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Abstract: Audio event detection (AED) systems can leverage the power of specialized algorithms for
detecting the presence of a specific sound of interest within audio captured from the environment.
More recent approaches rely on deep learning algorithms, such as convolutional neural networks
and convolutional recurrent neural networks. Given these conditions, it is important to assess how
vulnerable these systems can be to attacks. As such, we develop AED-suited convolutional neural
networks and convolutional recurrent neural networks, and attack them next with white noise
disturbances, conceived to be simple and straightforward to be implemented and employed, even by
non-tech savvy attackers. We develop this work under a safety-oriented scenario (AED systems for
safety-related sounds, such as gunshots), and we show that an attacker can use such disturbances
to avoid detection by up to 100 percent success. Prior work has shown that attackers can mislead
image classification tasks; however, this work focuses on attacks against AED systems by tampering
with their audio rather than image components. This work brings awareness to the designers and
manufacturers of AED systems, as these solutions are vulnerable, yet may be trusted by individuals
and families.

Keywords: AED; neural networks; deep learning; spectrograms

1. Introduction

IoT-based cyber–physical systems (CPSs) have been developed to advance person-
alized health care, emergency response, traffic flow management, and electric power
generation and delivery [1–7]. IoT-based CPSs include smart networked systems with
embedded sensors, processors and actuators that sense and interact with the physical
world. A core element of IoT-based CPSs is decision making, which analyzes the data ob-
tained from sensors. As more sensors became pervasive, generating huge volumes of data,
deep learning algorithms, in particular, more recent neural networks, are also becoming
pervasive, playing a vital role in the good performance of decision-making in real-life
CPS applications.

The growing use of deep learning approaches in such critical purpose applications
has raised concerns about their robustness against malicious attacks, where the attacker
tries to fool the deep learning model. Some studies have already shown that deep neural
network classifiers are susceptible to attacks aimed at causing misclassifications [8–10].
Most attacks against these classifiers are focused on image classification tasks [11–14]. An
example would be changing some particular pixels [15,16] or creating new images that
will misclassify to a target [17,18], maliciously chosen by the attacker. A few recent works
studied attacks against speech and speaker recognition applications [19–21]. These attacks
involve generating malicious audio commands that are recognized and interpreted by the
audio models, used in voice processing systems, but are either inaudible or sound like
mere noise to the human ear.
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Speech recognition is just one example of the possible audio processing capabilities
made available by CPS systems. Another one would be that of audio event detection
(AED), where the systems obtain the audio inputs from some acoustic sensors and then
process them to detect and classify some sonic events, such as gunshots. This is different
from speech recognition in the sense that AED algorithms, unlike SR ones, do not look
for specific phonetic sequences to identify a specific sound event [22]. Additionally im-
portant to mention is that, unlike in SR, where the basic units of sounds are similar (e.g.,
phonemes) [23,24], in AED, the different sound events (e.g., dog bark, gunshot) all present
very distinct patterns, thus making the AED task more challenging.

AED systems have been employed for safety purposes, through the detection of
suspicious sounds such as gunshots, footsteps and others. Gunshot sound detection has
been extensively researched, and represents a good starting point for this work. AED
systems for gunshot detection can be employed anywhere, from home to business, and
even public spaces, where they would constantly monitor the environment for suspicious
events. These systems currently make extensive use of state-of-the-art deep learning
classifiers, such as convolutional neural networks (CNN) [25] and convolutional recurrent
neural networks (CRNN) [26], as their primary detection and classification algorithms.

In this paper, we examine these two state-of-the-art gunshot detection algorithms
against simple, accessible and easy-to-reproduce disturbances made of noise, to be used
as a means of disrupting the classifiers. Several studies have shown that unwanted noise
can have a detrimental effect on classifier performance [27,28]. We focus on this niche,
and as such, study how to attack deep learning AED systems, focusing on employing
simple, accessible and easy-to-reproduce disturbances made of white noise, to be used as a
means of disrupting the classifiers. A major reason for choosing white noise is the concrete
possibility of employing it as part of practical, on-the-field attacks. Another reason is the
simplicity of the attack, thus making it largely available for a large roster of attackers.

In our threat model (seen in Figure 1), we assume that the attacker, while attempting
to cause harm, actively adds white noise perturbations to the sound being fed to the AED
system; in other words, white noise is overlaid to to the gunshot sounds being used as the
AED input. The ultimate goal of the attacker is to prevent the AED system from detecting
the gunshot sounds. We implement a CNN and a CRNN, and we use gunshot sound
datasets from [29–31]. We first test the classifiers with undisturbed gunshot samples in or-
der to examine their performance under baseline conditions, and then digitally inject white
noise perturbations, interleaving them with the gunshot sounds. Experiments covering real
on-the-field experiments will be covered in future publications. Our consolidated results
show that AED classifiers are susceptible against these noisy attacks, as the performance
of both the CNN and CRNN are strongly affected, being degraded by nearly 100% when
tested against the perturbations.

Figure 1. A hypothetical scenario where an attacker tries to evade detection by injecting noise sounds,
in the open, to the audio input captured by AED systems.

In particular, our contributions reside on attacking deep learning classifiers with a
simple and very easy to reproduce disturbance, which is relevant in present day when
there is not only a proliferation of real deep learning devices that rely on deep learning
classifiers for suspicious sound detection, but also of sophisticated audio equipment that
could be used for practical attack purposes.
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2. Materials and Methods

In this section, we present our overall research methodology and setup as well as the
details behind the two supervised neural network algorithms we implemented, namely
CNN and CRNN. These two neural network algorithms are state-of-the-art classification
algorithms that were recently used for audio detection and classification in IoT-based CPSs,
including gunshots and other safety-driven applications. We implement these algorithms
as binary classifiers, where we feed them audio samples as an input, and they provide an
output label of gunshot (1) or non-gunshot (0).

2.1. CNN Models in Audio Detection Systems

Convolutional neural networks are considered to be the best among learning algo-
rithms in understanding image contents [32]. CNNs were inspired by the organization of
the animal visual cortex [33], providing increasingly better performance as they become
deeper, while also becoming harder to train [34]. We implement a CNN model based on
the work of Zhou et al. [25], as it was successfully used for the purpose of urban sound
recognition, gunshots included. Our model is tailored after much experimentation, and it
is composed of the following:

1. Convolutional layers: three convolutional blocks, each one with two convolutional
2D layers. These layers have 32, 64, 64, 64, 128 and 128 filters (total of 480) of size 3 by
3. Same padding is also applied to the first convolutional layer of each block.

2. Pooling layers: three 2 by 2 max pooling layers, each coming right after the second
convolutional layer of each convolutional block.

3. Dense layers: two dense (also known as fully connected) layers come after the last
convolutional block.

4. Activation functions: these functions compute the weighted sum of inputs and biases,
and as such, are responsible for the firing or no firing of neurons [35]. For the
presented CNN, ReLU activation is applied after each convolutional layer as well as
after the first fully connected layer, while Softmax activation is applied only once,
after the second fully connected layer. In other words, ReLU is applied to all inner
layers, while Softmax is applied to the most outer layer.

5. Regularization: applied in the end of each convolutional block as well as after the
first fully connected layer, with 25, 50, 50 and 50% respectively. Regularization, also
known as dropout, per [36], addresses the overfitting problem, among other common
neural network issues.
The CNN uses sparse categorical cross entropy as a loss function and RMSprop as an
optimizer. A visual representation of its architecture can be seen in Figure 2.

Figure 2. CNN architecture.
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2.2. CRNN Models in Audio Detection Systems

Convolutional recurrent neural networks (CRNN) address one shortfall of regular
CNNs—the lack of memory about long-term dependencies over sequences [37,38]. Xinyu
Fu [37] proposed to implement a CRNN, where common sigmoid activation function is
replaced by a long short-term memory (LSTM) advanced activation. It was shown that
CRNNs work better with longer or lengthier inputs [38] because LSTM activation ensures
that outputs of the previous point in time connect to the next point in time.

For the purpose of this study, we implement a CRNN model inspired by the work of
Lim et al. [26], which was also successfully used for gunshot recognition with some good
performance. We tailor the model after much experimentation, which is composed by the
following:

1. Convolutional layers: one convolutional block, with one convolutional layer. This
block is made by 128 filters of size 32, ReLU activation and batch normalization,
pooling layer of size of 40 and a dropout layer of 0.3.

2. LSTM layer: one backwards LSTM layer with 128 units, followed by tanh activation
and a new dropout of 0.3.

3. Dense layers: two stacked dense layers, the first with 128 units and the second with
two, each one followed by batch normalization and the first one followed by a ReLU
activation and the last one by a Softmax activation.

The CRNN used sparse categorical cross entropy as loss function and Adam as optimizer.

2.3. Datasets

DCASE 2017 Challenge [30] provides datasets for several different acoustic classi-
fication tasks. We acquired the detection of rare sound events dataset. The reason for the
selection of this specific dataset as our main source of data points stem from the fact that it
is publicly available, making it easily acquirable, while also containing a relatively high
number of good quality sounds. This dataset includes one training and one testing set,
each one containing 1500 sound samples. From 3000 samples in total, 1000 are gunshot
sounds, which are the ones used in our experiments. To increase the number of data points
available to our research, we also obtained gunshot samples from [29,31], bringing the
total number of samples to 2000. For our experiments, 1500 of these sounds are dedicated
for training and 500 for testing. Finally, we obtained the samples for the negative classes
from several other sources, such as MIMII [39], environmental Sounds [40], FreeSound [41],
Zapsplat [42] and Fesliyan Studios [43]. The negative classes are made of pump, children
playing, fan, valve and music, in other words, sounds that did not carry gunshot sounds.

It is important to mention that we cleaned and preprocessed the audio by perform-
ing frequency normalization (normalizing the frequencies of all samples at 22,000 Hertz),
audio channel normalization (set all samples to monaural) and audio length normalization
(made all samples to have 3 seconds in length by cropping lengthier ones and discarding
shorter ones).

2.4. Spectrograms

We adopt the same approach adopted by other authors, such as [25–27] with regards
to the input to be fed to our models, relying on spectrograms. Audio files can be represented
by spectrograms. Spectrograms display in a graph (usually 2D) the spectrum of frequency
changes over time for a sound signal, by chopping it up and then stacking the slices close
to each other [44]. Unlike speech, sound events often have a shorter duration but with
more distinctive time-frequency representations, which was shown to be a good feature for
sound classification [25,26,45]. Spectrograms are images, and they fit well as input to both
CNN and CRNN models.

The authors in [25,26] used spectrograms as input to their neural network models.
Similarly, we also convert the audio samples into spectrograms and then pass them to
the CNN and CRNN classification algorithms. Note that the disturbances represented by
the proposed attacks are introduced directly to the audio files, prior to their conversion
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to spectrograms. As such, in our threat model, the attacker does not have direct access
to the spectrogram generation algorithm (black-box IoT/CPS system). This is because in
our attack model, we assume that the attacker does not have any knowledge about the
system and simply tries to alter the sounds generated by the gun, before capture by the
hypothetical AED system. Samples of spectrograms generated as part of this study can be
seen in Figure 3.

Figure 3. Spectrogram samples under unnoisy and noisy conditions.

2.5. Attacks with Noise

Every practical application that deals with audio signals also deals with the issue of
noise. As stated by Prasadh et al. [46], “natural audio signals are never available in pure,
noiseless form”. As such, even under ideal conditions, natural noise may be present in
the audio in use. In this work, we craft noisy disturbances made of white noise, which,
according to [47], happens when “each audible frequency is equally loud,” meaning no
sound feature, “shape or form can be distinguished”. We choose this noise variant, due to
its ubiquity in day-to-day life, and especially its simplicity with regard to how to reproduce
it. It is important to highlight once again that in our threat model, the attack occurs during
audio capturing, prior to spectrogram generation; as such, our proposed attack is audio-
based, not image-based. This type of noise is widely adopted by different research across
different domains [48–50], thereby facilitating future comparisons.

2.6. Experiments

Our experiments involve the use of our two neural network classifiers set as two
different representation of an AED system that detects gunshot sounds. We employ digital
gunshot samples, first in unnoisy conditions, and then we infuse the same samples with
progressively higher levels noise. We crafted our own training and testing sets, and employ
them to train and test our CNN models. The experiments were binary (output could
be either gunshot and non-gunshot. Both the training and test sets always had the two
participating classes in a balanced fashion. In other words, we always made sure to have
the same number of samples per class in each experiment.

A summary of our experiments follows next.

1. Unnoisy experiments: Both AED classifiers exposed to digital gunshot sounds, with-
out any disturbance.

2. White noise experiments: Both AED classifiers exposed to digital gunshot sounds.
The disturbances, made of white noise, are dynamic in nature, and after much exper-
imentation, ten different noisy thresholds, namely 0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1, 0.2, 0.3 and 0.4. The process for generating the white noise infused samples
can be seen in Algorithm 1.
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Algorithm 1: White Noise Generation Algorithm
Result: Perturbed audio sample
initialization;
for number of audio files in the test set do

sample = load audio file as an array;
noise = adjustment factor * max element of the array;
perturbed sample = sample + noise * normal distribution;
save perturbed sample;

end

3. Results

In this section, we present the results obtained from the several experiments that show
the robustness of CNN and CRNN classifiers against the white noise attacks. We start by
providing the baseline classification results achieved by both models, CNN and CRNN,
using the undisturbed test samples, which can be found in Table 1. Both models were
trained for 100 epochs; however, the last learning occurred at 52 and 98 epochs (CNN) and
at 56 and 29 epochs (CRNN), respectively. Both algorithms are trained and tested on the
same datasets. The full experiment results can be seen in Table 1.

Table 1. CNN / CRNN classification performance on noise-free test datasets followed by increasing
levels of white noise.

CNN CRNN
Condition Acc. Prec. Rcl. F1 Acc. Prec. Rcl. F1

Unnoisy 0.88 0.88 0.88 0.88 0.81 0.93 0.66 0.77
0.0001 0.88 0.88 0.88 0.88 0.81 0.93 0.66 0.78
0.0005 0.87 0.89 0.84 0.87 0.81 0.92 0.67 0.78
0.001 0.87 0.89 0.85 0.87 0.81 0.92 0.67 0.78
0.005 0.88 0.90 0.86 0.88 0.81 0.92 0.68 0.79
0.01 0.85 0.90 0.78 0.84 0.81 0.88 0.73 0.80
0.05 0.83 0.90 0.74 0.81 0.84 0.87 0.80 0.83
0.1 0.64 0.93 0.30 0.45 0.70 0.66 0.83 0.73
0.2 0.56 0.94 0.13 0.23 0.66 0.64 0.74 0.68
0.3 0.51 1 0.012 0.02 0.49 0.48 0.35 0.41
0.4 0.5 0 0 0 0.49 0.34 0.11 0.16

When executing the baseline unnoisy experiments, both models perform reasonably
well, with accuracies above 80%. This sets the tone for the experiments that come next,
where we proceed to attack these same classifiers with white noise. When this happens,
both models present drops in classification performance as soon as such noise is introduced
to the test sets. The drops are small but cumulative, and a sharper drop is noticed when
the 0.1 threshold is reached, only to become unacceptably worse from there on, to the point
of rendering both models essentially useless. One can also realize that the CRNN is proved
to be slightly more robust than the CNN, and we credit this to its memory advantage over
the CNN [37,38]. The graphical visualization of these results can be seen in Figures 4 and 5.
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Figure 4. CNN experiments detailed results.

Figure 5. CRNN experiments detailed results.

4. Discussion

We tested CNN and CRNN algorithms for AED, and while their detection performance
was reasonable under ideal circumstances, a sharp drop in it was seen, even when little
white noise was injected into the test audio samples. This is important because white noise
is simple to reproduce and to be employed by non-technically savvy individuals. It also
can be hard to be filtered out without affecting the sound capture capability needed for an
AED system, especially when higher noisy thresholds are used and when its amplitude is
tailored to closely follow that of the sound of interest.

AED practical solutions are already a reality, currently being in the process of becoming
ubiquitous for a large audience. These are real physical devices that employ deep learning
models for the detection of suspicious events for security purposes, being largely available
for purchase and deployment to homes around the world. Some examples of these devices
are ones manufactured by major companies, such as the Echo Dot and Echo Show by
Amazon [51], and Nest Mini and Nest Hub by Google [52,53]. Despite still being limited
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in terms of detection capabilities, as most of these devices can detect only a few variety
of audio events, attempts to create general purpose devices, capable of detecting a wide
spectrum of audio events, are known to be in the making, e.g., See-Sound [54]. Practical
attacks against these devices are, as such, just a matter of time.

As a matter of fact, white-noise reproduction capable gear based on speakers and
other specialized equipment have been widely available to the broad audience for a long
time now [55]. These can become physical devices that generate audio disturbances on
the field. More sophisticated gear with increased capabilities are also a reality and are
intensively researched and used by military and law enforcement agencies around the
world [56–59]. As such, attack solutions that could rely on all sorts of gear, from tiny and
discrete devices to large and complex ones are available today.

One cannot ignore the apparent heavy planning needed in order to implement such
attacks from a practical standpoint; however, one cannot also ignore the motivation of
attackers who intend to do harm. For example, the attack that occurred in the Mandalay
Hotel at Las Vegas [60] showcases such motivation, as the attacker spent months smuggling
guns and ammunition into his hotel room, and even went to the extent of setting, possibly,
other sensors in the corridor leading to his room, so he would be better prepared to deal
with law enforcement officials when they responded to the emergency situation he was
about to set. Therefore, it is not a stretch to envision a scenario where an attacker (e.g.,
burglar) could plan for days, weeks, or even months in advance on how to deploy attacks
against an audio-based AED system.

By doing so, such an attacker would either delay or avoid detection by an AED system,
and as such, gain time to perform their malicious intents. For instance, a burglar could use
an “on-the-field” variant of the white noise attack to disrupt a home-based AED system,
and thus be able to invade an empty residency without being detected and/or triggering
AED-associated alarms and notifications (since a potential glass breakage would not be
detected by the under-attack AED system). After gaining entrance, the burglar could
potentially perform their activities, such as robbery, without being disturbed. As AED
systems gain popularity and scale, it is not difficult to envision a scenario where an AED
system may be protecting a public area, and terrorists, aware of such monitoring, employ
white noise disturbances to disrupt such a system. This, in turn, would make it hard for
authorities to respond properly through the negation of the system’s ability to detect a
sound of interest (e.g., gunshots being fired) and subsequently to relay the location of the
sound.

5. Conclusions

Through extensive amount of experiments, we evaluated the robustness of AED
systems against noisy attacks, which are generated by adding different levels of white
noise to test samples fed to neural network classifiers. Our consolidated results show
that AED systems are susceptible against white noise attacks, as the performance of both
the CNN and CRNN classifiers were degraded by nearly 100% when tested against the
perturbations. These strongly suggest that actually deployable solutions that rely on these
AED classifiers cannot be trusted, especially if they are used for safety purposes. More
research is currently underway, seeking to test the white disturbances as well as other types
of audio disturbances on real, existing AED capable devices. We also are currently actively
researching practical countermeasures for these attacks and will report the appropriate
results in upcoming publications.
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