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Abstract: Nonlinear free vibrations of functionally graded porous Bernoulli–Euler nano-beams 

resting on an elastic foundation through a stress-driven nonlocal elasticity model are studied taking 

into account von Kármán type nonlinearity and initial geometric imperfection. By using the 

Galerkin method, the governing equations are reduced to a nonlinear ordinary differential equation. 

The closed form analytical solution of the nonlinear natural flexural frequency is then established 

using the Hamiltonian approach to nonlinear oscillators. Several comparisons with existing models 

in the literature are performed to validate the accuracy and reliability of the proposed approach. 

Finally, a numerical investigation is developed in order to analyze the effects of the gradient index 

coefficient, porosity volume fraction, initial geometric imperfection, and the Winkler elastic 

foundation coefficient, on the nonlinear flexural vibrations of metal–ceramic FG porous Bernoulli–

Euler nano-beams. 

Keywords: nonlinear flexural vibrations; functionally graded porous nanobeams; nonlocal 

elasticity; stress-driven formulation 

 

1. Introduction 

Functionally graded materials (FGMs) are advanced composites designed and fabricated in a 

way that their physical and mechanical properties spatially vary in their structures. An overview of 

manufacturing methods for FGMs, their applications and future challenges, based on the available 

literature over 30 years, has been recently published by Saleh et al., in [1]. 

Due to the continuous variation in material properties, many problems related to the material 

discontinuities of conventional composite material (stress concentrations, residual stresses, 

delamination phenomena and damage growth) can be significantly reduced and high permeance 

requirements ensured [2–4]. 

In most cases, functionally graded materials are made of a combination of metal and ceramic to 

offer a wide range of applications for various equipment subject to extreme thermo-mechanical 

stresses [5–13]. 

Recent studies have also shown that, by managing some fabrication parameters during the 

manufacture of FGMs, different kinds of porosity distributions can be fabricated inside their structure 

to further improve the physical and mechanical characteristics of the material [14–18]. For example, 

the results of the investigations reported in [19–22] have highlighted the benefits of cellular metals 

and metal foams inside the structure of micro/nano-scale systems (MEMS/NEMS) in terms of 

electrical conductivity, thermal transport and energy absorption. 

Various simple models have been widely adopted by many researchers to describe the 

interaction of the nano-beam with its foundation for a wide range of engineering applications. 

However, to the best of our knowledge, the analyses of the mechanical behavior of porous nano-
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beams resting on elastic foundations are rather rare and the available results are limited to FG nano-

beams without porosities [23–27]. 

As is well-known, the mechanical response of nanostructures made of functionally graded 

materials is strongly size-dependent and therefore the small-scale effects on the mechanical behavior 

of FG nanostructures must be considered [28–32]. 

In order to overcome the enormous costs and computation times of molecular dynamics (MD) 

simulations, and the difficulties to conduct experimental investigations at the nanoscale, the size-

dependent effects on the static and dynamic characteristics of small-scaled structural systems may be 

accurately captured by the so-called scale-dependent continuum mechanics-based theories, 

including the strain gradient theory of elasticity [33,34] and Eringen’s nonlocal elasticity theory [35–

37]. In the first theory, the material response at a point of a continuum is assumed to be dependent 

on both the strain and the strain gradients of different orders, while, in the second one, the output 

field at a point of a continuum is assumed to be the integral convolution between the elastic source 

field and a suitable averaging kernel. 

In the framework of nonlocal elasticity, the basic integral constitutive law is the strain-driven 

Eringen’s integral model (EIM), which was recommended, for the first time, by Peddieson [38] to 

analyze the mechanical behavior of nanoscale structures. For unbounded continua, when considering 

the bi-exponential nonlocal kernel function, due to tacit fulfillment of the vanishing boundary 

conditions at infinity, the integral strain-driven theory (EIM) can be replaced with the well-known 

differential type theory (EDM), by which it is much easier to model small-scale phenomena in 

nanostructures than with the corresponding integral formulation. 

Recently, it was shown that the nonlocal differential-based and integral-based theories of 

elasticity models may be not equivalent to each other for boundary condition problems, since 

adequate higher-order homogeneous constitutive boundary conditions have to be prescribed. 

Consequently, for bounded nanostructures, the strain-driven purely nonlocal elastic problems 

defined on bounded domains are mathematically ill-posed due to the incompatibility between the 

higher-order constitutive boundary conditions and equilibrium requirements (e.g., the paradox of a 

cantilever nano-beam subject to a transverse concentrated load at the free end) [39]. 

The ill-posed problem related to the pure nonlocal model may be circumvented by adopting the 

Eringen local-nonlocal mixture constitutive model [37] or by using coupled theories, such as the 

nonlocal strain gradient theory [40] and the combination of pure nonlocal theory with the surface 

theory of elasticity [41]. For example, some recent applications of the theories mentioned above are 

addressed in [42–44]. 

Furthermore, these difficulties can be overcome by adopting the stress-driven nonlocal integral 

model (SDM) recently proposed by Romano and Barretta [45], in which the roles of stress and elastic 

strain fields are swapped with respect to the strain-driven model. In addition, in this case, for a class 

of bi-exponential kernels, the integral form of the constitutive equations is shown to be 

mathematically equivalent to differential equations subjected to some higher order constitutive 

boundary conditions. 

The stress-driven nonlocal theory of elasticity has been widely respected by the scientific 

community and has been successfully applied to investigate size-dependent behavior of elastic nano-

beams [46–54] with bounded structural domains. In particular, closed form solutions for stress-driven 

integral models [55] have been provided for cantilever, simply supported, clamped-pinned and fully-

clamped FG nano-beams subject to different load conditions. 

Recently, the authors of this paper examined the nonlinear vibration behavior of geometrically 

imperfect functionally graded nano-beams on the basis of both the stress-driven nonlocal integral 

model (SDM) and the strain-driven model (EDM), especially in the presence of an axial pretension 

force [56]. 

In the present paper, the nonlinear free vibration of a metal-ceramic functionally graded 

Bernoulli–Euler nano-beam, resting on a Winkler elastic foundation, is examined taking into account 

von Kármán type nonlinearity and initial geometric imperfection. In particular, small scale effects are 

considered by using the stress-driven nonlocal elasticity. The equation of motion is determined by 
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Hamilton’s principle and simplified by Galerkin’s method. The first order Hamiltonian approach [57] 

was then employed to solve the nonlinear vibrations problem. 

In order to show the efficiency and accuracy of the proposed approach, several comparisons 

with existing models in the literature are performed. Finally, the effects of initial geometric 

imperfection, the gradient index coefficient, the porosity volume fraction and the Winkler elastic 

foundation coefficient on nonlinear fundamental frequencies of porous FG simply supported nano-

beams are presented and discussed. 

2. Functionally Graded Porous Material 

We consider a Bernoulli–Euler straight nano-beam, with length “L”, thickness “h” and width 

“b”, resting on a Winkler foundation, and denote by y’ and z’ the principal axes of geometric inertia 

of its rectangular cross-section (Σ), originating at the geometric center O (Figure 1). 

The nano-beam is supposed to be made of a functionally graded (FG) material, composed of a 

mixture of metal and ceramic, whose distribution spatially varies from the bottom (z’ = −h/2) to the 

top (z’ = +h/2) surface. In this investigation, the top surface is ceramic-rich, whereas the bottom surface 

is metal-rich. 

The nano-beam structure is assumed to have porosities inside the FG material generated during 

the manufacturing process of the two constituents. In particular, the porous FG nano-beam is 

assumed to have two kinds of porosity distributions across the thickness of the beam (Figure 1): in 

the first scenario, the porosity is evenly distributed among the metal and ceramic with widespread 

porosities; in the second scenario (uneven distribution), the porosities are distributed around the 

central area of the cross section of the FG nano-beam and tend to vanish both on the top surface 

(ceramic-rich) and on the bottom surface (metal-rich) of the nano-beam. 

 

Figure 1. Coordinate system and configuration of a porous FG Bernoulli–Euler nano-beam resting on 

an elastic foundation: even (A) and uneven (B) porosity distributions across the thickness of the nano-

beam. 

By denoting with k (k ≥ 0) the gradient index of the FG material, and with ζ the porosity volume 

fraction (ζ ≪ 1), in the case of an even distribution of porosity, the effective material properties, here 

described by the mass density, �(z’), and by Young’s modulus, E(z’), can be formulated by the 

following power-laws [58]: 

�(�’) = �� + (�� − ��) �
�

�
+

��

�
�

�

−
�

�
 (�� + ��), (1) 

�(�’) = �� + (�� − ��) �
�

�
+

��

�
�

�

− 
�

�
 (�� + ��), (2) 

where �c, �m and Ec, Em are the material densities and the Euler–Young moduli of ceramic and metal, 

respectively. 
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In the second scenario (uneven distribution of the porosity), the previous expressions are 

modified as follows 

�(�’) = �� + (�� − ��) �
1

2
+

��

ℎ
�

�

−
ζ

2
 (�� + ��) �1 − 

2|��|

ℎ
�, (3) 

�(�’) = �� + (�� − ��) �
1

2
+

��

ℎ
�

�

− 
ζ

2
 (�� + ��) �1 −  

2|��|

ℎ
�. (4) 

As is well-known, in order to remove bending–stretching coupling caused by FG material 

variation, it is convenient to take as reference for the evaluation of the previous effective materials 

properties (Equations (1-4)) the elastic center C, whose position is shifted from the geometric center 

O of the following quantity 

��
� =

∫ �(��)���Σ 
�

∫ �(��)�Σ 
�

 (5) 

Accordingly, in the new elastic Cartesian reference system at elastic center C, z = z’–��
�  and y = 

y’ (Figure 1). 

Moreover, determination of the bending stiffness, �� , and the axial stiffness, ��, of the FG 

porous nano-beam is useful in the subsequent relations. The first quantity is defined by the second 

moment of elastic area, weighted with the scalar field of the Euler–Young moduli, about the y axis 

(� = ��), and is evaluated considering the bending abscissa z originating at C. Similarly, the axial 

stiffness is defined by the elastic cross-sectional area weighted with the scalar field of the Euler–

Young moduli 

{��, ��} = � ∫  �(�){1, �� }�z
�

�
���

�

�
�

�
���

�
. (6) 

Moreover, the effective cross-sectional mass, ��, and rotatory inertia, ��, can be determined 

employing the previously introduced effective material density �(�) 

�� = � � �(�)�z

�
�

���
�

�
�
�

���
�

, (7) 

�� = � � �(�)����

�
�

���
�

�
�
�

���
�

. (8) 

By substituting Equations (2) and (4) into Equation (5), we obtain the following coordinate of 

the elastic center C for the two distributions of porosity considered here: 

- even distribution 

������
� =

(−�� + ��)ℎ�

(2 + �)(−2(�� + ���) + (�� + ��)(1 + �)�)
, (9) 

 

- uneven distribution 

��������
� =

�(������)��

(���)(��(������)�(�����)(���)�)
. (10) 

 

Utilizing the expressions of the effective Euler–Young modulus �(�) introduced above for the 

two scenarios of porosity distribution taken into account (Equations (2) and (4)), bending stiffness, 

axial stiffness, cross-sectional mass and rotatory inertia can be determined as follows: 

 

- even distribution 
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�� =
(−48��

� − 16�����(7 + �(4 + �)) − 4��
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- uneven distribution 

 

�� =  
(−32(12��

� + 4�����(7 + �(4 + �)) + ��
� ��(7 + �(4 + �))) + 4(�� + ��)(2 + �)(���(22 + �(11 + 3�)) + ��(18 + �(11 + 7�)))� − (�� + ��)�(1 + �)(2 + �)�(3 + �)��)

8 (2 + �)�(3 + �)(−4(�� + ���) + (�� + ��)(1 + �)�)
 ���, (15) 

�� = � �
(�� + ���)

1 + �
−

1

4
(�� + ��)� �, (16) 

�� = � �
(�� + ���)

1 + �
−

1

4
(�� + ��)� �, (17) 

�� =
(−(1 + �)(2 + �)�(3 + �)��(�� + ��)� + 4(2 + �)�(�� + ��)((18 + �(11 + 7�))�� + �(22 + �(11 + 3�))��) + 32(−12��
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� ))
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 ���, (18) 

where Iy’ = bh3/12 is the second geometric moment of area of the cross-section about the y’ axis about 

the geometric center and A = bh is the cross-sectional area. 

If the porosity volume fraction ζ → 0, it is inferred from Equations (11-18) that, as k → 0 and k 

→ ∞, the aforementioned material quantities approach the corresponding material quantities of pure 

ceramic and pure metal, respectively. 

In this work, the nano-beam material is assumed to be made of silicon nitride-stainless steel 

(Si3N4-SuS3O4), whose properties are listed in the following Table 1 [59,60]. 

Table 1. Material properties of the FG nano-beam (silicon nitride-stainless steel). 

Material Young’s Modulus [GPa] Poisson’s Ratio Mass Density [kg/m3] 

SuS3O4 (stainless steel) 207.8 0.3178 8166 

Si3N4 (silicon nitride) 322.3 0.24 2370 

Figure 2 shows the effect of the gradient index of the porous FG material (�) on the dimensionless 

position of the elastic center C ( �̃� = ��
� /ℎ) of the rectangular cross section of the nano-beam. 

Firstly, it can be noted that the dimensionless distance �̃� increases as the gradient index � 

increases, with a maximum attained at a value of �*, which depends on the value of �; note that for 

� > �*, the distance �̃� tends to vanish for � → ∞. From Figure 2, one can also note that the curves 

corresponding to the second type of porosity distribution exhibit less of an increase than those of the 

first scenario of porosity. 
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Figure 2. Effect of the gradient index of the FG material (�) on the dimensionless position of the elastic 

center C ( �̃� = ��
� /ℎ) of the rectangular cross section of the FG nano-beam, varying the porosity 

volume fraction (�): even distribution (continuous lines) and uneven distribution (dashed lines). 

Variations of the dimensionless axial stiffness (��� =  
��

���
 ) and dimensionless bending stiffness 

(��� =
��

���
) of the porous FG nano-beam, in terms of the gradient index, are reported in Figure 3, varying 

the porosity volume fraction of the material. As can be observed, the increase in the gradient index, 

as well as in the value of the porosity volume fraction, causes a decrease of the axial and bending 

stiffness of porous FG nano-beams, for both the two kinds of porosity distribution considered. 

In particular, for each assigned value of �  the dashed lines, corresponding to the uneven 

distributions of porosity, always have a greater value than the continuous ones, which correspond to 

the even distribution. 
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(A) (B) 

Figure 3. Variations of the dimensionless axial stiffness , ��� =  
��

���
 (A), and of the bending stiffness, 

��� =  
��

���
 (B). The variations are shown for the porous FG nano-beam in terms of the gradient index of 

the FG material (�), varying the porosity volume fraction (�): even distribution (continuous lines) and 

uneven distribution (dashed lines). 

Figure 4 show the variations of the dimensionless cross-sectional mass (��) and rotatory inertia 

(��) in terms of the gradient index, respectively, varying the porosity volume fraction. From these 

graphs, one finds that �� and �� increase with increasing � and with decreasing �. 

  

(A) (B) 

Figure 4. Variations of the dimensionless cross-sectional mass (A) and of the rotatory inertia (B) of a 

porous FG nano-beam. The variations are shown in terms of the gradient index of the FG material (�), 

varying the porosity volume fraction (�): even distribution (continuous lines) and uneven distribution 

(dashed lines). 

The variations of the Euler–Young modulus across the thickness of a nano-beam are illustrated 

in Figure 5A, assuming � equal to zero and varying � in the set {0, 0.3, 0.5, 1, 3, 5, → ∞}. As was to 
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be expected, when � = 0, the FG material reduces to pure ceramic (E = Ec = 322.3 GPa) while, on the 

contrary, for � → ∞, the material properties tend to pure metal (E = Em = 207.8 GPa). 

The variations of the Euler–Young modulus through the thickness of the nano-beam cross 

section, assuming �  = 0.2, are illustrated in Figure 5B and 5C for even and uneven porosity 

distributions, respectively. As can be noted, the curves of the variation of E relative to the even 

distribution (Figure 5B) have the same behavior of those illustrated in Figure 5A, corresponding to a 

non-porous material, but with a decrease in the values of Young’s moduli. Finally, Figure 5C shows 

that the maximum of Euler–Young’s modulus for the uneven distribution of porosity is reached at 

the top and bottom of the cross section and decreases in the direction of the middle zone. 

 

(A) FG material (� = 0) 

 

(B) even distribution (� = 0.2) 
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(C) uneven distribution (� = 0.2) 

Figure 5. Variations of the Euler–Young modulus (E) in terms of dimensionless thickness (�̃ =

�/ℎ) with k ranging in the set {0, 0.3, 0.5, 1, 3, 5, → ∞} and � = 0.2: (A) FG material (continuous lines); 

(B) even distribution (dashed lines); and (C) uneven distribution (dashed-points lines). 

3. Governing Equation 

Using the Bernoulli–Euler theory, the displacement components ��, �� and  �� along x, y and 

z directions, respectively, at any point of the nano-beam, can be written as 

��(�, �, �) = ��(�, �) + � ��(�, �), (19) 

��(�, �, �) = 0, (20) 

��(�, �, �) = ��(�, �) + �∗(�), (21) 

where ��(�, �) and ��(�, �) are the axial and transverse displacements of the elastic center C at time 

t, respectively; ��(�, �) = −
���

��
(�, �) is the rotation of the cross section about the y-axis, and �∗(�) is 

the initial assigned geometric imperfection in the transverse direction [61]. 

On the basis of the nonlinear Von-Kármán assumptions, with small strains and moderate 

rotation, the nonlinear strain–displacement relation may be written as [62]: 

��� =  
���

��
+

�

�
�

���

��
�

�
−  �

����

��� +
���

��

��∗

��
. (22) 

As is well-known, the nonlinear equations of motion can be obtained using Hamilton’s principle: 

∫ �(−� + � + �)��
��

��
= 0, (23) 

where the expression of � (kinetic energy), � (strain energy) and � (work done by external forces) 

are given in the following. 

The variation of kinetic energy � is 

�� =  � � � 
���

��
 �

���

��
 �Σ�� =

 �

�

�

 � � � ��
���

��
+ �

���

��
� ��

���

��
+ � �

���

��
� +

���

��
�

���

��
� �Σ�� = 

 �

�

�

 

=  ∫  (��  
���

��
�

���

��
+ ��

�

�

���

��
�

���

��
+ ��

���

��
�

���

��
) ��. 

(24) 

The expression for the variation of the strain energy � is 
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���
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���

��
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+  � 
���
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���
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��∗
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= ∫ (� � 
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+
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+
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��∗
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�

�
�

����

��
) ��, 

(25) 

where the stress resultants � and � introduced in Equation (25) are defined as: 

� = ∫ ��� �Σ
�

, (26) 

� = ∫ � ��� �Σ
�

. (27) 

The expression of the virtual work of the external force � can be expressed by 

�� =  − ∫ (�� ��� + �� ���  −  ��(�)��(�, �)���)��
�

�
, (28) 

where �� = ��(�)  and �� = ��(�)  are the axial and the transverse vertical distributed loads, 

respectively, and ��(�) is the Winkler elastic foundation coefficient. 

By substituting the expressions of � , � , and �  into Hamilton’s principle (Equation (23)), 

performing integration-by-parts with respect to t as well as x to relieve the generalized displacements 

���, ��� and ��� of any differentiations, and using the fundamental lemma of differential calculus, 

we obtain the following equations of motion: 

��

��
+ �� = ��

����

��� , (29) 

���

��� + �� −  ��(�) �� +
�

��
��

���

��
� +

�

��
��

��∗

��
� = ��

����

��� −  ��  
����

��� ���. (30) 

The boundary conditions involve specifying one element of each of the following three pairs: 

�� �� �        at  � = 0, �; (31) 

�� �� 
��

��
                     at  � = 0, � ; (32) 

−
���

��
  ��  �    at  � = 0, �. (33) 

4. Stress-Driven Nonlocal Integral Model 

In adapting the stress-driven integral formulation to the Bernoulli–Euler porous FG nano-beam, 

the nonlocal axial strain, ���, and the nonlocal bending curvature, χ, are obtained by the following 

convolutions: 

���(�) = ∫ Φ�(� − �) 
�(�)

��
��

�

�
, (34) 

χ(�)  = ∫ Φ�(� − ξ) 
�(�)

��
 ��

�

�
, (35) 

where �, � are position vectors of points of the domain of the Euclidean space occupied by the nano-

beam at time t, and the stress resultants � and � fulfil the equilibrium conditions. 

By assuming the following bi-exponential function for the averaging kernel Φ� with internal 

characteristic length, �� 

Φ�(�, ��) =
1

2��

exp (−
|�|

��

), (36) 

the stress-driven integrals (Equations (34) and (35)) admit the following set of solutions: 
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���(�) − ��
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�����(�)

��� =
�(�)

��
 , (37) 

χ(�)  − ��
�  

��χ(�) 

���
=

�(�)

��
, (38) 

with x ∈ [0, L], if and only if the following two pairs of constitutive boundary conditions are satisfied 

at the nano-beam ends 

���� 

��
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���(0), (39) 
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���(L), (40) 
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�� 

��
(L) = − 

1
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�(L). (42) 

4.1. Equation of Motion (SDM) 

According to the stress-driven differential model (SDM), the nonlocal axial force and moment 

resultants can be described explicitly in terms of generalized strain components as follows: 
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�(�, �) = ∫ ��� � �Σ
�

=  ∫ � ����(�, �) − ��
�  

�����(�,�)

��� � � �Σ
�

 = 

=  � � �
���

��
+

1

2
�

���

��
�

�

−   � 
����

���
+

���

��

��∗

��
� � 

�

− ���
�  

��

���
�

���

��
+

1

2
�

���

��
�

�

−  � 
����

���
+

���

��

��∗

��
� � �Σ = 

= − �� �
����

��� − ��
� ����

���  �. 

(44) 

By substituting Equations (43,44) into Equations (29,30), the following stress-driven equations 

of motion can be derived: 

�� 
�

��
�

���

��
+

�

�
�

���

��
�

�

+
���

��

��∗

��
� − �� ��

�  
��

��� �
���

��
+

�

�
�

���

��
�

�

+
���

��

��∗

��
� + �� = ��

����

��� , (45) 

�� �
����

��� − ��
� ����

���  � − �� + ��(�) �� −
�

��
��

���

��
� − 

�

��
��

��∗

��
� = ��  

����

��� ���  − ��
����

��� , (46) 

with the following natural boundary conditions at the nano-beam ends: 
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� =  ��          at   � = 0, �; (47) 

��  
����

�� ��� + 
��

��
= ��        at   � = 0, �; (48) 

� = ��         at   � = 0, �; (49) 

where ��, �� and ��  the assigned generalized forces acting at the nano-beam ends together and with 

the constitutive boundary conditions at the nano-beam ends given by Equations (38–42). 

According to the Bernoulli–Euler kinematics, the geometric bending curvature is related to the 

transverse displacement � by 

�(�, �) =
���

���
(�, �). (50) 

Therefore, the constitutive boundary conditions (Equations (38-42)) can be rewritten as a 

function of the displacement components 

⎩
⎪
⎨

⎪
⎧ ����

���
(0, �) =

1

��

���

��
(0, �),

����

���
(�, �) = −

1

��

���

��
(�, �);

 
(51) 

(52) 

⎩
⎪
⎨

⎪
⎧ ����

���
(0, �) =

1

��

����

���
(0, �),

����

���
(�, �) = −

1

��

����

���
(�, �).

 
(53) 

(54) 

Nonlinear Transverse Free Vibrations (SDM) 

The nonlinear transverse free vibrations (�� = �� = 0) of an imperfect porous FG nano-beam, 

based on the stress-driven model, are derived assuming that the rotary inertia term, ��  
����

��� ���, is 

very small compared to the other terms. Hence, from Equation (46), it follows: 

��
����

��� 
−  �� ��

� ����

���   −
�

��
��

���

��
� −

�

��
��

��∗

��
� +  ��

����

��� = − ��(�) ��. (55) 

If we now neglect the axial inertia term, ��
����

��� , from the first equation of motion, we obtain 

�(�)  =  �� �
���

��
+

�

�
�

���

��
�

�

+
���

��

��∗

��
� − �� ��

�  
��

��� �
���

��
+

�

�
�

���

��
�

�

+
���

��

��∗

��
� = ��, (56) 

wherein �� is a constant. 

Note that for a nano-beam with immovable ends (��|��� = ��|��� = 0 and ��|��� = ��|��� = 0), 

by integrating both sides of Equation (56) over the domain [0, L] yields the following expression: 

�� =
��

�
 ∫ ��

�

�
�

���

��
�

�

+
���

��

��∗

��
� −  ��

�  
��

���  �
�

�
�

���

��
�

�

+
���

��

��∗

��
�� ��

�

�
, (57) 

which is the so-called “mid-plane stretching effect” in SDM theory. 

Based on this assumption, from Equation (55), it follows: 

�� ��
� ����

���
− ��

����

��� 
 − ��(�) �� + 

+ (
��

�
 ∫ ��

�

�
�

���

��
�

�

+
���

��

��∗

��
� −  ��

�  
��

���  �
�

�
�

���

��
�

�

+
���

��

��∗

��
�� ��

�

�
) �

����

��� +
���∗

���  � = m�
����

��� . 

 

(58) 
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Equation (58) describes the nonlinear transverse free oscillations of a functionally graded (FG) 

porous and imperfect nano-beam resting on an elastic foundation. The solution procedure is reported 

in Appendix A. 

5. Convergence and Comparison Study 

Some numerical examples are presented in this paragraph to validate the accuracy and reliability 

of the proposed approach. In the first comparison example (Table 2) geometrical nonlinearity, initial 

imperfection and the elastic foundation coefficient are neglected in order to compare the results 

obtained with the present approach. The comparison, in terms of linear dimensionless natural 

frequencies of homogeneous simply-supported (S-S) and clamped-clamped (C-C) FG nano-beams, is 

made with the results of Apuzzo et al., who in [55] obtained results while varying the dimensionless 

nonlocal parameter � in the set {0.00+, 0.01, 0.03, 0.05, 0.1}. 

In the second comparison study (Table 3), the present approach is compared with the model of 

Mahmoudpou et al., [59] for homogenous S-S and C-C nano-beams resting on an elastic foundation 

with ��� = 50, and assuming that �� and �� are equal to zero. 

The third example (Table 4) concerns the evaluation of the ratios between the local nonlinear 

frequency (ωNL) and the local linear one (ωL), for a perfect simply-supported homogeneous nano-

beams, varying the dimensionless amplitude of the nonlinear oscillator �� /L, and neglecting the 

elastic foundation coefficient. The results obtained with the present approach are compared with the 

results of Singh et al., [63], based on the Ritz–Galerkin method (RGM), and with those of 

Mahmoudpou et al., [59], based on the first-order homotopy analysis method (HAM). 

Finally, in Tables 5 and 6 the values of the nonlocal nonlinear dimensionless frequencies, 

evaluated with the present approach varying the dimensionless amplitude of the nonlinear oscillator 

�� /� in the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, are summarized and compared with the results by 

Mahmoudpou et al., in [59] for two values of the elastic foundation coefficient: 50 and 100. 

From these comparison studies, the accuracy of the Hamiltonian approach to nonlinear 

oscillators here employed is validated. 

Table 2. Linear dimensionless natural frequencies of homogeneous simply-supported (S-S) and 

clamped-clamped (C-C) nano-beams (�� =  �� = 0; ��� = 0). 

λ 
S-S C-C 

Present Approach Ref. [55] Present Approach Ref. [55] 

0.00+ 9.8696 9.8696 22.3733 22.3733 

0.01 9.8744 9.8744 22.8518 22.8518 

0.03 9.9107 9.9107 23.9976 23.9976 

0.05 9.9786 9.9786 25.3918 25.3918 

0.1 10.2534 10.2534 29.8303 29.8303 

Table 3. Linear dimensionless natural frequencies of homogeneous simply-supported (S-S) and 

clamped-clamped (C-C) nano-beams (�� =  �� = 0; ��� = 50). 

λ 
S-S C-C 

Present Approach Ref. [59] Present Approach Ref. [59] 

0.00+ 12.1412 12.1412 23.4641 23.4641 

0.01 12.1451 12.1451 23.9208 23.9208 

0.03 12.1747 12.1747 25.0177 25.0177 

0.05 12.2300 12.2300 26.3579 26.3579 

0.1 12.4552 12.4552 30.6569 30.6569 

Table 4. Local nonlinear frequency ratios of perfect simply-supported (S-S) nano-beams (λ = 0; �� =

0; ��� = 0). 

�� /� 
Present Approach RGM Ref. [63] HAM Ref. [59] 

ωNL ωL ωNL/ωL ωNL/ωL ωNL/ωL 

1.0 10.7552 9.8696 1.0897 1.0897 1.0892 

2.0 13.0563 9.8696 1.3229 1.3229 1.3178 
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3.0 16.1798 9.8696 1.6394 1.6394 1.6259 

4.0 19.7392 9.8696 2.0000 - 1.9766 

Table 5. Nonlocal dimensionless natural frequencies of a homogeneous simply-supported (S-S) nano-

beam resting on an elastic foundation for various dimensionless amplitude ratios (λ = 0.1; �� =

0; ��� = 50, 100). 

�� /� 
�� � = ��  �� � = ���  

Present Approach Ref. [59] Δ1 [%] Present Approach Ref. [59] Δ2 [%] 

0.0 12.4552 12.4552 0.00 14.3225 14.3225 0.00 

0.1 12.4694 - - 14.3348 - - 

0.2 12.5120 - - 14.3719 - - 

0.3 12.5827 12.5639 0.15 14.4334 14.4171 0.11 

0.4 12.6810 - - 14.5192 - - 

0.5 12.8062 - - 14.6287 - - 

0.6 12.9576 12.8835 0.57 14.7614 14.6967 0.44 

Table 6. Nonlocal dimensionless natural frequencies of a homogeneous clamped-clamped (C-C) 

nano-beam resting on an elastic foundation for various dimensionless amplitude ratios (λ = 0.1; �� =

0; ��� = 50, 100). 

�� /� 
�� � = �� �� � = ��� 

Present Approach Ref. [59] Δ1 [%] Present Approach Ref. [59] Δ2 [%] 

0.0 30.6591 30.6575 0.01 31.4640 31.4624 0.01 

0.1 30.6606 - - 31.4654 - - 

0.2 30.6651 - - 31.4698 - - 

0.3 30.6725 30.7440 0.23 31.4770 31.5467 0.22 

0.4 30.6830 - - 31.4872 - - 

0.5 30.6964 - - 31.5003 - - 

0.6 30.7128 31.0017 0.93 31.5163 31.7980 0.89 

6. Results and Discussion 

The nonlinear dynamic behavior of a simply-supported Bernoulli–Euler imperfect and porous 

FG nano-beam, resting on a Winkler elastic foundation, whose material properties are listed in Table 

1, is considered as a case study in this section. The nano-beam has a length L = 20 nm, internal 

characteristic length �� = 2 nm, and a squared cross-section (b = h = 0.05 L). 

In particular, the effects of the gradient index, porosity distribution, nonlinear oscillator 

amplitude and the dimensionless elastic foundation coefficient, on the frequency ratio between the 

non-linear frequency of porous FG nano-beam, ωNL, and the linear frequency of a pure ceramic nano-

beam, ωcL, are presented. 

6.1. Gradient Index and Porosity Volume Fraction 

Firstly, the combined effect of the gradient index, �, and porosity volume fraction, �, on the 

frequency ratio of a perfect FG nano-beam (�� = 0) are plotted in Figures 6–8 assuming �� = 0.2 and 

��� = 0. From these figures it can be observed that the frequency ratios evaluated for � < 1 are always 

greater than those obtained for � > 1. Moreover, the effects of � and �, for the two kinds of porosity 

distributions considered, on the aforementioned frequency ratio are plotted in Figure 9, varying the 

dimensionless elastic foundation coefficient, ��� , in the set {0, 20}, and the initial imperfection 

amplitude, ��, in the set {0.0, 0.2}. 

In particular, from Figure 9A it can be observed that, for a perfect FG nano-beam (��= 0) with 

an even distribution of porosity, the curves of the aforementioned ratios (continuous lines) tend to 

increase as the porosity volume fraction � increases when � < 1, while an opposite trend is obtained 

when � > 1. Moreover, it is found that the nonlinear frequency ratios of imperfect nano-beams (�� 

= 0.2) have values which are always greater than those of perfect nano-beams. On the contrary, for 

the second scenario of porosity distribution (Figure 9B), both in the case of perfect and imperfect FG 

nano-beams, the frequency ratios always increase as � increases, no matter what values of gradient 

index � and elastic foundation coefficient ��� are adopted. 
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6.2. Nonlinear Oscillator Amplitude 

The nonlinear frequency ratio versus the nonlinear oscillator amplitude, �� , is presented in 

Figure 10, varying the elastic foundation coefficient ��� and the porosity volume fraction �. 

As can be observed, the ratio ωNL/ωcL increases as the absolute value of �� increases. Moreover, 

the curves exhibit a symmetric behavior when a perfect FG nano-beam is considered, while a different 

trend can be observed for an imperfect FG nano-beam (�� = 0.5). It is also found that the nonlinear 

frequency ratio increases as the porosity volume fraction � increases and that, for a given value of 

�, the ratio ωNL/ωcL also increases as the coefficient ��� increases. 

6.3. Winkler Elastic Foundation Coefficient 

The effect of the Winkler elastic foundation coefficient on the non-linear frequency ratio was 

investigated by varying the initial imperfection amplitude, �� , in the set {0, 0.1, 0.3} for the first 

(Figure 11A) and the second (Figure 11B) kind of porosity distribution here considered. 

The curves illustrated in these Figures, obtained for �� = 0.2 and �=1, show that the non-linear 

frequency ratio tends to increase with increasing elastic foundation coefficient and increasing initial 

imperfection amplitude. Moreover, from the comparison of graphs shown in Figure 11, one finds that 

the nonlinear frequency ratios associated with the even distribution of porosity are always the largest 

for all considered values of the initial imperfection amplitude. 

(A) (B) 

Figure 6. Simply-supported porous FG nano-beams: 3D-plot of the frequency ratio in terms of 

porosity volume fraction (�) and gradient index (�) with �� = 0.2, �� = 0.0 and ��� = 0: (A) even 

distribution of porosity, and (B) uneven distribution of porosity. 

  

(A) (B) 
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Figure 7. Simply-supported porous FG nano-beams: frequency ratio in terms of porosity volume 

fraction (�) and gradient index (�) with �� = 0.2, �� = 0.0 and ��� = 0: (A) even distribution of 

porosity and � <1, and (B) even distribution of porosity and � >1. 

  

(A) (B) 

Figure 8. Simply-supported porous FG nano-beams: frequency ratio in terms of porosity volume 

fraction (�) and gradient index (�) with �� = 0.2, �� = 0.0 and ��� = 0: (A) uneven distribution of 

porosity and � <1, and (B) uneven distribution of porosity and � >1. 
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(B) 

Figure 9. Simply-supported porous FG nano-beams. Frequency ratio versus porosity volume fraction 

with k ranging in the set {0, 0.3, 0.5, 1, 3, 5} and ��� varying in the set {0, 20}: (A) even distribution of 

porosity and (B) uneven distribution of porosity. 

  

(A) (B) 
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(C) 

 

(D) 

Figure 10. Effect of porosity volume fraction (�) and Winkler elastic foundation coefficient (�� ) on 

the frequency ratio of simply-supported (SS) porous perfect (��  = 0.0) FG nano-beams: (A) even 

distribution of porosity (blue lines), (B) uneven distribution of porosity (red lines). Effect of the 

porosity volume fraction (�) and the Winkler elastic foundation coefficient (�� ) on the frequency ratio 

of simply-supported (SS) porous imperfect (��  = 0.5) FG nano-beams: (C) even distribution of 

porosity (blue lines), and (D) uneven distribution of porosity (red lines). 

  

(A) (B) 

Figure 11. Simply-supported (SS) porous FG nano-beams. Frequency ratio versus Winkler elastic 

foundation coefficient, �� = 0.2 and k = 1, and different initial imperfection amplitudes: (A) even 

distribution of porosity, and (B) uneven distribution of porosity. 

7. Conclusions 

In this paper, the nonlinear dynamic behavior of a porous FG Bernoulli–Euler nano-beam, 

resting on a Winkler elastic foundation, with von Kármán type nonlinearity and initial geometric 

imperfection, has been studied, employing the stress-driven nonlocal integral model. 

The governing equations have been reduced to a nonlinear ordinary differential equation by 

using the Galerkin method. Then, the Hamiltonian approach to nonlinear oscillators was employed 

to obtain a closed form analytical solution of the nonlinear natural frequency. 
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In view of the numerical results obtained in the present study, the following conclusions may be 

formulated: 

1) the increase in the gradient index, as well as in the porosity volume fraction, cause a decrease 

in the values of the axial and bending stiffness of porous FG nano-beams; 

2) an increase in the porosity volume fraction of perfect FG nano-beams causes an increase in 

the nonlinear frequency ratio when � < 1 ; an opposite trend was observed when � > 1; 

3) the nonlinear frequencies of imperfect porous FG nano-beams are always greater than those 

obtained for perfect nano-beams; 

4) the nonlinear frequency ratio always increases as the porosity volume fraction increases in 

the case of an uneven distribution of porosity; 

5) an increase in the elastic foundation coefficient and in the initial imperfection amplitude 

causes an increase in the nonlinear frequency ratio. 

In conclusion, the proposed approach is able to capture the nonlinear dynamic behavior of 

porous and imperfect Bernoulli–Euler functionally graded nano-beams resting on a Winkler elastic 

foundation and the approach provides a cost-effective method for the design and optimization of a 

wide range of nano-scaled beam-like components of nano-electro-mechanical-systems (NEMS). 
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Appendix A. Solution Procedure 

From Equation (24) we obtain the following dimensionless form of Equation (32) 

 

��  
����

���� −
����

���� − ���(��)�� + (�̃� ∫ ��
�

�
�

���

���
�

�

+
���

���

��∗

���
� − ��  

��

����  �
�

�
�

���

���
�

�

+
�

�

+ 
���

���

��∗

���
�� ���) �

����

���� +
���∗

���� � = ���
����

��� , 

(A1) 

 

where the following dimensionless parameters have been defined 

��   
��

��
= ���,      

(A2) 

��
��

��
= �� �,      

(A3) 

�

�
= ��,      

(A4) 

��

�
  =  λ,      

(A5) 

�� �

�
 = �̃�.      

(A6) 

On the basis of the Galerkin method, the transverse displacement function ��(��, �)  can be 

defined by 

��(��, �)  = ∑ ��(��) ��(�)�
��� , (A7) 
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where ��(�) is the unknown i-th time-dependent coefficient and ��(�)  is the i-th test function, 

depending on the assigned boundary conditions. 

In this study, we assume the test function form to be equal to the local modal shape (i = 1) 

��(��, �)  = ��(��) ��(�), (A8) 

where the time base function, ��(�), is given by the following approximate cosine solution 

��(�) = �����(��), (A9) 

where � is the first nonlinear vibration frequency, �� is the amplitude of the nonlinear oscillator, 

and ��(��) is assumed to be equal to the linear spatial mode based on the stress-driven non-local 

integral model [64] 

��(��) = �������� + ������� + �������� + ������� + �������� + �������. (A10)

In Equation (A6), ����,�,� are the roots of the characteristic equation, and (����,…,� ) are six 

unknown constants to be determined by imposing suitable boundary conditions. 

Note that, from the numerical point of view, the evaluation of the linear fundamental natural 

frequencies of a porous FG nano-beam consists of solving the eigenvalue problem expressed in terms 

of a six dimensional array, � = {��, … , ��} of the aforementioned unknown constants. 

Moreover, the initial imperfection, �∗(��), is assumed to have the following expression 

�∗(��) = ����(��), (A11)

where �� is the amplitude of the initial imperfection shape. 

By substituting Equations (A8) and (A11) into Equation (A1), and multiplying the resulting 

equation with the fundamental vibration mode ��(��), then integrating across the length of the nano-

beam, leads to the following equation 

 ����(�) +  ����(�)� + ����(�)� + ����
��(�) =  0, (A12)

where the expressions of the four coefficients ��, ��, �� and �� are summarized in Table A1, in which 

��
(�)(��) =  

���� 

���� . 

Finally, in agreement with the Hamiltonian approach to nonlinear oscillators, the following 

expression of the nonlinear fundamental vibration frequency of an imperfect porous FG nano-beam 

can be derived as 

�� =
�����

������
��

����
� ��

����
 . (A13)

Note that the linear vibration frequency of an imperfect porous FG nano-beam can be 

determined from the previous equation by setting �� = 0, while the nonlinear vibration frequency 

of a perfect nano-beam can be obtained by setting �� = 0. Moreover, by setting �� = �� =  0, we 

obtain the local linear frequency, �L, of a perfect FG nano-beam. 

Table A1. Expressions of the four coefficients ��, ��, �� and �� of Equation (A12). 

�� = � (−�����(��)��(��) + �̃�(� �����
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�� = � �̃� �� �
1

2
��

(�)(��)� − ����
(�)(��)� − ����
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�
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