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Abstract: An equilibrium problem of the Kirchhoff–Love plate containing a nonhomogeneous
inclusion is considered. It is assumed that elastic properties of the inclusion depend on a small
parameter characterizing the width of the inclusion ε as εN with N < 1. The passage to the limit
as the parameter ε tends to zero is justified, and an asymptotic model of a plate containing a thin
inhomogeneous hard inclusion is constructed. It is shown that there exists two types of thin inclusions:
rigid inclusion (N < −1) and elastic inclusion (N = −1). The inhomogeneity disappears in the case
of N ∈ (−1, 1).
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1. Introduction

An equilibrium problem of a Kirchhoff–Love plate containing a nonhomogeneous inclusion is
considered. It is assumed that the elastic properties of the inclusion depend on a small parameter
characterizing width of the inclusion ε as εN with N < 1. The problem is formulated as a variational one;
namely, as a minimization problem of the energy functional over a set of admissible deflections in the
Sobolev space H2. This implies that the deflections function is a solution of a boundary value problem
for bi-harmonic operator (pure bending, see, e.g., [1–4]).

The aim of the present work is to justify passing to the limit as ε → 0. To do this, we apply a
method that was originally introduced in [5,6] for problems of gluing plates. The method is based
on variational properties of the solution to the corresponding minimization problem and allows for
finding a limit problem for any N < 1 simultaneously. It is shown that there exist two types of hard
inclusions in dependence of N: thin rigid inclusion (N < −1) and thin elastic inclusion (N = −1). In
case N ∈ (−1, 1), the influence of the inhomogeneity disappears in the limit. We get limit problems in a
variational form, which is convenient, for example, for numerical analysis by the finite element method.

Let us give a short survey of works that are close to the present investigation. Note that there
are not so many works devoted to study of models of thin inclusions in plates. We mention [7–9],
in which thin elastic inclusions in pates were studied. Papers [10–13] are devoted investigations of
thin rigid inclusions. We refer to [14–21] for asymptotic analyses for different models of bonded
structures in Elasticity. We indicate also paper [22], where a geometry-dependent state problem for a
heterogeneous medium with defects is investigated in framework of anti-plane elasticity.

Finally, we mention paper [23], where the mechanical behavior of an anisotropic nonhomogeneous
linearly elastic three-layer plate with soft adhesive, including the inertia forces, was studied, and the
various limiting models in the dependence of the size and the stiffness of the adhesive was derived.
The problem under consideration in the present paper is different from the mentioned paper because we
consider the hard inhomogeneity lying strictly inside the plate and derive limiting problem depending
on the size and stiffness of the inclusion. Wherein, the plate size does not vary and remains constant.

Technologies 2020, 8, 59; doi:10.3390/technologies8040059 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0001-8601-1218
http://www.mdpi.com/2227-7080/8/4/59?type=check_update&version=1
http://dx.doi.org/10.3390/technologies8040059
http://www.mdpi.com/journal/technologies


Technologies 2020, 8, 59 2 of 11

2. Statement of Problem

Let us fix a small parameter ε ∈ (0, 1) and consider an inhomogeneous rectangular plate Ω ⊂ R2

with a thin rectangular inclusion Ωε
inc ⊂ Ω of width 2εd, where d is diameter of Ω. Let us specify

some notations:
Ω = (−a1, a2)× (−b1, b2), aα, bα > 0, α = 1, 2,

Ωε
inc = (−εd, εd)× (−c1, c2), 0 < cα < bα, α = 1, 2,

Ω± = {(y1, y2) ∈ Ω | ± y1 > 0},

S = ∂Ω− ∩ ∂Ω+,

Sinc = S ∩Ωε
inc,

Ωε
mat = Ω \Ωε

inc, Ωε
± = Ωε

mat ∩Ω±,

Note that, for all small enough ε > 0 a family of subdomains Ωε
inc lies strictly inside Ω.

Besides, let us define the following notations:

Ωε
mid = {(y1, y2) ∈ Ω | − εd < y1 < εd, y2 ∈ S},

Sε
± = {(y1, y2) ∈ Ω | y1 = ±εd, y2 ∈ S},

We assume that Sinc is divided into three subsets Sα ⊂ Sinc, where each Sα is an union of finite
number of segments or empty set, α = 1, 2, 3.

In our consideration, Ω is a composite plate, consisting of the elastic matrix Ωε
mat and the

inhomogeneous inclusion Ωε
inc = ∪3

α=1Ωε
α, where

Ωε
α = {(y1, y2) ∈ R2 | − εd < y1 < εd, y2 ∈ Sα}, α = 1, 2, 3.

Moreover, in the sequel, we will use the following notations:

Ωε
0 = Ωε

mid \ ∪
3
α=1Ωε

α,

S0 = S \ Sinc.

Denote, by E0, Eε
α and k0, kα, Young’s modules and Poisson’s ratios of parts Ωmat and Ωε

α of the
composite plate Ω, respectively, α = 1, 2, 3. The compound character of the structure is expressed by
the fact that E0, k0, and kα are constants, while Young’s modulus Eε

α depends on ε, as follows:

Eε
α = εNα Eα in Ωε

α, α = 1, 2, 3,

where N1, N2, N3 are real numbers, such that

N1 < −1, N2 = −1, N3 ∈ (−1, 1).

Parameters N1 and N2 correspond to hard inclusions in the plate Ω (see [6,24,25]).
Moreover, put N0 = 0.

Denote, by w, deflections of the composite plate Ω. Then the bending moments are defined by
formulae (see, e.g., [26,27])

mij(w) = dε
ijklw,kl , i, j = 1, 2, w,kl =

∂2w
∂yk∂yl

,
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where the positive definite and symmetric tensor {dijkl} is orthotropic with the following components:

dε
iiii(y) = Dε(y), dε

iijj(y) = Dε(y)kε(y),

dε
ijij(y) = dε

ijji(y) = Dε(y)(1− kε(y))/2, i 6= j, i, j = 1, 2, (1)

Dε(y) =

{
D0 in Ωε

mat,
εNα Dα in Ωε

α, α = 1, 2, 3,

Dα =
Eαh3

12(1− k2
α)

, α = 0, 1, 2, 3,

kε(y) =

{
k0 in Ωε

mat,
kε

α, in Ωε
α, α = 1, 2, 3,

h is a thickness of the plate Ω that is constant. Note paper [28], where it was shown non-standard
behaviour in the asymptotic two-dimensional reduction from three-dimensional elasticity, when the
thickness and size of inclusions depend on the same parameter.

The potential energy functional of the plate has the following representation (see [27]):

Π(w) =
1
2

∫
Ω

dε
ijklw,klw,ij dy−

∫
Ω

f w dy,

where f ∈ L2(Ω) is a bulk force acting on the plate Ω. Subsequently, the equilibrium problem of
nonhomogeneous plate clamped on the external boundary ∂Ω can be formulated as the minimization
problem: find a function wε ∈ H2

0(Ω) such that

Π(wε) = inf
w∈H2

0 (Ω)
Π(w). (2)

Problem (2) is known to have a unique solution wε (see, e.g., [26,29]), which satisfies the
variational equality: ∫

Ω

dε
ijklwε,klw,ij dy =

∫
Ω

f w dy ∀w ∈ H2
0(Ω). (3)

Moreover, the function wε is a unique solution the following boundary value problem:

(dε
ijklwε,kl),ij = f in Ω,

wε =
∂wε

∂ν
= 0 on ∂Ω,

where ν is a unit normal vector ∂Ω.

3. Decomposition of the Problem and Coordinate Transformations

In the sequel, we will have deal with the problem (3). Let us rewrite it in an equivalent form.
For this, we introduce the following set:

Kε = {v = (v−, v+, vm) ∈ H2(Ωε
−)× H2(Ωε

+)× H2(Ωε
m) |

v± = vm, v±,1 = vm,1 a.e. on Sε
±,

v± =
∂v±
∂ν

= 0 a.e. on ∂Ωε
± ∩ ∂Ω}.
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Taking into account the (1), problem (3) can be reformulated, as follows: find a triplet
(wε−, wε+, wεm) ∈ Kε satisfying a variational equality

bε−(wε−, v−) + bε+(wε+, v+) + bεm(wεm, vm) =

= l−(v−) + l+(v+) + lm(vm) ∀(v−, v+, vm) ∈ Kε, (4)

where

bε±(u, v) = D0

∫
Ωε
±

(u,11v,11 + u,22v,22 + k0(u,11v,22 + u,22v,11) + 2(1− k0)u,12v,12) dy,

bεm(u, v) =
3

∑
α=0

Dε
α

∫
Ωε

α

(u,11v,11 + u,22v,22 + kα(u,11v,22 + u,22v,11) + 2(1− kα)u,12v,12) dy.

lε±(u) =
∫

Ωε
±

f u dy, lεm(u) =
∫

Ωε
m

f u dy.

From the Calculus of Variations, it follows that problem (4) has a unique solution (wε−, wε+,εm ) ∈
Kε for all ε > 0 small enough (see, e.g., [2,26]). Herewith, wε± and wεm are restrictions of wε on
subdomains Ωε

± and Ωε
m, respectively.

Next, we introduce coordinate transformations that map domains Ωε
± and Ωε

m onto domains
independent of ε. For this, we consider two convex domains ω1 and ω2, such that

S ⊂ ω1, ω1 ⊂ ω2, ∂ω2 ∩ {y1 = −a1} = ∅, ∂ω2 ∩ {y1 = a2} = ∅,

and a smooth cut-off function θ, such that

θ = 1 in ω1, 0 < θ < 1 in ω2, θ = 0 in R2 \ω2.

Let us introduce the following notations:

Ωm = {(z1, z2) ∈ R2 | − d < z1 < d, z2 ∈ S},

S± = {(z1, z2) ∈ R2 | z1 = ±d, z2 ∈ S},

Ωα = {(z1, z2) ∈ R2 | − d < z1 < d, z2 ∈ Sα}, α = 0, 1, 2, 3,

S±α = {(z1, z2) ∈ R2
z | z1 = ±d, z2 ∈ Sα}, α = 0, 1, 2, 3.

and define coordinate transformations in the domains Ω± and Ωm as follows:

y1 = x1 ± εdθ(x1, x2), y2 = x2, (x1, x2) ∈ Ω±, (y1, y2) ∈ Ωε
±, (5)

y1 = εz1, y2 = z2, (z1, z2) ∈ Ωm, (y1, y2) ∈ Ωε
m. (6)

It is not difficult to show that for all sufficiently small coordinate transformations (5) and (6) map
bijectively the domains Ω± and Ωm onto Ωε

± and Ωε
m, respectively, (see, e.g., [30,31]). Note that the

subdomain Ωε
α is mapped into subdomains Ωα, α = 0, 1, 2, 3.

Denote, by Φ±ε (x) and J±ε , Jacobian matrices and Jacobians of transformations (5), respectively,

Φ±ε (x1, x2) =

(
1± εdθ,1(x1, x2) ±εdθ,2(x1, x2))

0 1

)
,

J±ε (x1, x2) = det Φ±ε (x1, x2) = 1± εdθ,1(x1, x2).
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Coordinate transformations (5) and (6) establish one-to-one correspondences between spaces
H2(Ω±), H2(Ωm) and H2(Ωε

±), H2(Ωε
m), respectively. Moreover, the set Kε is transformed into a

set Kε,

Kε = {v = (v−, v+, vm) ∈ H2,0(Ω−)× H2,0(Ω+)× H2(Ωm) |

v±|S = vm|S± , v±,1|S =
1
ε

vm,1|S±},

where
H2,0(Ω±) = {v± ∈ H2(Ω±) | v± =

∂v±
∂ν

= 0 a.e. on ∂Ωε
± ∩ ∂Ω}.

Hereinafter, we assume that, for any functions v±(x), x ∈ Ω±, and vm(z), z ∈ Ωm, equality v±|S =

vm|S± means that
v±(0, x2) = vm(±d, z2), x2 = z2 ∈ S.

Introduce the following notations:

wε
±(x1, x2) = wε±(x1 ± εdθ(x1, x2), x2), (x1, x2) ∈ Ω±,

wε
m(z1, z2) = wεm(εz1, z2), (z1, z2) ∈ Ωm.

Becase of the smoothness of coordinate transformations (5), we have asymptotic expansions for
the transformations of the second-order derivatives for (5) (see, e.g., [30–33])

wε±,ij = wε
±,ij + εP±ij (ε, wε

±), (7)

with
|P±ij (ε, wε

±)| ≤ C(|wε
±,k|+ |w

ε
±,kl |), i, j, k, l = 1, 2.

Besides, we have for (6)

wεm,11(y1, y2) =
wε

m,11(z1, z2)

ε2 , wεm,12(y1, y2) =
wε

m,12(z1, z2)

ε
, wεm,22(y1, y2) = wε

m,22(z1, z2).

After applying coordinate transformations (5) and (6) to (4), we get that the triplet
(wε
−, wε

+, uwε
m) ∈ Kε is a unique solution to the following variational equality:

bε
−(w

ε
−, v−) + bε

+(w
ε
+, v+) + bε

m(w
ε
m, vm) = lε

−(v−) + lε
+(v+) + lε

m(vm) ∀(v−, v+, vm) ∈ Kε, (8)

where, taking into account (7) and (1),

bε
±(u, v) = b±(u, v) + r±(ε, u, v),

b±(u, v) = D0

∫
Ω±

(u,11v,11 + u,22v,22 + k±(u,11v,22 + u,22v,11) + 2(1− k±)u,12v,12) dx,

|r±(ε, u, v)| ≤ c±(ε)
(
‖u‖2

H2(Ω±)
+ ‖v‖2

H2(Ω±)

)
, 0 ≤ c±(ε) = o(1) as ε→ 0, (9)



Technologies 2020, 8, 59 6 of 11

bε
m(u, v) =

= D0

∫
Ωm

(
u,11v,11

ε3 + εu,22v,22 +
km

ε
(u,11v,22 + v,22w,11)+

2(1− km)

ε
u,12v,12

)
dz+

+ D1

∫
Ωm

(
u,11v,11

ε3−N1
+

u,22v,22

ε−N1−1 +
km

ε1−N1
(u,11v,22 + v,22w,11)+

2(1− km)

ε1−N1
u,12v,12

)
dz+

+ D2

∫
Ωm

(u,11v,11

ε4 + u,22v,22+
km

ε2 (u,11v,22 + v,22w,11) +
2(1− km)

ε2 u,12v,12

)
dz+

+ D3

∫
Ωm

(u,11v,11

ε3−N3
+ εN3+1u,22v,22+

km

ε1−N3
(u,11v,22 + v,22w,11) +

2(1− km)

ε1−N3
u,12v,12

)
dz,

lε
±(v) =

∫
Ω±

f (x1 ± dθ(x1, x2), x2)(1± dθ,1(x1, x2)v dx,

lε
m(v) = ε

∫
Ωm

f (εz1, z2)v dz,

|lε
±(v)| ≤ C‖v‖L2(Ω±), (10)

|lε
m(v)| ≤ Cε‖v‖L2(Ωm). (11)

4. Limit Problem

To justify passing to the limit as ε→ 0, we need some auxiliary lemma proved in [5,6].

Lemma 1 (Poincare-typé inequalities). For any triplet (v−, v+, vm) ∈ Kε and ε ∈ (0, 1), the inequalities

‖vm‖2
L2(Ωm) ≤ C

(
‖vm,11‖2

L2(Ωm) + ‖v±‖
2
H2,0(Ω±)

)
,

‖vm,1‖2
L2(Ωm) ≤ C

(
‖vm,11‖2

L2(Ωm) + ε2‖v±,1‖2
L2(S)

)
hold, where a constant C > 0 does not depend on (v−, v+, vm) and ε > 0.

Our main result is the following theorem.

Theorem 1. Let wε = (wε
−, wε

+, wε
m) be a solution to (8); let w0 ∈ K0 be a solution to the following

variational equality:

b(w0, w) + 4d(1− k2)Dm

∫
S2

∂(w0,1|S2)

∂z2

∂(w,1|S2)

∂z2
dz2 = l(w) ∀w ∈ K0, (12)

where
K0 = {w ∈ H2

0(Ω) | w = αx2 + β a.e. on S1, α, β ∈ R; w,1 ∈ H1(S2)}.

Denote, by w±, a restriction of w to subdomain Ω± and, moreover, put

wm(z1, z2) = w0(z1, 0) for (z1, z2) ∈ Ωm.

Then, the following convergences

wε
± ⇀ w± weakly in H2(Ω±),

wε
m ⇀ wm weakly in L2(Ωm),
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take place as ε→ 0.

Proof. Let us substitute (wε
−, wε

+, wε
m) in (8) as a test function. Taking into account Lemma, (9)–(11),

we obtain an estimate

‖wε
−‖2

H2,0(Ω−)
+ ‖wε

+‖2
H2,0(Ω+)

+

+

∥∥∥∥∥wε
m0,11

ε
3
2

∥∥∥∥∥
2

L2(Ω0)

+

∥∥∥∥∥wε
m0,12

ε
1
2

∥∥∥∥∥
2

L2(Ω0)

+ ‖ε
1
2 wε

m0,22‖2
L2(Ω0)

+

+

∥∥∥∥∥wε
m1,11

ε
3−N1

2

∥∥∥∥∥
2

L2(Ω1)

+

∥∥∥∥∥wε
m1,12

ε
1−N1

2

∥∥∥∥∥
2

L2(Ω1)

+

∥∥∥∥∥wε
m1,22

ε
−N1−1

2

∥∥∥∥∥
2

L2(Ω1)

+

+

∥∥∥∥∥wε
m2,11

ε2

∥∥∥∥∥
2

L2(Ω2)

+

∥∥∥∥∥wε
m2,12

ε

∥∥∥∥∥
2

L2(Ω2)

+
∥∥∥wε

m2,22

∥∥∥2

L2(Ω2)
+

+

∥∥∥∥∥wε
m3,11

ε
3−N3

2

∥∥∥∥∥
2

L2(Ω3)

+

∥∥∥∥∥wε
m3,12

ε
1−N3

2

∥∥∥∥∥
2

L2(Ω3)

+ ‖ε
N3+1

2 wε
m3,22‖2

L2(Ω3)
≤ C (13)

with a constant C independent of ε. Here, by wε
mα

, denote a restriction of wε to Ωα, α = 0, 1, 2, 3.
Moreover, from (13), Lemma, and definition of the set Kε, we additionally have

‖wε
m‖L2(Ωm) ≤ C, ‖wε

m,1‖L2(Ωm) ≤ Cε. (14)

Estimates (13) and (14) entail the existence of functions w± ∈ H2,0(Ω±), wm ∈ L2(Ωm),
pα, qα, rα ∈ L2(Ωα), α = 0, 1, 2, 3, such that for some subsequence {εn}∞

n=1 still denoted by ε,
the following convergences:

wε
± ⇀ w± weakly in H2(Ω±),

wε
m ⇀ wm weakly in L2(Ωα),

ε
Nα−3

2 wε
m,11 ⇀ pα weakly in L2(Ωα),

ε
Nα−1

2 wε
m,12 ⇀ qα weakly in L2(Ωα),

ε
Nα+1

2 wε
m,22 ⇀ rα weakly in L2(Ωα)

(15)

hold as ε→ 0, with r2 = wm,22. Moreover, from (13) and (14), it follows that

wε
m,1 → wm,1 = 0 strongly in L2(Ωm), (16)

wε
m,11 → wm,11 = 0 strongly in L2(Ωm), (17)

wε
m,22 → wm,22 = 0 strongly in L2(Ω1), (18)

and there exists u ∈ L2(Ωm2) such that

wε

ε
⇀ u weakly in L2(Ω2).

From definition of the set Kε, after passing to the limit as ε→ 0, we obtain

wm|S± = w±|S. (19)
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Because wm,1 = 0 in Ωm (see (16)), wm does not depend on z2. Therefore, taking into account (17),
we conclude that there exists a function β(z2) ∈ L2(Ωm) such that

wm(z1, z2) = β(z2), (z1, z2) ∈ Ωm.

Condition (18) means that the function wm is affine in the domain Ωm with respect to z2,
i.e., there exists δ, γ ∈ R, such that

wm(z1, z2) = δz2 + γ in Ω1. (20)

Because of (19), we have
w−|S = w+|S. (21)

Now, let us show that w± satisfy the following equality:

w+,1 = w−,1 on S. (22)

Indeed, from the relation

d∫
−d

wε
m,11(z1, z2)dz1 = wε

m,1(d, z2)− wε
m,1(−d, z2),

it follows that
b∫

a

|wε
m,1(d, z2)− wε

m,1(−d, z2)|2 dz2 ≤ 2d‖wε
m,11‖2

L2(Ωm).

Due to estimate (13) and the equalities wε
m,1(±d, z2) = εwε

±(0, z2) for z2 ∈ (a, b) (see the definition
of the set Kε), we obtain

‖wε
+,1 − wε

−,1‖L2(S) ≤
2d
ε
‖wε

m,11‖L2(Ωm) → 0

as ε→ 0. From (15) (the first line) and the compactness of trace operator, it follows

wε
±,1 → w±,1 strongly in L2(S)

as ε→ 0, and (22) holds.
At last, using the same arguments as in [6], we can prove additionally that

w±,1|S2 ∈ H1(S2) (23)

and, moreover,
p2 = −kmwm,22 in Ω2,

q2 =
∂(w−,1|S2)

∂z2
in Ω2,

u = w−,1|S2 in Ω2.

Now, let us define a function

w0(x) =

{
w−(x) x ∈ Ω−,
w+(x) x ∈ Ω+.

(24)

Conditions (19)–(23) imply that the function w0 belongs to the set K0.
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In order to proceed with a problem defining the function w0, we take arbitrary function
v ∈ C2(Ω) ∩ K0 and define three functions v−, v+, vm by

v− = v|Ω− , v+ = v|Ω+ ,

vm(z1, z2) = v(0, z2), (z1, z2) ∈ Ωm.

Subsequently, for these functions, we consider a triplet (v− + εψ−, v+ + εψ+, vm + εψm) ∈ Kε,
where ψm(z1, z2) = v,1(0, z2)z1 for (z1, z2) ∈ Ωm, and ψ± ∈ H2,0(Ω±) is arbitrary extensions of ψm in
domains Ω±, such that

ψ±|S = ψm|S±m , ψ±,1 = 0 on S,

and substitute it in (8). Since vm,11 = 0 and ψm,11 = 0 in Ωm, weak convergences in (15) and
Formulas (23) allows for us to pass to the limit as ε→ 0 and obtain the following relation:

b−(w−, v−) + b+(w+, v+) + 4d(1− k2)D2

∫
S2

∂(w−,1|S2)

∂z2

∂(v−,1|S2)

∂z2
dz2 =

= l−(v−) + l+(v+) ∀v ∈ C2(Ω) ∩ K0.

Taking into account (24) and the fact that C2(Ω) ∩ K0 is dense in K0, we obtain (12).

Assuming that the solution w0 to variational problem (12) has additional regularity, by applying
the generalized Green formula (see, e.g., [2,26]), we deduce differential equations and boundary
conditions for the functions w0:

D0∆2w0 = f in Ω \ (S1 ∪ S2),

w0 =
∂w0

∂ν
= 0 on ∂Ω,

w0 = δ0x2 + β0 on S1, δ0, β0 ∈ R,

[m1(w0)] = 0 on S1,∫
S1

[t1(w0)] dx2 = 0,
∫
S1

[t1(w0)]x2 dx2 = 0,

[t2(w0)] = 0 on S2,

p = w0,1 on S2,

4dD2(1− k2)p,22 = [m2(w0)] on S2,

p,2 = 0 at ∂S2,

where mα(w0) and tα(w0) are bending moments and transverse forces, respectively, defined by

mα(w0) = Dα

(
kα∆w0 + (1− kα)

∂2w0

∂ν2

)
,

tα(w0) = Dα
∂

∂ν

(
∆w0 + (1− kα)

∂2w0

∂τ2

)
,

ν = (1, 0) and τ = (−1, 0) are an unit normal vector and an unit tangent vector, respectively, α = 1, 2.
The mechanical interpretation of boundary conditions can be found in [6], see also [10,34,35].
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5. Concluding Remarks

We proposed a method of asymptotic derivation of plate models containing hard thin inclusions
lying strictly inside the plate. The method is based on the variational properties of the solution of
the equilibrium problem and allows for one to simultaneously construct all possible cases of hard
thin inclusions. It is shown that there exist two type of thin inclusions in the Kirchhoff–Love plate,
namely, the rigid inclusion S1 for N < −1 and the elastic inclusion S2 for N = −1. The inhomogeneity
disappears in the case of N ∈ (−1, 1). The last means that we have no any peculiarity along the set S3.

In the conclusion, we note that the proposed method does not allow considering the case of the
exponent N ≥ 1 simultaneously with the case of the exponent N < 1, because, for the first case, we
need to use other type of test functions (see [6]), which cannot be substituted in variational equality for
the second case of the exponent.
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