authors in [28] propose a spatial architecture based on a new CNN
dataflow which works on both convolutional and fully connected layers. The resulting dataflow is
optimized in terms of data movement and energy consumption thanks to an analysis framework that
can quantify the energy efficiency of different CNN dataflows under the same hardware constraints.
In this work, the proposed framework addresses the bottleneck introduced by data buffering in matrix
multiplications of the CNN model through a dataflow architecture that customizes the datapath and
and creates a pipeline that allows for computation without stalls. Our framework also extends the
quantization-aware training, that can be found across literature, and suggests a quick and simple
alternative of post-training optimization.

Recent works have also examined the creation of end-to-end tool flows that incorporate advanced
compiler techniques and mitigate the overhead of HDL development timeframe. The authors in [10]
present a framework for the automation of HLS design of CNNs. This framework allows the user
to customize the design of an equivalent CNN, and generates both a synthesizable C++ code and
ready-to-use scripts for Xilinx Vivado. In [24] the authors propose an end-to-end compiler that
integrates optimizers for graphs, loops and data layouts and aim at generating more smart instructions.
The authors in [29] propose a uniformed mathematical representation for efficient FPGA acceleration of
all layers in CNN/DNN models and a framework that finds the optimal mapping of this representation
to the specialized accelerator based on roofline model. The generated accelerator is part of Caffeine,
a hardware/soft-ware co-designed library that efficiently accelerate the entire CNN on FPGAs.
An automated flow receives input from frameworks such as Caffe to program the desired CNN and
build the FPGA accelerator. Similarly, we also propose an automatic TensorFlow-based framework,
written in Python, which generates optimized CNN accelerators. However the accelerators generated
from our framework can be either FPGA or ASIC-based ones.

3. Framework for CNN Inference Generation

The proposed framework, which is illustrated in the block diagram of Figure 1, incorporates an
end-to-end CNN inference engine generator including modeling, training, and inference optimizations.
Interestingly, it is an extension of the well-established TensorFlow framework [14,15], which trains
the model and extracts the final model description and weights. The extracted TensorFlow model
is parsed by a custom Python script that generates the HDL inference engine using an in-house
optimized CNN layer library. Our layer library is written in VHDL and includes the most widely

Technologies 2020, 8, 6 5 of 15

used layers and functions of CNN models, e.g., convolutional layer, pool layer, ReLU function, etc.
Their implementation is based on the corresponding TensorFlow descriptions.

T
R

A
IN

IN
G

IN
F

E
R

E
N

C
E

G
E

N
E

R
A

T
O

R

SYNTHESIS IMPLEMENTATION

TensorFlow +

Python

Image Dataset

Weights

and Biases

Model

Description

CNN Layer Library

Model Architecture Weight Quantization Inference Engine

Optimizations

Dataflow Optimizations

convLayer.vhd

poolLayer.vhd
...

Deep

Wide-&-Shallow

Quantization -Aware

Training

Post-Training

Quantization Thresholding

Sparsification

Transpose

Matrix Multiplication

Typical FPGA/ASIC Design Flow

Figure 1. Proposed framework for generating high-throughput CNN hardware accelerators with
TensorFlow. The user needs only to modify the JSON files to tune both the training and inference
generation, and run the Python scripts (Training, Inference Generator) to produce a synthesizable HDL
inference engine, ready to be deployed on an FPGA or implemented for semi-custom ASIC.

The generated HDL inference engine is synthesizable and can be given as input source
to industrial-strong FPGA design tools (e.g., Xilinx Vivado [18], Intel Quartus Prime [30],
Synopsys Synplify Pro [31], etc.) and semi-custom ASIC design tools employing standard cell libraries
(e.g., Synopsys Design Compiler [19]). Subsequently, the typical FPGA/ASIC development flow is
followed to deliver the hardware accelerator. The developer’s interaction with our framework is
limited only to the configuration of the JSON files and the execution of the Python scripts for training
and inference generation. Specifically, the developer can tune both the aforementioned processes by
enabling model transformations and optimization knobs in the corresponding JSON files.

3.1. Framework Configuration Capabilities

Regarding the CNN model architecture, the developer can explore the possibility for deep
to wide-and-shallow conversion, in order to reduce the execution time and memory footprint.
Moreover, two different weight quantization options allow the developer to exploit the fixed-point
power in the calculations. Targeting a high-throughput accelerator, we have given the flexibility to the
developer to enable optimizations concerning the generation of the engine. These optimizations can be
divided into two subcategories. The first category introduces a first level of optimization, and includes
application-specific inference engine optimizations, such as weight matrix sparsification or input
thresholding. The second category further enhances the performance of the design, and includes
dataflow transformations.

The proposed framework allows the programmer to exploit all the options described above,
regarding Model Architecture, Weight Quantization, Inference Engine Optimizations and Dataflow
Optimizations. Therefore, the programmer can effectively customize the inference engine to fit the
specific use-case criteria such as accuracy, timing constraints, etc.

3.2. Model Architecture

DNNs exhibit state-of-the-art performance in terms of accuracy, however, the increased number of
model parameters imposes high memory requirements and bottlenecks at the inference execution time
due to the huge number of arithmetic operations [32]. Thus, they are not well-suited for applications
running on embedded devices with memory limitations and real-time constraints. Towards this

Technologies 2020, 8, 6 6 of 15

direction, significant research has been conducted on the model compression [33,34], producing a
wide-and-shallow version of the deep complex model. In general, a deep model is small in node
width and large in layer depth, while a wide-and-shallow model is large in node width and shallow in
layer depth. Taking advantage of the reduced memory footprint and simplicity of the wide-and-shallow
model’s architecture, our framework enables a user option to select whether to convert the deep
model to wide-and-shallow or not. The adoption of the wide-and-shallow model offers significant
benefits, i.e., the overall training time is heavily reduced and the required memory for the model’s
weights-and-biases is getting smaller. The real tricky point of such a model is to tune the procedures
needed to train the model.

3.3. Weight Quantization

Deep neural networks are increasingly used in applications running on mobile and embedded
devices. Consequently, there is an emerging need to reduce the model size in order to comply with
the constraints in memory and power dissipation, as well as the communication requirements for
transferring the model to the device. Moreover, these devices tend to have lower computing power,
especially for arithmetic operations (e.g., floating-point calculations).

As an alternative solution to the floating-point models and architectures, several fixed-point
implementations of deep neural networks have appeared, tackling the aforementioned constraints.
Significant research has been conducted aiming to convert the model to its more efficient fixed-point
equivalent by quantizing the model weights [35], while delivering negligible accuracy drop. Inspired by
the promising results of weight quantization [36], we have incorporated two different 8-bit integer
quantization techniques to our framework, i.e., a straightforward post-training rounding and a
quantization-aware training with TensorFlow Lite [37].

3.3.1. Post-Training Quantization

This framework option is applied to an already-trained float TensorFlow model. More explicitly,
it rounds the float weights to the nearest 8-bit integers without re-training the model, offering a quick
and simple weight compression and eliminating the need for validation data. A code snippet of our
framework handling the post-training quantization is illustrated in Listing 1.

Listing 1. Post-training integer quantization by rounding to the nearest integer.

1 def main():
2 with open(’quantization.json’) as quant_json:
3 data = json.load(quant_json)
4 for p in data[’Weight Quantization ’]:
5 print(’Post -Training Quantization:’)
6 print(p[’post -train’])
7 if p[’post -train’] == "TRUE":
8 post_training_quantization ()
9 def post_training_quantization ():

10 fl = open("float32_weights.txt", "r")
11 fx = open("unit8_weights.txt", "w")
12 for x in fl:
13 fx.write(str(round(float(x))))
14 fx.write("\n")

3.3.2. Quantization-Aware Training

The quantization-aware training perform the quantization during the training phase, delivering
higher accuracy than the post-training technique due to the inherent and iterative error minimization.
TensorFlow Lite performs a fake-quantization node insertion and re-trains the CNN graph [37]. In more
detail, it models the quantization error using the fake-quantization nodes to simulate the effect of
quantization in the forward and backward passes. The forward-pass models quantization, whereas the
backward-pass models quantization as a straight-through estimator. Throughout the procedure,

Technologies 2020, 8, 6 7 of 15

TensorFlow Lite tries to minimize the loss function and maintain the original evaluation accuracy
of the model. The code snippet demonstrating both training and evaluation is shown in Listing 2.
To produce real integer computations from the trained quantization model, TensorFlow Lite converts
the evaluation graph to a fully quantized model, by providing it to the TensorFlow Lite Optimizing
Converter (TOCO) as shown in the code snippet of Listing 3.

Listing 2. Quantization-aware training using TensorFlow Lite [37]: fake quantized training and
evaluation graph generation.

1 # build Forward Pass of model
2 loss = tf.losses.get_total_loss ()
3

4 # rewrite graph w/ fake -quantization nodes for training
5 g = tf.get_default_graph ()
6 tf.contrib.quantize.create_training_graph(
7 input_graph=g,
8 quant_delay=QDELAY)
9

10 # call Backward Pass optimizer
11 optimizer = tf.train.GradientDescentOptimizer(learn_rate)
12 optimizer.minimize(loss)
13

14 # build Evaluation model
15 logits = tf.nn.softmax_cross_entropy_with_logits_v2 (...)
16

17 # rewrite graph w/ fake -quantization nodes for evaluation
18 g = tf.get_default_graph ()
19 tf.contrib.quantize.create_eval_graph(input_graph=g)

Listing 3. Generation of quantized model using TensorFlow Lite Optimizing Converter (TOCO) [37]:
conversion of the frozen evaluation graph to a fully quantized model.

1 toco \
2 --input_file = frozen_eval_graph.pb \
3 --output_file = tflite_model.tflite \
4 --input_format = TENSORFLOW_GRAPHDEF \
5 --output_format = TFLITE \
6 --inference_type = QUANTIZED_UINT8 \
7 --input_shape = "1,224, 224 ,3" \
8 --input_array = inputs \
9 --output_array = outputs \

10 --std_value = 127.5 \
11 --mean_value = 127.5

3.4. Inference Engine Optimizations

As a first level of optimization for the HDL inference engine, we employ techniques, such as
weight matrix sparsification and input thresholding, to reduce the design complexity and facilitate the
arithmetic operations in exchange for accuracy drop. Using sparse weight matrices and converting
the operation of convolutional layers to sparse matrix multiplications leads to highly efficient
computations [38]. Moreover, a design alternative to perform efficient multiplication, rather than
introducing approximations in the circuit [39,40], is to reduce the operator’s bit-width. Towards this
direction, input thresholding [13] generates a binary image (with 1 s and 0 s), eliminating the need
for conventional multipliers in the 1st convolutional layer. The aforementioned optimization are
application- and model-specific, and therefore, the developer can assess if they fit to his/her application
and CNN model.

3.5. Dataflow Optimizations

The second level of inference optimizations targets the computational kernel of matrix
multiplication, that is common for all CNN architectures. Specifically, in order to facilitate the

Technologies 2020, 8, 6 8 of 15

streaming fashion of the data, we transformed the matrix multiplication operation as presented
in [13]. Considering the matrix multiplication A1×N · BN×M, where A is the input vector and B is the
weight matrix, the output vector C1×M is calculated as follows:

cj =
N

∑
i=1

ai · bij j = 1, 2, ..., M (1)

The typical implementation of the matrix multiplication requires input data buffers, first to be
filled, and then execute the multiplication. This data buffering imposes inefficient resource utilization
regarding the hardwired multipliers, interrupting the continuous operation of a pipelined design.
In order to tackle the aforementioned bottleneck, we perform the matrix multiplication by transposing
the weight matrix and implementing M parallel FIR filters (MACs), as illustrated in Figure 2. All the
FIR filters take as input the same streamed data (ai). The j-th FIR filter uses the j-th column of the
weight matrix and produces cj. The output vector is partially created, and when the last data (aN)
is served, it is forwarded to the next layer, and thus, the processing of the next batch can start with
no delay.

...

...

...

...

......

b21					b11	

b22					b12	

b2M				b1M	

bN1									

bN2									

bNM									

aN

Weights

Streaming	Input

c1

c2

cN

...

Output	Vector

a2 a1

Figure 2. Dataflow optimization [13]: matrix multiplication is performed by implementing parallel FIR
filters, facilitating data streaming.

4. Experimental Evaluation Analysis

We showcase the effectiveness of our framework and validate the proposed methodology targeting
a specific CNN architecture. Specifically, all examined models are different configurations of the LeNet
model [16] and have been trained and tested using the MNIST dataset [17] to perform handwritten
digit recognition. The framework for the model development is TensorFlow 1.10, compiled with and
without the AVX2 optimized instruction set.

For evaluation purposes, we provide experimental results from the implementation of the
generated inference engine on two differing hardware technologies, i.e., the FPGA and the semi-custom
ASIC using a standard cell library. We employ industrial-strong tools for both accelerators, i.e.,
Xilinx Vivado [18] and Synopsys Design Compiler [19].

4.1. Use Case: Optimizing LeNet CNN Model

The use case utilized for validation purposes is the LeNet CNN model [16], trained on data from
the MNIST [17] dataset in order to perform digit recognition. The tuning knobs and optimization
techniques presented in Section 3 are all leveraged in this use case to highlight the effectiveness and
flexibility of the proposed framework.

We explore several model architectures considering the accuracy–model complexity trade-off,
similarly to the exploration strategy followed in [41]. To ensure that the model preserves the accuracy of
the initial LeNet architecture, a careful grid search of sizes, activations and learning rates is conducted.

Technologies 2020, 8, 6 9 of 15

Specifically, we examine the following parameters: (i) number of convolutional layers, (ii) number
of kernels per layer, (iii) size of kernel, (iv) number of fully connected layers, and (v) size of fully
connected layer neurons. Throughout the exploration, the models are trained for 100 epochs of batch
size 256 and intermediate dropout layer of 65% keep probability. The champion model extracted from
the aforementioned exploration consists of a wide-and-shallow (W&S) architecture, one convolutional
layer with two 3×3 filters, one 2×2 max pooling layer, and a final 10-neuron fully connected layer.
Note that it has also been proven in [33] that a single-layer artificial neural net that has its weights
and nodes engineered in order to resemble the behaviour of its deep counterparts on a given task,
can perform equally fine in terms of general loss or accuracy.

Concerning weight quantization, we have enabled the quantization-aware training (QAT)
technique during the training phase, as it is described in Section 3.3.2. Also, we have explored
the impact of the post-training quantization (PTQ) technique described in Section 3.3.1.

Subsequently, we have leveraged the available inference engine optimizations, which are
application-specific tuning techniques. The use case of classification of handwritten digits included
in the MNIST dataset is a problem of edge-detection. Such problems are proven to be highly robust
to noise and artifacts as well as easily captured within 1–2 layers of filtering and non-linearity [42].
In addition, the used images are in single-channeled grayscale 8-bit format, i.e., the pixels are in the
range [0–255]. Thus, we exploit these attributes of the problem to propose a pre-processing method
that enables further memory reduction with accuracy loss within the use case limits. According
to this pre-processing, the pixels under a threshold of 128 are set to 0, and the rest to 1 [13].
The input thresholding (IT) slightly distorts the images, without altering their local information
correlations. Thanks to this thresholding technique, in the high-resource consuming convolutional
layer, the respective multiplication modules (presented in Figure 3a) can now be replaced by AND
gates that use the input pixel as an enable signal (0/1) to forward the ROM stored weights to the next
layer, as shown in Figure 3b. As a result, the circuit complexity is significantly decreased, i.e., reduced
resource utilization is achieved in the FPGA-based accelerator and less logic cells are employed in the
ASIC-based accelerator, and the timing constraints are relaxed. At the same time, the final model’s
performance is slightly affected (i.e., 0.08% accuracy loss as shown in Table 1).

Weights

8

8

8

8

8

8

(a)

Weights

1

1

1

1

1

1

8

(b)
Figure 3. Multiplication in the convolutional layer: (a) 8-bit input images require the use of conventional
multipliers. (b) Input thresholding creates binary images [13], enabling the employment of AND gates
rather than multipliers.

As a last level of optimization, we employ the dataflow optimization technique. i.e., the matrix
multiplication transformation (MMT). According to this technique, the matrix multiplications of the
final fully connected layer are transformed to FIR filters.

Below we examine the impact of the applied techniques and optimizations on both accuracy
and weight memory footprint. Subsequently, we present the experimental results for the FPGA- and
ASIC-based accelerators.

4.1.1. Accuracy Evaluation

Firstly, we evaluate the accuracy drop of the derived models in comparison with the originally
generated models of the MNIST dataset. Both the proposed quantization-aware training and

Technologies 2020, 8, 6 10 of 15

post-training quantization techniques have been applied to wide-and-shallow converted models.
Moreover, we further apply input thresholding to both examined techniques.

As shown in Table 1, the quantization-aware training delivers only 0.81% accuracy loss. On the
contrary, the application of the post-training quantization gives poor results, as the accuracy drops
over 2%. It is also shown that the input thresholding, if combined with the quantization-aware training,
provides extra accuracy drop, i.e., 0.08%, albeit negligible in exchange for the upcoming memory and
utilization optimizations.

Table 1. Accuracy loss w.r.t. quantization and thresholding.

Proposed Optimizations Accuracy Loss (%)

PTQ 2.80
PTQ + IT 3.20
QAT 0.81
QAT + IT 0.89

4.1.2. Memory Footprint Evaluation

Figure 4 presents the memory footprint gains in comparison with the initial deep model.
The derived results show that the conversion of the deep model to a wide-and-shallow one results to a
73.1% reduction in the on-board required memory. By further applying the post-training quantization,
we achieve a total memory saving of 91%. When selecting quantization-aware training rather than
the post-training quantization method, we achieve a total memory saving of 93.4% in comparison
with the original model. Considering that quantization-aware training exhibits smaller accuracy loss
(see Table 1) as well as slightly larger memory gains (see Figure 4) versus the post-training quantization,
we choose to employ it in our final inference engine accelerator.

0

10

20

30

40

50

60

M
e

m
o

ry
 S

iz
e

 (
K

B
)

CNN Model Configuration

Deep

W&S

W&S+PTQ

W&S+QAT

73.1%

91%

93.4%

Figure 4. On-board memory footprint for different CNN configurations.

4.2. FPGA-Based Accelerator

Xilinx Vivado has been employed to derive all the designs, with the post-implementation reports
of the tool providing the required information to evaluate our work. The target FPGA board is a Zybo
Zynq-7000 (XC7Z010) with 28K logic cells, 240KB block RAM and 80 DSP slices. Table 2 presents
resource utilization results from the FPGA accelerator. In both implementations, the model has been
transformed to wide-and-shallow and the weights are quantized using quantization-aware training.
As shown, the weight quantization on its own is not sufficient, as it results in DSP over-utilization
(120 out of 80 available DSPs). When employing the proposed input thresholding along with the
matrix multiplication transformation, we achieve a 53.6% and 50% reduction in LUTs and DSPs,
respectively. This is totally reasonable, as input thresholding eliminates the multipliers and uses AND
gates, and thus, LUTs are employed rather than DSPs for the implementation of the convolutional
layer. In addition, the matrix multiplication transformation in the fully connected layer slightly
reduces the DSP utilization, while it delivers reductions in LUTs, which were originally used for the
implementation of the conventional matrix multiplication.

Technologies 2020, 8, 6 11 of 15

Table 2. FPGA resource utilization w.r.t. proposed optimizations.

Proposed Optimizations LUT DFF DSP

W&S + QAT 11540 2530 120
W&S + QAT + IT + MMT 5353 2536 60

The final FPGA accelerator is based on the wide-and-shallow model and incorporates all the
proposed optimizations, i.e., quantization-aware training, input thresholding and matrix multiplication
transformation. To assess the accelerator’s performance, we perform a comparison vs. CPU/GPU
configurations of the same model. The respective CPU/GPU implementations are executed on a
6-core AMD RYZEN 1600 and a 6.1 CUDA capability GPU. The CPU configuration is tested with
the AVX2 instruction set both enabled and disabled through the respective compilation flags of
TensorFlow environment.

In order to make a fair comparison, we split the execution time according to the software execution
phases and isolate the inference execution. Figure 5 presents the results concerning end-to-end as well
as per each phase of CPU/GPU execution. The derived results show that the proposed FPGA-based
solution outperforms the rest of the configurations, by delivering a 10× speedup at the inference
execution vs the fastest software implementation.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

End-to-End Main Proc Ex+Mem Ex

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Execution Phase

CPU CPU AXV2
CPU+GPU CPU AVX2+GPU
FPGA

Figure 5. FPGA, CPU and GPU performance for the LeNet inference engine.

Surprisingly, CPU configurations perform better than the GPU ones, mainly due to the limited
inter layer parallelism/depth, thus under-utilizing the GPU resources. However, we note that this
observation is model-specific, meaning that deeper inference engines would probably be benefited
more from GPU execution.

4.3. ASIC-Based Accelerator

The inference engine is synthesized using the TSMC 45-nm standard cell library at the nominal
supply voltage (1 V). Similarly to the FPGA-based accelerator, it includes all the applied optimizations
(W&S + QAT + IT + MMT). The critical path delay, as reported by the Synopsys Design Compiler tool,
is 1.93 ns, while the area is 0.059 mm2 and the mean power consumption lies around 7.5 mW.

Figure 6 reports the area percentage and the mean power of each network layer, when the
inference engine is synthesized at its critical path delay. Regarding area, the convolutional layer,
which is optimized by substituting the multiplication with AND gates, consumes less than 10% of the
total engine’s area. The majority of the area, i.e., ∼70% is occupied by the 10-neuron fully connected
layer, which implements the parallel FIR filters for the matrix multiplication. In terms of mean power,
the layers consume ∼1–7 mW as standalone components.

Technologies 2020, 8, 6 12 of 15

9.63 %

21.07 %

68.75 %

0.55 %

convLayer

poolLayer

fcLayer

steering logic

(a)

0

1

2

3

4

5

6

7

convLayer poolLayer fcLayer

P
o

w
e

r
(m

W
)

(b)
Figure 6. Standard-cell-based ASIC accelerator of the LeNet inference engine, synthesized at the critical
path delay (1.93 ns): area percentage and power consumption per layer. (a) Area percentage per layer.
(b) Mean power per layer.

In Figure 7, we present the variation of area and power w.r.t. the synthesis clock. Starting
with a clock of 520 MHz, i.e., the clock that respects the critical path delay, we decrease the
frequency to 500 MHz, and then we adopt a constant decrease with a step of 50 MHz. The derived
results show that area is decreased almost in a linear fashion, while power decreases exponentially.
The area-delay-product (ADP) ranges from 0.11 ns ×mm2 to 0.25 ns × mm2, with the high-performance
configuration at 1.93 ns providing the best value. On the other hand, the power-delay-product (PDP)
remains in the interval 14.6–15.7 ns × mW. As for ADP, the best PDP is achieved when the inference
engine is synthesized at its critical path delay.

0.048

0.05

0.052

0.054

0.056

0.058

0.06

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Clock period (ns)

A
re

a
(m

m
)2

(a)

2.5

3.5

4.5

5.5

6.5

7.5

8.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

P
o

w
e

r
(m

W
)

Clock period (ns)

(b)
Figure 7. Standard-cell-based ASIC accelerator of the LeNet inference engine: variation of area and
power consumption with respect to the synthesis clock, starting from the critical path delay (1.93 ns).
(a) Total area; (b) Mean total power.

5. Conclusions

In this paper, we propose an HDL library-based framework as an extension to TensorFlow
capabilities, which performs automatic generation of CNN FPGA/ASIC-based accelerators and allows
the programmer to benefit from the merits of hardware acceleration while surpassing the difficulties
of HDL programming. The software programmer has the option to enable or disable the proposed
optimizations depending on the requirements of the respective system and the use case. The set of
provided optimization techniques includes model architecture optimizations, weight quantization
techniques, inference engine optimizations, and dataflow optimizations that apply to the generic CNN
architecture. The framework is validated through incremental use of the former optimizations, using a
LeNet CNN model [16] as use case and operating on data from the MNIST dataset for handwritten
digits recognition [17]. The resultant optimal FPGA-based accelerator exhibits 93% less memory size
and 54% LUT utilization reduction, in exchange for 0.89% accuracy loss. In comparison with various
GPU, CPU combinations, the accelerator delivers up to 10× speedup on the inference engine execution.
Furthermore, the standard-cell-based ASIC accelerator achieves a critical path delay of 1.93 ns for the
same accuracy loss, while the area is 0.059 mm2 and the mean power values lie around 7.5 mW.

Technologies 2020, 8, 6 13 of 15

Author Contributions: Conceptualization, S.X. and K.P.; Investigation, V.L.; Methodology, D.S.; Software, V.L.
and S.M.; Supervision, S.X. and K.P.; Validation, V.L. and S.M.; Visualization, V.L. and K.K.; Writing—original
draft, V.L., S.M. and K.K.; Writing—review & editing, S.X., D.S. and K.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript and refer to the applied CNN optimizations:

W&S Wide-and-Shallow
PTQ Post-Training Quantization
QAT Quantization-Aware Training
IT Input Thresholding
MMT Matrix Multiplication Transformation

References

1. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Proceedings of the Conference on Neural Information Processing Systems (NIPS), Lake Tahoe,
NV, USA, 3–6 December 2012; pp. 1097–1105.

3. Sharma, H.; Park, J.; Mahajan, D.; Amaro, E.; Kim, J.K.; Shao, C.; Mishra, A.; Esmaeilzadeh, H.
From High-level Deep Neural Models to FPGAs. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–12.

4. Guo, K.; Sui, L.; Qiu, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design Flow for Mapping
CNN onto Customized Hardware. In Proceedings of the IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), Pittsburgh, PA, USA, 11–13 July 2016; pp. 24–29.

5. Venieris, S.; Bouganis, C. fpgaConvNet: Automated Mapping of Convolutional Neural Networks on
FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 22–24 February 2017; pp. 291–292.

6. Abdelouahab, K.; Pelcat, M.; Sérot, J.; Bourrasset, C.; Berry, F. Tactics to Directly Map CNN Graphs on
Embedded FPGAs. IEEE Embed. Syst. Lett. 2017, 9, 113–116. [CrossRef]

7. Conti, F.; Benini, L. A Ultra-low-energy Convolution Engine for Fast Brain-inspired Vision in Multicore
Clusters. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble,
France, 9–13 March 2015; pp. 683–688.

8. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. DianNao: A Small-footprint
High-throughput Accelerator for Ubiquitous Machine-learning. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
Salt Lake City, UT, USA, 1–5 March 2014; pp. 269–284.

9. Qadeer, W.; Hameed, R.; Shacham, O.; Venkatesan, P.; Kozyrakis, C.; Horowitz, M.A. Convolution Engine:
Balancing Efficiency & Flexibility in Specialized Computing. In Proceedings of the International Symposium
on Computer Architecture (ISCA), Tel Aviv, Israel, 23–27 June 2013; pp. 24–35.

10. Del Sozzo, E.; Solazzo, A.; Miele, A.; Santambrogio, M.D. On the Automation of High Level Synthesis
of Convolutional Neural Networks. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Chicago, IL, USA, 23–27 May 2016; pp. 217–224.

11. Kim, J.H.; Grady, B.; Lian, R.; Brothers, J.; Anderson, J.H. FPGA-based CNN Inference Accelerator
Synthesized from Multi-threaded C Software. In Proceedings of the IEEE International System-on-Chip
Conference (SOCC), Munich, Germany, 5–8 September 2017; pp. 268–273.

12. Noronha, D.H.; Salehpour, B.; Wilton, S.J.E. LeFlow: Enabling Flexible FPGA High-Level Synthesis of
Tensorflow Deep Neural Networks. In Proceedings of the International Workshop on FPGAs for Software
Programmers (FSP), Dublin, Ireland, 31 August 2018; pp. 1–8.

http://dx.doi.org/10.1109/LES.2017.2743247

Technologies 2020, 8, 6 14 of 15

13. Mouselinos, S.; Leon, V.; Xydis, S.; Soudris, D.; Pekmestzi, K. TF2FPGA: A Framework for Projecting and
Accelerating Tensorflow CNNs on FPGA Platforms. In Proceedings of the International Conference on
Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4.

14. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et
al. TensorFlow: A System for Large-scale Machine Learning. arXiv 2016, arXiv:1605.08695.

15. TensorFlow. Available online: http://github.com/tensorflow/tensorflow (accessed on 5 December 2019).
16. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
17. MNIST Database. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 5 December 2019).
18. Xilinx Vivado. Available online: http://www.xilinx.com/products/design-tools/vivado.html (accessed on

5 December 2019).
19. Synopsys Design Compiler. Available online: https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/dc-ultra.html (accessed on 5 December 2019).
20. Mittal, S. A survey of FPGA-based Accelerators for Convolutional Neural Networks. Neural Comput. Appl.

2018, 1–31. [CrossRef]
21. Xilinx Vitis. Available online: http://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

(accessed on 5 December 2019).
22. Zeng, H.; Chen, R.; Zhang, C.; Prasanna, V. A Framework for Generating High Throughput CNN

Implementations on FPGAs. In Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, New York, NY, USA, 25–27 February 2018; pp. 117–126.

23. Wei, X.; Yu, C.H.; Zhang, P.; Chen, Y.; Wang, Y.; Hu, H.; Liang, Y.; Cong, J. Automated Systolic Array
Architecture Synthesis for High Throughput CNN Inference on FPGAs. In Proceedings of the ACM Design
Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017; p. 29.

24. Xing, Y.; Liang, S.; Sui, L.; Jia, X.; Qiu, J.; Liu, X.; Wang, Y.; Shan, Y.; Wang, Y. DNNVM: End-to-End Compiler
Leveraging Heterogeneous Optimizations on FPGA-based CNN Accelerators. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 2019, doi:10.1109/TCAD.2019.2930577. [CrossRef]

25. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. An Automatic RTL Compiler for High-throughput FPGA
Implementation of Diverse Deep Convolutional Neural Networks. In Proceedings of the IEEE International
Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8 September 2017; pp.
1–8.

26. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Optimizing Loop Operation and Dataflow in FPGA Acceleration of
Deep Convolutional Neural Networks. In Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Vienna, Austria, 3–6 April 2017; pp. 45–54.

27. Li, S.; Wen, W.; Wang, Y.; Han, S.; Chen, Y.; Li, H. An FPGA Design Framework for CNN Sparsification
and Acceleration. In Proceedings of the IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM), Napa, CA, USA, 30 April–2 May 2017; p. 28.

28. Chen, Y.-H.; Emer, J.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional
Neural Networks. In Proceedings of the International Symposium on Computer Architecture (ISCA), Seoul,
Korea, 18–22 June 2016; pp. 367–379.

29. Zhang, C.; Sun, G.; Fang, Z.; Zhou, P.; Pan, P.; Cong, J. Caffeine: Towards Uniformed Representation and
Acceleration for Deep Convolutional Neural Networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
2018, 7, 2072–2085.

30. Intel Quartus Prime. Available online: http://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/overview.html (accessed on 5 December 2019).

31. Synopsys Synplify Pro. Available online: http://www.synopsys.com/implementation-and-signoff/fpga-
based-design/synplify-pro.html (accessed on 5 December 2019).

32. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. FitNets: Hints for Thin Deep Nets.
arXiv 2014, arXiv:1412.6550.

33. Ba, L.J.; Caurana, R. Do Deep Nets Really Need to be Deep? arXiv 2013, arXiv:1312.6184.
34. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
35. Lin, D.; Talathi, S.; Annapureddy, S. Fixed Point Quantization of Deep Convolutional Networks.

In Proceedings of the International Conference on Machine Learning (ICML), New York, NY, USA, 20–22
June 2016; pp. 2849–2858.

http://github.com/tensorflow/tensorflow
http://dx.doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/
http://www.xilinx.com/products/design-tools/vivado.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
http://dx.doi.org/10.1007/s00521-018-3761-1
http://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
http://dx.doi.org/10.1109/TCAD.2019.2930577
http://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
http://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
http://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-pro.html
http://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-pro.html

Technologies 2020, 8, 6 15 of 15

36. Krishnamoorthi, R. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper. arXiv
2018, arXiv:1806.08342.

37. TensorFlow Lite: Quantization-Aware Training. Available online: http://github.com/tensorflow/
tensorflow/tree/r1.13/tensorflow/contrib/quantize (accessed on 5 December 2019).

38. Liu, B.; Wang, M.; Foroosh, H.; Tappen, M.; Pensky, M. Sparse Convolutional Neural Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 806–814.

39. Leon, V.; Zervakis, G.; Soudris, D.; Pekmestzi, K. Approximate Hybrid High Radix Encoding for
Energy-Efficient Inexact Multipliers. IEEE Trans. Very Large Scale Integr. Syst. 2018, 26, 421–430. [CrossRef]

40. Leon, V.; Zervakis, G.; Xydis, S.; Soudris, D.; Pekmestzi, K. Walking through the Energy-Error Pareto Frontier
of Approximate Multipliers. IEEE Micro 2018, 38, 40–49. [CrossRef]

41. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
Accuracy with 50x Fewer Parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

42. Chellappa, R.; Fukushima, K.; Katsaggelos, A.K.; Kung, S.Y.; LeCun, Y.; Nasrabadi, N.M.; Poggio, T.A. Guest
Editorial Applications of Artificial Neural Networks to Image Processing. IEEE Trans. Image Process. 1998,
7, 1093–1096. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
http://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
http://dx.doi.org/10.1109/TVLSI.2017.2767858
http://dx.doi.org/10.1109/MM.2018.043191124
http://dx.doi.org/10.1109/TIP.1998.704303
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Framework for CNN Inference Generation
	Framework Configuration Capabilities
	Model Architecture
	Weight Quantization
	Post-Training Quantization
	Quantization-Aware Training

	Inference Engine Optimizations
	Dataflow Optimizations

	Experimental Evaluation Analysis
	Use Case: Optimizing LeNet CNN Model
	Accuracy Evaluation
	Memory Footprint Evaluation

	FPGA-Based Accelerator
	ASIC-Based Accelerator

	Conclusions
	References

