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Abstract: Myoelectric signals can be used to control prostheses or exoskeletons as well as robots, i.e.,
devices assisting the user or replacing a missing part of the body. A typical application of myoelectric
prostheses is the human hand. Here, the development of a low-cost myoelectric thumb is described,
which can either be used as an additional finger or as prosthesis. Combining 3D printing with
inexpensive sensors, electrodes, and electronics, the recent project offers the possibility to produce an
individualized myoelectric thumb at significantly lower costs than commercial myoelectric prostheses.
Alternatively, a second thumb may be supportive for people with special manual tasks. These
possibilities are discussed together with disadvantages of a second thumb and drawbacks of the
low-cost solution in terms of mechanical properties and wearing comfort. The study shows that
a low-cost customized myoelectric thumb can be produced in this way, but further research on
controlling the thumb as well as improving motorization are necessarily to make it fully usable for
daily tasks.

Keywords: myoelectric prosthesis; 3D printing; biomechatronics; 6th finger; 3rd thumb

1. Introduction

Prostheses can be subdivided into body-powered, pneumatically powered, and elec-
trically powered ones [1]. While body-powered devices, using the energy of the muscles of
a human, are relatively inexpensive and lightweight, they often have other shapes than
the original part of the body which they replace, and they can be complicated to use [2].
Electrically powered prostheses, on the other hand, are usually much more expensive
and heavier, but for many users easier to handle. Such prostheses can get their signals
by different body signals, amongst them by electromyographic (EMG) signals from the
residual muscles [3,4]. In this way, there is a better possibility to mimic the natural human
movement than with body-powered prostheses. While the best control is reached by an
implanted sensor, collecting intramuscular myoelectric signals, usually surface electrodes
are applied on the residual limb as a non-invasive technique is often preferred [5,6]. The
efficiency of surface electrodes can be improved by transferring nerves to the positions
where the surface electrodes are to be placed [7,8]. Previous studies found, e.g., that using
myoelectric prostheses can help avoiding cortical reorganization related with phantom
limp pain [9].

Myoelectric control is especially often used for upper-limb prostheses [10–13]. An-
other important part of the body is the hand, which is also often replaced by myoelectric
prostheses [14–16]. While research on moving the fingers of a hand prosthesis indepen-
dently is ongoing [17,18], single finger prostheses are usually not controlled by myoelectric
signals. One of the reasons for this finding may be the high costs for myoelectric prostheses
in the range of 4000–75,000 $ for upper-limb prostheses [19].

Especially in developing countries, low-cost myoelectric prostheses would be of
large help for people who lost a limb. This is why some research groups concentrate
on developing cost-effective myoelectric prosthetic devices, especially hands. Atique
and Rabbani, e.g., developed a myoelectric prosthetic hand with only the thumb being
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controllable by myoelectric signals, taken by surface electrodes, in this way enabling
holding small objects [20]. Three-dimensional printed prostheses are partly commercially
available at lower cost, e.g., approx. 1500$ for the Mark V (Seoul, Korea) [21]. Nevertheless,
these prices are still high for people in many countries around the world. A highly
interesting initiative, supporting people or also animals who need new limbs, is the e-
NABLE online global community, delivering wrist-powered hands and elbow-driven arms
in different designs, but not custom-made, by open-source 3D printing designs [22].

Besides these and other low-cost prostheses, there are also attempts to train people
with neurological injuries or to extend the physical properties of non-handicapped people
by exoskeletons [23–25]. Regarding hands or fingers, there are a few studies and design
approaches investigating the effect of a third thumb, e.g., controlled by the feet [26],
allowing to give people extended motor skills and at the same time enabling neuro-scientific
research on neuroplasticity [27,28].

Going one step further, myoelectric prostheses have recently been investigated to be
controlled commonly by user intention and robotic automation to improve the prosthesis
motions [29]. The interaction between a human and a prosthetic hand is still the most
complicated task to be solved, especially due to the problematic or non-existing sensory
feedback of the prosthesis [30]. This is why some groups concentrate on evaluating the
effect of different kinds of control strategies, such as raw control with raw feedback or
filtered control with filtered feedback [31]. Other groups investigated tolerant pattern
recognition for the myoelectric prosthesis control to avoid reaction to signal deviations
due to untrained conditions [32] or the effect of different learning durations on grasp
patterns [33]. On the other hand, different ways of learning, e.g., with augmented reality of
game-based training, are recently investigated [34,35].

Here, we present a project combining some of the aforementioned aims. We developed
a myoelectric third thumb—in case of able-bodied people—and tested at which positions
of the hand it could be ideally added. This thumb could also be used as prosthesis for
people who lost their thumb. Low-cost solutions for scanning are discussed, leading to the
possibility to prepare custom-made prostheses, which can be 3D printed and controlled
with inexpensive electronics by myoelectric signals taken by surface electrodes. The study
shows that developing a low-cost customized myoelectric thumb is possible, but more
research is needed regarding the exact positioning of the thumb as well as partly improving
the motor and the material of the fishing line, actuating the thumb.

2. Materials and Methods

In the conception phase, a requirement specification for an extra thumb was developed,
containing the following points:

- Enabling holding round objects with diameter 60 mm;
- Custom-made hand part with good fit to desired position;
- Rotation of minimum 40◦ of the thumb;
- Maximum dimensions of length 80 mm and width 20 mm to make the extra thumb

similar to a normal one;
- No sharp edges, ergonomic construction;
- Using a spring to let the thumb relax into the neutral position;
- Maximum mass, including servomotor, of 50 g;
- Production by 3D printing;
- Low-cost materials and parts, ideally leading to an overall price below 100 €.

The approaches to reach these goals are described below.

2.1. Customization

Different ways of producing a 3D model of the own hand were tested: Scanning by a
smartphone using the app Scann3D (from SmartMobileVision, Budapest, Hungary); or using
the free computer software 3DF Zephyr Free (3Dflow SRL, Verona, Italy), which enables
producing a 3D object from 2D photographs that were taken with a Nikon Coolpix P510.
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The gained 3D object was imported in Autodesk Meshmixer (Autodesk, Inc., San
Rafael, CA, USA) where errors in the 3D shape were corrected. Afterwards, the 3D model
was imported in MeshLab (Visual Computing Lab, Institute of Information Science and
Technologies “Alessandro Faedo”—ISTI, National Research Council of Italy, Pisa, Italy),
where meshing errors were corrected.

Next, the mesh was imported into Fusion 360 (Autodesk, Inc.), to scale the model to
the correct dimensions. Finally, holders fitting to two different positions of the meshed
hand were constructed, one between thumb and wrist joint and another one between small
finger and wrist joint. Besides, a holder for the electronics and electromechanical parts at
the arm near the wrist was developed.

The whole development process is shown in the chart in Figure 1.
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Figure 1. Development process of the myoelectric thumb.

2.2. 3D Printing

The printed parts were exported from Fusion 360 as stl files and sliced with the
software Cura (Ultimaker B. V., Utrecht, The Netherlands). Printing was performed using
an Ender V2 (Shenzhen Creality 3D Technology Co., Ltd., Shenzhen, China) with a nozzle
diameter of 0.4 mm. As filament, polylactic acid (PLA) was chosen, which has advantages
like good printability, being eco-friendly and degradable, and its shape memory properties
allow for bending parts that cannot be printed easily in the desired shape [36,37]. The
following parameters were used for printing: layer thickness 0.16 mm, 3 perimeters, fill
density 20%, printing temperature 210 ◦C, printing bed temperature 50 ◦C, printing speed
50 mm/s, and the angle from which an overhang needs support structure was chosen
as 51◦. These support structures were carefully separated from the printed objects after
printing, partly supported by a knife.

2.3. Springs to Let the Thumb Relax

To enable relaxation of the thumb without muscle contraction, a torsion spring as well
as a tension spring were investigated. In both cases, different possibilities to mount the
springs at the 3D printed parts were investigated.

2.4. Electronics, Sensors and Programming

The third thumb was controlled by an Arduino Uno, testing two different programs
(cf. Appendix A). Figure 2 shows the wiring.

The servomotor used in this work is an SG90 (Tower Pro, Taipei, Taiwan) with the
following parameters [38]: dimensions 23 mm × 12.2 mm × 29 mm, mass 9 g, rotation
speed 0.1 s for 60◦, torque 1.8 kg/cm, voltage 4.8 V. This servomotor pulls a string (here a
fishing line) to actuate the phalanges.

The myoelectric signals were taken by three surface electrodes including a reference
electrode (standard ECG gel electrodes) on the forearm and evaluated by the muscle sensor
board V3 (Advancer Technologies, Raleigh, NC, USA). The electrodes were placed on the
Flexor carpi ulnaris and the Flexor carpi radialis, i.e., the muscles responsible for deflection
and extension of the wrist joint. It should be mentioned that rotation of the third thumb
was included into the design for 3D printing, but not yet controlled by myoelectric signals.
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Figure 2. Electronic setup with Arduino Uno (upper left), servomotor (upper right), breadboard connections (lower left)
and muscle sensor board (lower right).

3. Results

While scanning a hand did not lead to satisfactory results, using 3DF Zephyr princi-
pally enabled preparing a 3D model of a hand with several optimization steps, as visible in
Figure 3.
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Figure 3. Different results of photographs inserted into 3DF Zephyr. (a–d) show different approaches, as described in the
main text.

Here, different errors occur. Figure 3a shows a version in which the hand was not
held at the identical position during taking 50 photographs, resulting in a “shadow hand”.
Insufficient contrast between hand and background may lead to insufficient edge detection
and, thus, incomplete parts of the hand, here especially to “holes” in the fingers (Figure 3b).
In Figure 3c, an effect is visible that may occur when photographs are taken in front of a
monochromatic background. Finally, Figure 3d shows the best result gained by this technique,
combining 50 photographs for a chosen reconstruction “human body” and the selection “surface
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scan”, applying the highest possible resolution. Generally, scanning body parts is much more
complicated than scanning rigid objects since the latter keep their position, while the hand here
could not be stabilized by any rigid object since all sides had to be photographed without other
objects blocking the line of sight.

Next, the model shown in Figure 3d was introduced in Meshmixer (Figure 4a) where,
e.g., ring finger and middle finger were separated, as shown in Figure 4b. Next, open areas
and meshing errors were corrected (Figure 4c), before the final 3D hand model was derived
(Figure 4d).
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Figure 4. Reconstruction of the hand model in Meshmixer. (a) Hand taken from 3DF Zephyr; (b) 3D hand model with ring
finger and middle finger separated; (c) correction of open areas and meshing errors; (d) final 3D hand model.

Next, the different holders (one for the motor, two for the different possible positions of
the third thumb) as well as the third thumb itself were constructed. The basic constructions
are depicted in Figure 5. Here, the holders were fitted to the previously reconstructed 3D
hand by constructing a plane, changing it roughly to the desired shape of the holder and
drawing it to the surface of the 3D hand. In some areas, the holders were constructed smaller
than the hand to allow a tighter fit on the soft hand regions. Next, all edges were rounded.
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On the holders, supporting systems (grey parts in Figure 5) were constructed on which
the actual thumbs were placed. The whole thumb construction is depicted in Figure 6.
Connections between adjacent phalanges are made by screws. All holders contain slits to fix
textile bands, ensuring a reliable fixation of the holders on the hand or forearm, respectively.
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To enable rotation of the thumb, a deep groove ball bearing (623-2Z, 3 mm ID × 10 mm OD
× 4 mm wide, light blue part in Figure 6) was pressed into the borehole of the base phalanx.
The latter was connected with the supporting system (beige part in Figure 5) by an M3 screw.
Annular grooves for a pressure spring (Figure 7a) were added to the supporting system as well
as to the base phalanx, letting the thumb rotate back into the neutral position when rotated.
The length of the base phalanx is 27.3 mm. The intermediate phalanx can be bent by 50◦ with
respect to the base phalanx and has a height of 28.8 mm. The end phalanx can be bent by 45◦

with respect to the intermediate phalanx. On its tip, it has an M2 borehole on which a cover
is plugged.
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Moving the finger is enabled by a fishing line fixed at the end phalanx by this M2
screw and with its other end at the servomotor. The path of the fishing line is depicted in
Figure 5 by the green curved grooves in the thumb part and the grey groove in the support
system part, respectively. At either ends of the phalanges, the channel guiding the fishing
line was extended to avoid clamping it.

To let the thumb move back into a neutral position without detected muscle signals,
springs were added between the phalanges. Firstly, a torsion spring was tested; however,
placement of the spring was complicated, and no fitting torsion springs were found. Thus,
a tension spring was used instead, as depicted in Figure 7. While first tests were carried out
by attaching the springs to 3D printed extensions (Figure 7b), this procedure was found not
reliable enough, with some extensions breaking during separation of the support material
or being abraded during attaching the springs. Thus, in the final version small screws were
placed in thread inserts at the ends of the phalanges (Figure 7c).

After these iteration steps, the final 3D parts (available at https://www.thingiverse.
com/thing:4938144, accessed on 24 August 2021) were printed in the orientations shown
in Figure 8. Light blue parts show support structures. Positions were chosen in such a way
that boreholes and especially the channel guiding the fishing line were printable without
support. Printing of all parts for two additional thumbs took 21 h. After chamfering the
parts, the thread inserts were heated by a soldering gun and pressed into the respective
boreholes. The fishing line was guided through the channel and fixed with the M2 screw
at the end phalanx. From the M5 thread insert at the base phalanx, the fishing line was
led into the connector (cf. lower left of Figure 6b) and through the tube (marked black in
Figure 5) to the connector at the servo holder. The different parts of the thumb were finally
connected with screws, and the springs (Figure 7) were added. Detailed descriptions of
the assembly process can be found in the animations for the third thumb in both possible
positions in the Supplementary Material.
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4. Discussion

During the iterative development of this third thumb or myoelectric finger prosthesis,
several potential problems were recognized. A first test was performed with hand holders
of thickness 2 mm, which was found to be mechanically insufficient; the slits holding the
textile strips broke several times. Thus, the design had to be changed to a holder thickness
of 3 mm.

Unexpectedly, the fishing line could be elongated too much, which made it less suitable
for rigidly holding objects. Besides, the channel guiding the fishing line was found to be
too broad; this additional degree of freedom increased the problem of differing thumb
positions with and without load.

On the other hand, the hook-and-loop fastener used here as textile band to fix the
third thumb and servo holders was too rigid and should be exchanged by a slightly elastic
textile material in a next step.

Practical tests of the developed third thumb (cf. third-thumb-tests.avi in the Supple-
mentary Material and Figure 9) showed that a third thumb at the inner side (between
original thumb and wrist) could be helpful to grab larger objects since the third thumb
could be used like the original one, just with a larger distance to the other fingers. On the
opposite side, i.e., between small finger and wrist, it could be used to hold a soft ball, but
was sometimes even disturbing, especially during grabbing long objects, such as a bottle of
water. Regarding the holders, the third thumb was better wearable between small finger
and wrist since there the hand deformed less when an object was taken.
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against the side of the third thumb, and (c) holding it between real and third thumb.

The programs tested during this study (cf. Appendix A) were found to react differently
to noise in the EMG signals. The latter had a higher degree of freedom, making movements
more reliable, but nevertheless has to be developed further to reduce undesired movements
due to noise.

It should be mentioned that this project mainly aimed at producing a customized
low-cost myoelectric prosthesis, without applying brain related measured or investigating
the effect of training, as the aforementioned studies on using a third thumb did [27,28].
Another difference to Ref. [27] is that here not the big toe, but an arm muscle was used to
control the third thumb, making a comparison of training effects complicated. The extra
robotic thumb described in Ref. [28] has a different design, but similar degrees of freedom,
and is equipped with a force sensor; such a feedback system was not yet implemented
here. Other studies mentioning myoelectric finger control are usually related to full hand
prostheses [39,40] or evaluate myoelectric signals during finger control in general for future
implementation [41–44].
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5. Conclusions

In this project, a low-cost myoelectric thumb was developed. While tested here as
third thumb, it can also be used as prosthesis by people who lost a thumb.

This first approach works for grabbing and holding small, lightweight objects. With
the improvements pointed out, more functional prostheses or third thumbs can be de-
veloped, based on the freely available printing models for 3D printing and programs
available as Supplementary Material. Further research is necessary to improve thumb
positioning as well as the motor strength and the material of the fishing line, actuating the
thumb. Besides, implementation of a feedback can allow for better control of the prosthesis,
especially concerning the grabbing force, which is planned to be measured in the next step
of the project.

Supplementary Materials: The following videos are available online at https://www.mdpi.com/
article/10.3390/technologies9030063/s1: animation-thumb-side.avi, showing the assembly and
function of the third thumb placed between thumb and wrist; animation-small-finger.avi, showing
the assembly and function of the third thumb placed between small finger and wrist; and third-
thumb-tests.avi, showing real tests with a third thumb, grabbing and holding a small ball with
different combinations of fingers.
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Appendix A

Program code V1:
#include <Servo.h> // includes servo library
Servo SERVO1; // setup servo object
float VALUE; // define float VALUE
int BORDER = 80; // border defined by integer 80
void setup () {
Serial.begin(9600); // sets baud rate to 9600 bits/s
SERVO1.attach(9); // addresses servo library to pin 9
}
void loop () {
VALUE = analogRead(A3); // addresses analog input A3 as VALUE
if (VALUE > BORDER) {
SERVO1.write(0); // SERVO1 receives value 0
}
else {
SERVO1.write(120); // SERVO1 receives value 120
}
Serial.println(VALUE); // serial port receives data VALUE
}
Program code V2:
#include <Servo.h>
#define SLOPE 30
Servo SERVO1;

https://www.mdpi.com/article/10.3390/technologies9030063/s1
https://www.mdpi.com/article/10.3390/technologies9030063/s1
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float DIFF; //define different float values
float NEU_VALUE;
float VALUE;
long timer = 0; // recent time
int DELAY = 100; // delay time
void setup () {
Serial.begin(9600); // sets baud rate to 9600 bits/s
SERVO1.attach(9); // addresses servo library to pin 9
}
void loop () {
if (millis () > (timer + DELAY)) {
VALUE = analogRead(A3);
DIFF= VALUE-NEU_VALUE;
NEU_VALUE = VALUE;
if (DIFF > SLOPE) {
SERVO1.write(0); // SERVO1 receives value 0
}
else if (DIFF < (-SLOPE)) {
SERVO1.write(120); // SERVO1 receives value 120
}
timer = millis ();
}
Serial.println(analogRead(A3)); // serial port receives data VALUE
}
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