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Abstract: The advantage of quantum mechanics to shift up the ability to econometrically understand
extreme tail losses in financial data has become more desirable, especially in cases of Value at
Risk (VaR) and Expected Shortfall (ES) predictions. Behind the non-novel quantum mechanism, it
does interestingly connect with the distributional signals of humans’ brainstorms. The highlighted
purpose of this article is to devise a quantum-wave distribution methodically to analyze better risks
and returns for stock markets in The Association of Southeast Asian Nations (ASEAN) countries,
including Thailand (SET), Singapore (STI), Malaysia (FTSE), Philippines (PSEI), and Indonesia (PCI).
Data samples were observed as quarterly trends between 1994 and 2019. Bayesian statistics and
simulations were applied to present estimations’ outputs. Empirically, quantum distributions are
remarkable for providing “real distributions”, which computationally conform to Bayesian inferences
and crucially contribute to the higher level of extreme data analyses in financial economics.

Keywords: quantum mechanics; wave function; extreme value analysis; Bayesian inference; stock
market; Value at Risk (VaR); Expected Shortfall (ES); prediction

1. Introduction

Physicists’ interest in the social sciences is not novel. The word “econophysics” is
the perspective applied to economic computational models and concepts associated with
the “physics” of systematical complexity—e.g., statistical mechanics (quantum mechanics),
self-organized criticality, microsimulation, etc. (Hooker 2011). Fundamentally, most econo-
physicists have in mind that the approach—computational physics for econometrics—seeks
to structure physically realistic models and theories of economic phenomena from the actu-
ally observed features of economic systems. Practically, econophysicists and economists
are connected by analyzing financial markets, but the problem is that they are trained in
“different schools” (Ausloos et al. 2016). The exploration of the tangible of computational
physics and financial econometrics is the nexus of this paper.

Not surprisingly, physics students have been trained and have known that the frontier
of modern physics uses plain language—quantum physics and relativity (Bowles and Carlin
2020). The power of quantum physics substantially existed in the chaotic period of World
War II—reasonably called the “beginning” of modern physics—by Werner Heisenberg, who
was a founder of quantum mechanics and a significant contributor to the physics of fluids
and elementary particles (Saperstein 2010). With this great exploration, modern quantum
physics has brought people to distinctly shift the standard of living through numerous
inventions such as microwaves, fiber optic telecommunications, super computers, etc.

In economics, “Marshall plus Keynes” neoclassical synthesis is still teachable for the
non-specialist future citizen since the “visible hands” stated by Adam Smith has been
elusive, and the story has therefore never been all that easy to see—as a perusal of his
original text demonstrations (Persky 1989). However, human decision-making processes
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are significantly from their “power” explained by integrating psychological aspects and
individual social-economic ideas (Sijabat 2018). From this perspective, quantum physics can
potentially affect a merger with computational economic models through the concept of the
power behind a decision. More expressly, Figure 1 displays the diverse iceberg for economic
movements. Along with fluctuations in the trend, traditionally computational economics
restrictedly captures only the observable zone (the top of the iceberg). However, numerous
amounts of information exist underneath the water, which potentially motivate human
perspectives to conclude a final decision, are intentionally neglected by the assumption
called “normality”. With this strongly theoretical supposition, traditional econometrics has
been trustworthy for more than a hundred years.
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Unfortunately, there have been many economic collapses after the industrial revolu-
tion in the mid-18th century. Economists and econometricians are blemished with their 
predictive foresight's computational failures, especially forecasting in financial invest-
ments. The deep root of the problem is about their fundamental thoughts. Thinking as a 
traditional econometrician is to model observed information by a random walks model, 
the easiest way to imitate rational human aspects. Box 1 represented in Figure 2 displays 
the concept that the random walk model is the logic to reach B from A. This principle's 
systematic idea is to sample only a static spot when the arrow is tangible B. However, the 
critical query is that this fundamental cannot seemingly support the existence of human 
thinking. 

 

Figure 2. Two different concepts between Random walks and wave function (Quantum walks).  

Human decisions are sourced from electromagnetic waves and particles since cell-to-
cell communications occur through a process known as “synaptic transmission”, where 
chemical signals are passed between cells generating electrical spikes in the receiving cell. 
To think like modern econophysicists (Quantum Mechanics: Wave-particle duality), it is 
reasonable to state the arrow from E to F displayed in box 2 is not a random walk model 

Figure 1. Diverse economies iceberg.

Unfortunately, there have been many economic collapses after the industrial revolu-
tion in the mid-18th century. Economists and econometricians are blemished with their
predictive foresight’s computational failures, especially forecasting in financial investments.
The deep root of the problem is about their fundamental thoughts. Thinking as a traditional
econometrician is to model observed information by a random walks model, the easiest
way to imitate rational human aspects. Box 1 represented in Figure 2 displays the concept
that the random walk model is the logic to reach B from A. This principle’s systematic idea
is to sample only a static spot when the arrow is tangible B. However, the critical query is
that this fundamental cannot seemingly support the existence of human thinking.
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Figure 2. Two different concepts between Random walks and wave function (Quantum walks).

Human decisions are sourced from electromagnetic waves and particles since cell-to-
cell communications occur through a process known as “synaptic transmission”, where
chemical signals are passed between cells generating electrical spikes in the receiving cell.
To think like modern econophysicists (Quantum Mechanics: Wave-particle duality), it is
reasonable to state the arrow from E to F displayed in box 2 is not a random walk model
(Quantum walk process). The observation at the point F exists when it passes the process
of dynamic wave movements. In other words, the reason to decide to select F is the origin
of numerous latencies, which are attitudes, perspectives, morals, etc. Interestingly, this
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fundamental can potentially raise a novel horizon for observing information using modern
econometric (Quantum econometrics) estimations and predictions.

Financial markets have several of the properties that characterize complex systems
and interact nonlinearly in the presence of estimations (Mantegna and Stanley 2000). One
of the interesting areas in finance is the pricing of derivative instruments. The graphical
trend displayed in Figure 3 shows the example of dynamic stock exchanges in Thailand
between 2000 and 2020—investors have a variety of reasons and decide the process of
brainstorms. The graph implies that it is identical to a wave transmission. Hence, it is time
to seek an alternative tool to compute this kind of complex data econometrically.
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This research tries to fill the research gaps between the traditional econometrics
method and modern econophysicists (Quantum Econometrics), which apply in financial
markets, especially the extreme value prediction in the ASEAN stock exchange. However,
this research is organized, as follows, by explaining the conceptual framework between
traditional econometrics and Quantum Econometrics (Modern Econophysicist). The second
part is how to apply this conceptual framework in extreme value prediction, especially the
extreme value of Value at Risk (VaR) and Expected Shortfall (ES) of five stock markets in
ASEAN countries. The last part of this research is an exclusive summary for comparison
between two methods to forecast the extreme value of Value at Risk (VaR) and Expected
Shortfall (ES) in five stock markets of ASEAN countries based on Risk management
analysis.

2. Literature and Critical Thinking

It is not simple to exactly explain and picture humans’ decisive believes or faiths.
In terms of a mathematical expression, deductive logic was the ideal invention trying to
reach a conclusion. However, thoughts are not logically controllable as similar to a robotic
mechanism. In econometrics, this is defined as “extreme distribution”. To make sense of it,
the root of distributional generating is interesting to reconsider.

2.1. The Origin of Quantum Distributions

Inside of the area of traditional econometrics, the original process of a random walk
based on the scaling limit, which generalizes the so-called iterated Brownian motion,
is useable and acceptable academically. This theoretical concept of the random walk
graphically displayed in Figure 4 was considerably generalized and extended by the Polish
physicist Marjan Smoluchowsk (Kac 1947). It is continuously modified to be functional in
modern quantitative research. Jung and Markowsky (Jung and Markowsky 2013) showed
the random walk’s advantage at random times to be considered the “alternating random”,
which rewards the schematic scale to indicate fractional stable motions. Although the
theory of random-walk processes is continuously acceptable, the theory has started to be
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criticized. The weakness of random walk algorithms is stated by (Saghiri et al. 2019). The
non-intelligent random walk models may not be a problem-solving method in real-world
problems since some complex systems such as biological networks or social networks work
as a “learning mechanism”. It seems the performance of random-walk processes is low
when used to explain mechanical information about the practical problems’ nature.
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log-return sets of quarterly stock indexes in Thailand (SET) and Singapore (STI) between 1995Q1
and 2019Q1. The fluctuation of index trends is the difference in pitch between positive and negative
values, but it inclines stationary (close to 0 and unchangeable) in the long-term consideration.

Modernly, there are many attempts to make a reconsideration in the impetus of hu-
mans’ decision calls. As Adam Smith said, invisible hands are behind the scenes. This
undetectable power is deliberately linked to quantum behaviors. Quantum mechanics
based on Newton’s motion laws are good enough to predict how behavioral complexities
are inspired. Newton’s laws are seen to be consequences of the fundamental way the quan-
tum world works (Ogborn and Taylor 2005). However, in accounting for small occurrences,
Newtonian physics’ failure is evident at the atomic level. This implies that the lack of
precise calculations cannot be simply captured by Newtonian quantum computing. It turns
out that the “Hamiltonian formulation” is the formalism that most readily generalizes to
quantum mechanics via the Schrodinger equation (Piziak and Mitchell 2001), which is the
crucial fundament for exploring quantum key distributions

One of the highlighted obstacles in quantum key distributions is capturing and point-
ing signals of quantum mechanism exactly. As stated in the contribution by (Bruß and
Lütkenhaus 2000), the problem of cross-polarized cryptography between the two polar-
ization modes and a random (classical) rotation of the polarization along the propagation
direction is informationally detected by using Ekert’s privacy amplification (Ekert et al.
1994). Interestingly, the quantum distribution is being a truly evolutional data analysis for
post-modern econometrics.

2.2. Quantum Computing in Financial Econometrics

The Hamiltonian formulation for the time-independent Schrödinger equation com-
poses a quantum evolutional enlargement of the classical harmonic oscillator approaches
to economics’ business cycle dynamics. As the literature on Piotrowski and Sładkowski
(2001); Choustova (2007); Gonçalves and Gonçalves (2008); Choustova (2009); Gonçalves
(2013); and Gonçalves (2015); Chaiboonsri and Wannapan (2021), a quantum application
to extreme financial optimizations, therefore, contributes to the novel discussion within
forecasting financial economics and raises a criticism to the empirical validity of the geo-
metric Brownian motion and geometric random walk models of price dynamics, which
is commonly employed in financial economics as mathematical tools for solving pricing
problems, especially risks and returns analyses.



Economies 2021, 9, 13 5 of 14

3. The Objective and Scope of Research

The risk and return of financial markets are the main investigations of the paper.
Quarterly data from 1995 to 2019 were observed. Five major stock exchanges in five ASEAN
countries such as Thailand (SET), Singapore (STI), Malaysia (FTSE), Philippines (PSEI), and
Indonesia (PCI) were processed in three sections of the research framework, including data
visualization, risks management (Value at Risk: VaR), and returns forecasting (Expected
Shortfall: ES). Technically, parametric estimations’ main statistical tool is the subjective
method called “Bayesian inference”, and observations are deliberately focused on the
extreme tail loss of distributional portraits, theoretically known as “extreme value”.

The scope of the research processes is displayed in Figure 5. Expressly, the observations
are processed to the section of data visualization (screening data). Descriptive explanation,
stationary testing, and normality checking are the main consideration, and then the raw
data is modified by two critical concepts—a random walk (Gaussian) distributional set
and quantum-wave distribution. The next step is to insert two distinguished data into the
function of the Generalized Pareto Distribution (GPD) extreme value analysis. Heavy loss
tails are clarified and analyzed by setting the prior density for parameters at the Bayesian
estimation threshold. The most precise prediction between two distributions is validated
by computing the Deviation Information Criteria (DIC).
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4. Methodology
4.1. Quantum Mechanics and Wave Function for Time Series Movement

Since 1926, Erwin Schrödinger developed the wave function implemented to pre-
dict the quantum system’s behavior or quantum mechanics, especially for the prediction
of the momentum of energetic electrons (Schrödinger 1926). This quantum mechanics
based on the idea of Louis de Broglie’s wave–particle duality in 1924 was played an
important role that has significantly influenced the development of Schrödinger’s wave
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function (Recherches sur la théorie des quanta Researches on the quantum theory). Basi-
cally, energy can be expressed by a simple equation, as shown below:

E = KE + PE (1)

where E = Energy, KE = Kinetic Energy, PE = Potential Energy, KE = 1
2 MV

2
, M = Mass

(kg), V = Velocity (m/s). Consequently, we obtain

E =
1
2

MV2 + U, PE = U (2)

The momentum of P = MV, the object is empowered to move by P2 = M2V2 then
V2 = P2

M2 . However, Equation (2) can be rewritten by substitution of V2 and this is
presented in Equations (3) and (4) as follows:

E =
1
2

M
P2

M2 + U, (3)

E =
P2

2M
+ U. (4)

Once again, the wave function from Schrödinger’s equation’s original idea used ψ to
represent the energy of the particle-wave duality movement. This can be demonstrated as
follows:

ψ = ei(kx−ωt) (5)

dψ

dx
= ikei(kx−ωt) = ikψ (6)

d2ψ

dx2 = (ik)2ei(kx−ωt) (7)

d2ψ

dx2 = i2k2ei(kx−ωt) (8)

d2ψ

dx2 = i2k2e−i(ωt−kx) (9)

d2ψ

dx2 = −k2e−i(ωt−kx) (10)

and Equation (10) is defined that: k = P
} , (de Broglie relation) then

d2ψ

dx2 = −(P2

}2 )ψ, ψ = e−i(ωt−kx). (11)

Equation (11) is multiplied by }2 on both sides, we obtain

− }2 d2ψ

dx2 = P2ψ (12)

From Equation (4), it can be modified, and it can be rewritten by the equation as
displayed below:

E =
P2

2M
+ U, (13)

Eψ =
P2ψ

2M
+ Uψ, (14)

Eψ =
−}2

2M
d2ψ

dx2 + Uψ,−}2 d2ψ

dx2 = P2ψ, (15)
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Equation (15) was mentioned by Schrödinger to implement the quantum mechanics
prediction for electrons moved by energy relied on the case of time-independence. For
making a sensible computation, the time-dependent case can be done by starting from
the Planck–Einstein relation (Griffiths 1995) as presented that E = }ω = h f , E = hv = h f ,
h = Planck constant (6.626 × 10−34). The Planck–Einstein relation suggests that whenever
energy is empowered, frequencies (v) are parallel increments, the Planck constant h is
stable. The proof of the following equations can express electrons’ energic movements:

dψ

dt
= −iωei(kx−ωt) (16)

dψ

dt
= −iωψ, ψ = ei(kx−ωt) (17)

From the Planck–Einstein relation, we obtain

E = }ω, (18)

Eψ = }ωψ (19)

Multiplied −i
} into Equation (19) on both sides,

−i
} Eψ = −iωψ, (

dψ

dt
= −iωψ), (20)

−i
} Eψ =

dψ

dt
(21)

Eψ =
}
−i

dψ

dt
. (22)

The time-independence should be transformed into the Schrödinger equation for the
time-dependent by replacing Equation (22) into (15). The finalized result of these steps is
Equation (23):

}
−i

dψ

dt
=
−}2

2M
d2ψ

dx2 + Uψ (23)

and

i}dψ

dt
=
−}2

2M
d2ψ

dx2 + Uψ (24)

The finalized equation is the fundamental of the Schrödinger equation for predicting
the momentum of wave-particle dualities in different cases. However, the right-hand
and left-hand sides of those equations can be substituted by Ĥ (Hamiltonian OPERATOR,
i} d

dt

∣∣∣ψ(t)〉 = Ĥ
∣∣∣ψ(t)〉 (Time-dependent), Ĥ

∣∣ψ〉 = E
∣∣ψ〉 (Time-independent)) for forecast-

ing the total systematic energy. In particular, the behavior for the quantum mechanism. In
terms of the Schrödinger wave function’s interpretation, this is the highlight for this article
to apply the periodic function for measuring the momentum of returns of stock markets in
ASEAN countries. Mathematically, we start with

ψ = A sin(
2π

λ
x), (25)

where ψ represents the prediction value of total energy for the momentum of return
movements during observable periods. A is the amplitude of Equation (25) and λ is the
wavelength included in the equation simultaneously.

Figure 6 implies the concept of quantum mechanics applying for stock return predic-
tions. In other words, this cognition is applied from the concept of sound amplification
mathematically explained in Equation (25). The upper regime (high energy zone) is a
quadrant of positive positions, which explains that returns are still moved. In this case,
the high energy zone stands for the explanation of Bull market momentums (Ahn et al.
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2018; Ataullah et al. 2008). Conversely, the fall of returns (Bear market momentum) is the
negative quadrant—compared with the case of low energy with no evidence or information
to push up. Interestingly, this is a huge challenge from quantum mechanics’ performance
to figure out the better frontier for understanding stock return fluctuations, especially when
extremes data are intensively mentioned, but distribution is elusive to find.
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4.2. Extreme Value Analysis

Many distributions have been mentioned to model share returns as a whole observa-
tion (normal tail distributions). However, the weakness of the whole distribution is the
missing of extreme tail losses. The Generalized Pareto Distribution (GDP) introduced by
Pickands (1975) intentionally focuses on the threshold of the extreme losses by taking the
negative of the log-returns and then choosing a positive threshold. The model assumes
observations under the threshold, µ, is from a certain distribution with parameters η.
H(·|η) is from a GPD. Thus, the distribution function f of any sample x can be expressed
following Behrens et al. (2004) as

f (x|η, ξ, σ, µ) =

{
H(x|η),

H(x|η) + (1− H(µ|η))G(x|ξ, σ, µ),
x < µ
x ≥ µ.

(26)

For an observation of size η, x = (x1, ...., xn) from f , parameter vector θ = (η, σ, ξ, µ),
N = [i : xi < µ], and P = [i : xi ≥ µ], the likelihood equation is

L(θ; x) = ∏
N

H(x|η)∏
P
(1− H(x|η))

[
1
σ

(
1 +

ξ(xi − µ)

σ

)−(1+ξ)/ξ

+

]
, (27)

for ξ 6= 0, and for ξ = 0,
L(θ; x) = ∏

N
H(x|η)∏

P
(1− H(x|η))[(1/σ) exp{(xi − µ)/σ}].

The threshold µ is the point where the density has a disruption. Depending on the
parameters, the density jump can fluctuate positively or negatively, and in each case, the
choice of which observations will be defined as exceedances that can be more obvious or
obscure.

4.3. Bayesian Inference and Simulations for Value at Risk (VaR) and Expected Shortfall (ES)

Recall that the parameters in the extreme value model are θ = (η, σ, ξ, µ). The prior
and posterior distributions are respectively described as follows

4.3.1. The Origin of the Prior Information

Since expressing prior beliefs directly in terms of GPD parameters is a difficult task.
The idea to deal with this problem is information within a parameterization on which
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experts are familiar. Equation (1) can be re-written as an inversion; thus, we obtain the 1-p
quantile of the distribution as follows

q = µ +
σ

ξ

(
P−ξ − 1

)
, (28)

where q is defined as the level of returns associated with a return period of 1/p time units.
The elicitation of the prior information is expressed in terms of (q1, q2, q3), referring to as the
location-scale parameterization of GPD, for specific values of p1 > p2 > p3. Consequently,
parameters are ordered and q1 < q2 < q3. Therefore, the prior information is suggested by
setting the median and 90% quantile estimations for specific values of p, for example.

Next, the elicited parameters are transformed to gain the equivalent gamma param-
eters, di ∼ Ga(ρi, γi) where i = 1, 2, 3 and the physical lower bound of the factor is
e1 = q0. e1 = 0 is preferable. The following gamma distributions with hyper parameters:
d1 = q1 ∼ Ga(ρ1, γ1) and d2 = q2 − q1 ∼ Ga(ρ2, γ2), knowing as the marginal prior
distribution for σ and ξ, which is expressed as follows

π(σ, ξ)α
[
µ + σ

ξ

(
p−ξ

1 − 1
)]p1−1

exp
[
−γ1

{
µ + σ

ξ

(
p−ξ

1 − 1
)}]

×
[

σ
ξ

(
p−ξ

2 − p−ξ
1

)]p2−1
exp

[
−γ2

{
σ
ξ

}(
p−ξ

2 − p−ξ
1

)]
×
[
− σ

ξ2

{
(P1P2)

−ξ(log P2 − log P2)− P−ξ
2 log P2 + P−ξ

1 log P1

}]
,

(29)

where ρ1, ρ2, γ1, and γ2 are hyper parameters obtained from the prior information. In the
form of the median and some percentiles, the correspondences are the return periods of 1

p1

and 1
p2

. The prior for q1 is in the principle depended on µ. This dependence is substituted
by the dependence on the prior mean of µ. Interestingly, in some cases, the situation where
ξ = 0 is considered. For example, a positive probability is set, and the prior distribution
evaluates a probability q if ξ = 0 and 1− q if ξ 6= 0.

4.3.2. The Prior Density for Parameters at the Threshold

Apart from the information above the threshold, u is assigned to follow a truncated
normal distribution with parameters

(
uµ, σ2

µ

)
, curtailed from below at e1 with density as

Equation (30)

π
(

µ
∣∣∣uµ, σ2

µ, e1

)
=

1√
2πσ2

µ

×

exp
[
−0.5

(
µ− uµ

)2/σ2
µ

]
Ω
[
−
(
e1 − uµ

)
/σµ

]
, (30)

with uµ is included in some high percentile and σ2
µ is sufficient to present a reasonably

noninformative prior. In other words, de Zea Bermudez et al. (2001) suggested that the
higher level to set the prior distribution for µ, and this requires setting a prior distribution
for the hyper thresholds.

4.3.3. Posterior Density Estimations

From the expression of the likelihood in Equation (27) and the priors, the posterior
distribution is given from using Bayes theorem, which is combined with simulations (the
MCMC methods via Metropolis–Hastings algorithms, (Metropolis et al. 1953)). To get hold
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of a gamma distribution for data below the threshold, the functional form on the logarithm
scale is derived as follows

log p(θ|x) = K +
n
∑

i=1
I(xi < µ)[α log β− log τ(α) + (α− 1) log xi − βxi]

+
n
∑

i=1
I(xi ≥ µ) log

(
1−

µ∫
0

βα

τ(α)
tα−1e−βtdt

)
−

n
∑

i=1
I(xi ≥ µ) log σ

− 1+ξ
ξ

n
∑

i=1
I(xi ≥ µ) log

[
1 + ξ(xi−µ)

σ

]
+(a− 1) log α− bα + (c− 1) log α

β − d
(

α
β

)
+ log

(
α
β2

)
− 1

2

(
µ−uµ

σµ

)
− b1

[
µ + σ

ξ

(
p−ξ

1 − 1
)]

+(a2 − 1) log
[
µ + σ

ξ

(
p−ξ

2 − p−ξ
1

)]
− b2

[
u + σ

ξ

(
p−ξ

2 − p−ξ
1

)]
+ log

{
− σ

ξ

[
(p1 p2)

−ξ(log p2 − log p1)− p−ξ
2 log p2 + p−ξ

1 log p1

]}
,

(31)

where k is the normalizing constant. For the computation, making analytical posterior
distributions depends on the convergence rate in each MCMC simulations case.

4.3.4. Risk Measurement

As the goal of the article is the risk analysis for a financial context. The famous Value
at Risk (VaR) can summarize the worst loss over a target horizon with a given level of
confidence and outline the overall market risk faced by an institution (Assaf 2009).

For extreme data analyses, the GPD continues to boundlessness. This kind of extreme
distribution is not known with certainty in practice, but the Bayesian framework allows us
to quantify this uncertainty. Expressly, the posterior predictive distribution follows

p
(

x f
∣∣∣x) =

∫
θ

p
(

x f
∣∣∣θ)p(θ|x)dθ. (32)

If uncertainty regarding an unknown parameter is captured in a posterior distribution,
a predictive distribution for any quantity µ that depends on the unknown parameter,
through a sampling distribution, can be achieved by the Equation (33). In this case,
p
(

x f
∣∣∣x) mentions to an updated GDP observation obtained a set of parameters. The

following transformation gives the updated information:

U ∼ Uni f orm(0, 1) ≥ log p(θ|x) =
[(

U−e − 1
)
+

σ

e
+ µ

]
∼ GPD(µ, σ, e) (33)

By the MCMC methods, a large number of large updating samples can be stimulated.
In terms of the GDP, the Value at Risk (VaR) and Expected Shortfall (ES) can be the
expression as follows:

VaR(1− α) =
(
α−e − 1

)σ

e
+ µ, (34a)

ES(1− α) = VaR(1− α) +
σα−e

1− e
. (34b)

These measures are ordered to obtain quantiles to create intervals. Note that since
negative log share returns are included, which are the GPD above a suitable threshold, it is
crucial to rescale α by multiplying by the divide between the number of observations and
number of exceedances.

5. Computational and Comparative Results
5.1. Data Visualization

In this section, the historical data tries to explain the type of non-normal distributions.
Table 1 details the log-return transformation, which assures the set of observed data
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are stationary in long-term periods, and the Phillips-Perron (PP) unit-root test confirms
this. Additionally, the expression to define the data set is not normally distributed is
represented by the significant level of the Jarque–Bera test. All financial indexes reject the
null hypothesis, which refers to the normal distribution.

Table 1. Descriptive statistics (original data).

LOG_STI
(Singapore)

LOG_SET
(Thailand)

LOG_PSEI
(Philippines)

LOG_PCI
(Indonesia)

LOG_FTSE
(Malaysia)

Mean 0.001480 0.000502 0.004399 0.010991 0.003793
Median 0.005334 0.001854 0.011447 0.016087 0.007192

Maximum 0.147158 0.154828 0.147340 0.161394 0.063923
Minimum −0.181316 −0.188425 −0.166256 −0.213672 −0.087201
Std. Dev. 0.044216 0.056605 0.048931 0.051288 0.025348
Skewness −0.228034 −0.514831 −0.455003 −0.714628 −1.066256
Kurtosis 6.995341 4.894663 4.245375 6.527976 5.221788

Jarque-Bera 67.37811 19.37479 9.912792 60.37246 39.51644
Probability 0.000000 0.000062 0.007038 0.000000 0.000000

PP-test statistics −7.761860 −8.330687 −8.993564 −7.475574 −7.891177
Probability 0.000000 0.000000 0.000000 0.000000 0.000000

Source: authors.

5.2. The Distribution Outlook Comparison

In this crucial section, adapting from the contribution conducted by Gençay and
Selçuk (2004), the threshold is set as 6%, which refers to the approximately understandable
return of the stock exchanges. This is the prior information at the threshold line level that
explicitly separates exceedance samples and risk-free samples. Shape and scale parameters
are estimated from two comparative sources—an original observed distribution (Gaussian
random walk) and quantum-wave distribution from each selected financial index. To
compute the VaR model at 99% confidence and the corresponding expected shortfall,
Table 2 represents the comparative outcome that indicates the modified distribution by
applied quantum computing for Bayesian extreme value forecasting can capture missing
information more efficiently than the traditional econometrics (Gaussian random walk
process) because every DIC values indicate that the quantum distribution of five stock
markets in five ASEAN countries is appropriate with the model of Bayesian extreme value
prediction compared with data distribution based on the Gaussian random walk process.

Table 2. The model validation by Deviance Information Criterion (DIC).

Data Distribution Based on
Gaussian Random Walk

Data Distribution Based on
the Wave Function

DIC DIC

Thailand (SET) −909.6436 −934.5987 *
Singapore (STI) −910.8061 −1089.0160 *
Malaysia (FTSE) −1288.4080 −1339.4820 *

Philippines (PSEI) −925.4325 −1032.0220 *
Indonesia (PCI) −960.8347 −1025.6590 *

Noted: * stands for the minimum value of DIC calculations. Source: authors.

5.3. Risk Measures by the Quantum Distribution

In Table 3, it seems to be clear that the risk projections estimated from data sourced
by quantum-wave distributions; risk measurements calculated by the VaR model and
corresponding expected shortfalls are reported by this table. First, the strong advantage of
Bayesian posterior densities is the ability to provide random parametric intervals, which
are more suitable for quantile settings in the GPD and random distributions in financial
sectors. The 2.5% interval can be applied to stand for the case of risk aversions, the mean
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(50%) indicates the risk-neutral case is mentioned, and the 97.5% interval pinpoints the risk
lovers. In terms of the investors who need to maximize profits from the markets and protect
the minimum risk as much as possible. For the predominant case, investing in Malaysia
seems safer than the other four countries, the chance of failures is 16.78% in the case of
risk taking, and the opportunity to loss equals 11.37% in risk-avoiding. This is supported
by (Pero and Apandi 2018) to introduce Malaysia’s leadership role in ASEAN. Malaysia
can be deemed as a leader within ASEAN, championing several important policies in the
international arena. On the other hand, Thailand’s stock exchange is indicated to have the
highest rate of losses in both the risk lover case and risk-avoiding case in ASEAN financial
markets. The forecasting results are between 16.56% and 30%. Since the financial market
partially depends on the situation of business confidence and the political atmosphere.
The Thai stock exchange seems to absorb risks more than other ASEAN countries. For
Singapore, the Philippines, and Indonesia, risk and return predictions are ranked in the
third, fourth, and fifth, respectively. In the scenario of maximizing profit, 24.72% to 26.22%
are approximately the taking losses when focusing on the investment in these three markets.
Conversely, 14.32% to 15.20% are the chance of losses for the case of risk aversion.

Table 3. The extreme value prediction of Value at Risk (VaR) and Expected Shortfall (ES) is based on
quantum mechanics.

2.5% Mean 97.5%

Thailand VaR at 99% confidence (0.01) 0.1523 0.1940 0.2508
Expected shortfall (−0.1656) (−0.2201) (−0.3000)

Singapore VaR at 99% confidence (0.01) 0.1287 0.1569 0.1982
Expected shortfall (−0.1432) (−0.1831) (−0.2472)

Malaysia VaR at 99% confidence (0.01) 0.1080 0.1256 0.1496
Expected shortfall (−0.1137) (−0.1361) (−0.1678)

Philippines VaR at 99% confidence (0.01) 0.1399 0.1691 0.2094
Expected shortfall (−0.1544) (−0.1941) (−0.2529)

Indonesia VaR at 99% confidence (0.01) 0.1377 0.1702 0.2148
Expected shortfall (−0.1520) (−0.1960) (−0.2622)

Source: authors.

6. Conclusions

Most economic collapses have appeared in many computational predictions relied
on raw observed distributions, which are still common sense for traditional econometrics
research. The concept of the Gaussian random walk process continues to be suspicious,
especially econometrics for stock predictions. In other words, the assumption of distribu-
tional normality is sensibly understandable, but it is sensitive to face suspicious predicted
outcomes. At the center of the research gap to determine the origin of real data distri-
butions, this article contributes to quantum mechanics applied for matching the wave
function, which is relevant to the fundamental processes of thoughts. For this article,
risk management in financial analyses is one of the top issues people have struggled to
eliminate unquestionably.

Every level of complexities in data science potentially empowers the ability to capture
missing information of the quantum-wave distribution. Expressly, the distribution gener-
ated by the quantum mechanics done in the wave equation is compatible with Bayesian
inference for measuring risks and expected shortfall predictions, especially when exploring
for preciseness in ASEAN financial markets. The comparison of DIC strongly secures this
statement. With the quantum distribution, it is sensible to state that a realistic parameter is
found, a harmonic inference regarding humans’ decision making can be computed, and
a meticulous estimation for dealing with extreme tails information in raw data can be
demonstrated numerically. In conclusion, the quantum distribution can potentially fix the
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gap of missing information in data analyses, especially modern econometrics in financial
research.

For upcoming research, applying quantum computations in social science is more
challenging. The clue that the quantum distribution can give more real observations is the
research changer in the age of big-data analyses. The future plan for installing the novel
distribution into behavioral economic research and financial econometrics is the major
issue that critically confronts traditional aspects.
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