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Abstract: The current study investigates contextual mathematical modelling (MM) problems that
were retrieved from authentic workplace situations and simplified for formal secondary school math
lessons. First, the study aims to characterize contextual MM problems according to Schoenfeld’s
framework of problem-solving (PS). Second, it aims to investigate the perceptions of two stakeholder
groups: (1) math experts and policymakers and (2) math teachers with respect to the characteristics
of the contextual MM problems and their feasibility regarding implementation in secondary school
education. Based on the Delphi methodology, we employed two phases for our analysis: an open-
ended questionnaire to interview ten stakeholders and, subsequently, a Likert-type questionnaire to
collect data from 122 stakeholders. The main results indicate that the contextual MM problems are
characterized by PS. A similar view was expressed by different stakeholder groups, and no differences
were caused by various background variables, such as educational level or STEM background.
Additionally, the findings revealed that both stakeholder groups perceived that it is highly feasible for
these problems to be integrated into secondary school education. This study contributes theoretically
to the interrelationship between MM and PS frameworks, and provides practical recommendations
for the implementation of contextual MM problems in secondary schools by applying PS skills.

Keywords: authentic workplace mathematics; mathematical modelling; problem solving

1. Introduction

Mathematics often reveals hidden patterns that help us to better understand the
world around us. Mathematics involves more than just arithmetic measurements, as it
cycles between data, deduction, and the applications in which it is applied, from everyday
tasks to major problems in industry [1,2]. Although mathematics is based on rules, it
is crucial that students move beyond the rules, and learn how to tackle higher-order
mathematics, which involves logical, deductive, creative, and higher thinking, rather than
just calculation or deduction. This entails developing problem-solving (PS) skills, requiring
one to seek appropriate solutions and exploring patterns, as well as formulating and
validating conjectures, rather than just memorizing patterns, problems, and procedures, or
completing exercises [3].

Researchers suggest teaching PS skills in a context in which these skills can be applied,
such as workplace mathematics, which is the mathematics underlying authentic problems
taken from actual workplaces [4–6]. The utility of studying contextual problems in schools is
well-established and is mainly referred to in the literature as mathematical modelling (MM).
MM is a cyclic process involving the transition from an authentic situation to a mathematical
problem by understanding and simplifying (idealizing) the authentic situation to obtain a
real-world model, mathematizing the real-world model by translating it into a mathematical
model, applying mathematical routines and processes, and interpreting and validating the
mathematical solution to verify that it is in accordance with reality [7–10].

However, many researchers, e.g., [11–13], emphasize the difficulty of incorporating
contextual MM problems in school mathematics, since authentic (particularly workplace)
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situations cannot simply be reproduced, as they are for school education. The application
of PS in a mathematics classroom, particularly through contextual MM problems, remains
rare. Changes in both the curricular content and instructional practices are usually required
to make PS instruction feasible and effective in school settings [14–16].

Teachers play a significant role in preparing students to have strong mathematical
skills. However, students should also know how to apply these skills in situations other
than those in which they were learned [17]. However, engaging students in contextual MM
problems is often incorporated into teaching in a didactical manner that sometimes reduces
the heuristics of the problem to procedural algorithms [18,19].

Moreover, teachers’ willingness to use contextual MM problems in their classes often
does not coincide with international trends. Thus, it is crucial to learn how to convince
teachers that it is worthwhile to conduct applicable mathematics classes, and demonstrate
the didactic connection between these problems and the curriculum [20].

Contextual MM problems for secondary school students could be implemented dif-
ferently by various stakeholders, in terms of the correspondence between the problems’
characteristics and the standard math curriculum, as well as teachers’ willingness to use
such problems in class. For example, novice teachers tend to struggle most with the chal-
lenge of sticking to the curriculum [21,22]. Thus, the contextual MM problems might be seen
as not corresponding with the secondary school curriculum. Alternately, veteran teachers
are more traditional and might be more resistant to changes and new materials [23,24].

It is, therefore, critical that the mathematics curriculum is adjusted by embedding
realistic applications of mathematics rather than teaching mathematics as a finished product.
However, changes in the curriculum are not trivial; the basic and embedded mathematics
content is generally validated due to the years spent establishing it in the educational
system. A change in curriculum should not be a burden to either the students or the
teachers, who generally will neither accept nor support radical changes in the curriculum
with which they are familiar. Thus, the contents of contextual MM problems should be
incorporated into the mathematics curriculum by careful selection, while focusing on the
essential concepts, rather than meticulous details [1].

Further research is required to explore how contextual MM problems can be applied
in the context of workplace mathematics, in terms of PS skills. The current study suggests
characterizing contextual MM problems for a secondary school from the perspective of
various stakeholders, based on Schoenfeld’s theoretical framework [3]. Moreover, due to
the challenges faced by teachers when applying MM problems in class, various stakehold-
ers’ attitudes should be explored in relation to the feasibility of incorporating contextual
workplace MM problems into school mathematics.

Mathematical Problem-Solving

The investigation of mathematical PS was pioneered by Pólya [25], who defined it
as a heuristic with a four-step process: understanding the problem, devising a plan for
solving the problem, carrying out the plan, and looking back to examine the solution.
Schoenfeld [3,26] refined this definition at a practical and empirical level that goes be-
yond a coherent and general heuristic to a more flexible view. Schoenfeld’s framework
provides the knowledge and skills that are necessary to adequately characterize a mathe-
matical problem-solving performance. The performance of mathematical PS is based on
the learner’s dialogue between his prior knowledge, called resources, and his attempts and
thoughts throughout the problem-solving process. However, in order to be resourceful, the
learner needs to be familiar with a variety of heuristics, which are general problem-solving
techniques. Three other dimensions of this framework are control, methods, and affect.
Control refers to decisions made at the metacognitive level as well as global decisions that
affect the solution path. Method refers to strategies used when working on a problem, and
Affect refers to attitudes, beliefs, emotions, and values.

For this study, which aims to characterize MM problems regarding their fit to PS
criteria from the objective perspective of various stakeholders, we focused on two criteria
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related to the knowledge required for PS, namely, “Resources” and “Heuristics”, rather
than the problem-solving processes that take place in class, namely, “Control”, “Methods”,
and “Affect”.

According to Schoenfeld [3], resources refer to the mathematical knowledge needed
to solve a math problem. This includes the following: intuitions and informal knowledge
regarding the domain, facts, algorithmic procedures, routine non-algorithmic procedures,
and understandings (propositional knowledge). Heuristics are the strategies and techniques
needed for effective PS, including the following: drawing figures and introducing suitable
notations, exploiting related problems, reformulating problems, working backwards, and
testing and verification procedures.

In an historical review, Stanic and Kilpatrick [19] identified three main themes regard-
ing the use of PS: “problem solving as context”, “problem solving as skill”, and “problem
solving as art”. PS as a context can be defined as the use of mathematical problems to reach
other curricular goals, such as motivating students to study math, and justifying its value,
and why it is studied. PS as a skill is when it, by itself, is considered worthy of instruction.
PS as an art promotes real PS as the essence of mathematics.

In this study, we applied PS by solving MM problems in the context of workplace
mathematics. These are authentic problems taken from the work of tech engineers, which
represent an educational interface between workplace mathematics and school mathemat-
ics [4]. As described in the methodology section, these problems express the cyclical nature
of MM.

The focus on MM problems stems from the premise that these problems are consid-
ered non-routine. Students present a mathematical solution for a problem formulated
in mathematical terms; however, it is embedded within a meaningful, real-world con-
text [27]. Reeff [28] stated: “The problem solver has a more or less well-defined goal,
but does not immediately know how to reach it. The incongruence of goals and admissi-
ble operators constitutes a problem. The understanding of the problem situation and its
step-by-step transformation, based on planning and reasoning, constitute the process of
problem solving” (p. 48). Lesh, Post, and Behr [29] mentioned that good problem-solvers
are flexible regarding the use of different representational systems during the solution pro-
cess. Researchers explain that a translation between mathematical representations provides
students with more opportunities to explore concrete objects through imagery, modelling
real-life situations, giving meaning to visualizations of abstract and conceptual ideas, and
creating relationships between these mathematical ideas [29–32].

In this study, we aimed to address the following research questions:
RQ1) RQ1.1: To what extent do contextual MM problems, targeted for secondary

school mathematics, fit Schoenfeld’s framework of PS? RQ1.2: What are the differences
(if any) between the perceptions of various stakeholders regarding the characteristics of
contextual MM problems?

RQ2) RQ2.1: What is the feasibility of integrating contextual MM problems into
secondary school classes? RQ2.2: What are the differences (if any) between the perceptions
of various stakeholders regarding the feasibility of integrating contextual MM problems
in class?

2. Materials and Methods
2.1. The Context of the Study

This study investigates authentic mathematics problems developed as part of the
i-MAT project held at the Faculty of Education in Science and Technology at the Technion.
Taken from authentic scenarios from the Hi-Tech industry, the i-MAT team simplifies prob-
lems that are solved by Hi-Tech employees (inventions as well as regular work problems),
so that the problems can be used by teachers in formal secondary school math lessons.

An example of this is an authentic problem exemplifying the usefulness of mathematics
in the context of uploading and streaming a YouTube video by connecting the problem to
motion problems. The task begins with a description of the authentic situation: YouTube
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makes use of technology that allows for us to stream content (e.g., videos or clips) on
the Internet while the content is being loaded (i.e., without loading the entire content in
advance). Then, a problem situated in reality is presented, e.g., how to proceed when a
video gets stuck while being streamed. This occurs when the loading bar ‘catches up’ with
the progress bar before the end of the video, i.e., the former is quicker than the latter (see
Figure 1).
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In accordance with the modelling cycle, the task developers idealize the problem; this
includes making assumptions that simplify the authentic situation in order to match the
problem to formal mathematics lessons. Regarding the YouTube task, several assumptions
were made in order to make it accessible to the students, including the assumption that
both the loading speed and the viewing speed were constant and uninterrupted by noise;
the assumption that streaming is standard, i.e., streaming occurs at a standard speed where
the video is like reality; and the assumption that the loading speed is shorter than or
equal to the streaming speed; today, technology allows for a greater loading speed than a
streaming speed.

When moving to the mathematical world, i.e., in the mathematization process, the
connection to the motion problem is created by explaining the term ‘streaming’ as technol-
ogy that allows for us to stream content while downloading it, with no need to download
it all in advance. The mathematization is carried out through the following modelling
question: How can continuous and direct streaming of a YouTube video be guaranteed?
This question can be answered with the mathematical model used for solving motion
problems, by relating to: (1) the video’s volume, i.e., “the place where the information is
taken up in the computer memory, as measured by megabytes”, in parallel with the concept
of ‘distance’; (2) the time it takes to upload, i.e., “the time in seconds needed to move
the information”, in parallel with the concept of ‘time’; (3) the speed, i.e., “the amount of
information moved per second”, in parallel with the concept of ‘velocity’. Since responding
to the modelling question necessitates dealing with both the amount of information being
downloaded and the amount of information being streamed, this task requires two types
of velocities to be calculated: the streaming speed and the downloading speed. Solving the
modelling question is carried out by relating to the ‘wait time’, which is the time when early
downloading takes place before streaming can begin. The mathematical model needed to
ensure continuous, uninterrupted streaming is calculated as the shortest wait time from the
beginning of the downloading process to the moment that streaming begins.

Then, the process of applying mathematical routines comes into play, and the students
are asked to construct and solve level 1 equations; this allows for them to calculate the time,
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based on velocity and the video volume. With the mathematical answers they obtain, the
students move on to the interpretation process, where they must determine whether their
solution is suitable for the authentic situation. They must make sense of the mathematical
solution in terms of the actual situation, and must decide whether it addresses the real
problem satisfactorily. For example, will the video get stuck?

This study focuses on four contextual MM problems from different fields of mathemat-
ics (algebra, geometry, and trigonometry) that fit the secondary school math curriculum.
The problems are presented as teaching units for secondary school mathematics classes,
in a 15-min presentation format that includes a short and simple explanation about the
key concepts of the workplace context, and mathematics exercises that lead the students
throughout the full modelling cycle. One of the teaching units in Algebra was based on the
YouTube problem that is illustrated above.

2.2. Participants and Procedures

The study is based on the Delphi methodology [33], which is based on responses that
were iteratively retrieved by anonymous group interactions. This methodology was chosen
for the current study, since it is well-suited to studies with incomplete knowledge about a
problem or phenomenon [34], such as characterizing contextual MM problems according
to the problem-solving framework proposed by Schoenfeld [3].

The iterative process for characterizing the contextual MM problems using the Delphi
methodology was as follows. In the first phase, we used an open-ended questionnaire to
interview ten stakeholders in the field of mathematics: experts and policymakers (n = 5),
and teachers (n = 5). In the second phase, we converted the collected information into a
Likert-type questionnaire, which served as a survey instrument for collecting data from
122 additional stakeholders: 35 experts and policymakers (28.7%), and 87 mathematics
teachers (71.3%). The average age of the experts and policymaker group was 53 (SD = 6.5),
with a minimum age of 36, and a maximum age of 68, whereas the average age of the
teacher group was 41 (SD = 9.4), with a minimum age of 24, and a maximum age of 65.
Table 1 presents descriptive statistics for this sample.

Table 1. Descriptive statistics regarding the study participants (the second phase) (n = 122).

Background Variables Frequency %

Gender
Male 24 19.7%

Female 98 80.3%

STEM background
Engineering 28 24.1%

STEM 41 35.3%
None 47 40.5%

Level of education
B.A. 48 40.3%

M.A. or Ph.D. 71 59.7%
Note. Several frequencies do not add up to 100% due to missing data. Data collection for the first phase was
conducted at the Technion as a personal meeting with each of the 10 participants, whereas data collection for
the second phase was conducted in different school settings as part of weekly mathematics team meetings,
or in professional meetings such as workshops or conferences for experts in mathematics education. In both
phases, before interviewing or administering the questionnaire, the authors presented the participants with a few
examples of contextual MM problems, taken from the i-MAT project. The presentation of problems lasted for
about 40–50 min, with about 20–40 min of a one-on-one interview (for the first phase) or individual responses to
the questionnaire, totaling 1–1.5 h of data collection.

Figure 2 illustrates the two phases of the study.

2.3. Research Tools

The open-ended questionnaire consisted of two parts, aimed at responding to the two
research questions: characterizing the contextual MM problems according to a PS view, and
the feasibility of integrating these problems into secondary school classes. The first part
includes questions based on the two criteria of Schoenfeld’s framework: Resources, e.g.,
relating to ‘intuitions and informal knowledge regarding the domain’; we asked: “What
information is intuitive and what requires an explanation and clarification?” Regarding
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heuristics, relating to ‘Analogies and exploiting related problems’; we asked: “Is the analogy
given to the problem sufficient?” The second part of the questionnaire included questions
based on the Strength, Weakness, Opportunity, and Threat (SWOT) methodology, since
it serves as an objective tool to obtain a critical perspective of a pedagogical approach by
specifying internal and external factors that might affect its success [35,36]. For example:
To what extent can this problem be of interest to students? [S]; What difficulties may
teachers face when implementing the contextual MM problems? [W]; How can teachers be
encouraged to use such problems during class? [O]; What external factors can impair the
implementation of these problems? (T).
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The Likert-type questionnaire comprised 32 questions to assess the characterization
of the problems, and 14 questions to assess their feasibility, on a scale from 1 (to a low
extent) to 6 (to a very high extent). The questionnaire was constructed according to the
responses retrieved from the open-ended questionnaire; it was generally phrased to adjust
all four contextual MM problems, as detailed in the data analysis section. For example,
with respect to the question “Is the analogy given in the problem sufficient?”, we received
responses such as ‘In the YouTube problem, the analogy to a motion problem is excellent,
but I would have preferred a more explicit analogy to a traffic problem (speed, time, and
distance calculation), which is more intuitive’. Therefore, a quantitatively related question
was phrased: “To what extent do you find the analogy that was presented in the problem
intuitive to students?” (the resource criteria). Another example relates to the following
response: “The problem contributes to the understanding of Geometry in general and to the
context of Geometry in everyday life... It presents the students with the idea that sometimes
an unexpected solution can be found by thinking out of the box . . . ”. Following this
response, a quantitative question related to the strengths of the contextual MM problems
was phrased as follows: “To what extent are such problems linked to reality and relevant to
students’ experience in everyday life?”

2.4. Data Analysis

To analyze the open-ended questionnaire responses, we used a thematic analysis [37]
to encode each statement to various categories that generally characterize the contextual
MM problems, i.e., by disconnecting the response from the specific problem’s context. A
recursive process for this analysis was repeated by two experts in mathematics education
until 90% agreement was reached for all statements, along with an inter-rater reliability of
κ = 0.83. After the categories were determined and validated, we calculated the frequencies
of the statements associated with each of the categories. We then compared the frequency
of statements within each category to examine the differences (if any) between the various
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stakeholders, regarding both the characterization of the contextual MM problems, and the
feasibility of integrating these problems into secondary school classes.

To analyze the Likert-type questionnaire data, we used various ANOVA tests to examine
the differences between the various criteria of the questionnaire, as well as to compare the
various stakeholders’ perceptions.

3. Results

Responding to RQ1, we first characterized the contextual MM problems according to
Schoenfeld’s framework, as revealed from the two-phase procedure of the study: (1) the
classification of categories retrieved from the open-ended questionnaire and (2) the intensity
of the different criteria according to the data retrieved from the Likert-type questionnaires.
We then compared the views of experts and policy makers, vs. teachers, regarding various
criteria, and then presented the findings relating to the difference between all stakeholders
according to various background variables. Responding to RQ2, we followed the same
procedure for displaying the findings, except that we focused on the feasibility of integrating
contextual MM problems into secondary school classes.

3.1. The Characteristics of the Contextual MM Problems

Table 2 shows the categories that arose when characterizing the contextual MM prob-
lems. To focus our discussion of the findings, we presented the most frequent category for
each criterion as a representative example.

Table 2. Characterization of contextual MM problems, based on Schoenfeld’s framework.

Criteria (by Schoenfeld [3]) Sub-Criteria (by Schoenfeld [3]) Examples of Categories Retrieved in This Study
Experts and Policy-Makers Teachers

Resources

Intuitions and informal knowledge
regarding the domain Suitable for high-level students Suitable for high-level students

Facts, rules, and algorithmic procedures Being precise in sketches Being precise in sketches

“Routine” non-algorithmic procedures Suitable as a summary, enrichment, or
research question

Suitable as a summary or as
enrichment

Heuristics

Appropriate representations The use of dynamic illustrations The use of dynamic illustrations

Analogies and exploiting-related problems Using a relevant analogy and a story
that will motivate students

Using a relevant analogy and a story
that will motivate students

Testing and verification procedures Using a real scale in building the
mathematical problem Attach a student help page

According to Table 2, all stakeholders consider the contextual MM problems to be
compatible with the sub-criteria that arose from Schoenfeld’s theoretical framework. Addi-
tionally, it was found that the perceptions of the two stakeholder groups were consistent
for most sub-criteria. Differences were found with regard to the ‘testing and verification
procedures’ sub-criterion, in which teachers’ perceptions were targeted to the aspect of
learning in the classroom, as opposed to the experts’ perceptions, which were targeted to
the characteristics of the mathematical problem itself. Another difference was revealed in
the ‘routine non-algorithmic procedures’ sub-criterion, when experts and policy-makers
considered the contextual MM problems as encouraging inquiry, whereas the teachers did
not raise this point.

Furthermore, we applied descriptive analysis, and presented the average score for each
PS criterion by Schoenfeld [3], by using the data obtained from the Likert-type questionnaire
(see Figure 3).

Generally, all stakeholder groups perceived the contextual MM problems as being
more characterized by their heuristics than their resources, t(118) = −4.6, p < 0.0001.
Further ANOVA with repeated-measures analyses were performed to investigate the dif-
ferences between the various sub-criteria, and were conducted separately for the resources
and heuristic criteria. The results revealed significant differences between the different
sub-criteria, for both the resource criteria, F(2, 118) = 103.19, p < 0.001, η2= 0.64, and
the heuristic criteria, F(2, 118) = 16.40, p < 0.001, η2= 0.22. Bonferroni analysis revealed
that the most positively perceived sub-criteria of resources were facts, rules, and algorith-
mic procedures, followed by routine non-algorithmic procedures, and then intuition and
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informal knowledge regarding the domain. Furthermore, the most positively perceived
sub-criteria of heuristics were the appropriate representations and analogies and exploiting
related problems, followed by testing and verification procedures.
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One-Way MANOVA analyses, used to compare the two stakeholder groups’ atti-
tudes, revealed a similarity between the experts and policy-makers vs. the teachers, for
both the resource criteria, F(3, 116) = 0.43, p > 0.05, η2= 0.01, and the heuristic criteria,
F(3, 116) = 0.84, p > 0.05, η2= 0.02.

Furthermore, One-Way MANOVA analyses were performed to determine the differ-
ences in attitudes toward the contextual MM problems, for both the resource and heuristic
criteria, by various background variables that represent the various stakeholder groups,
in particular: (a) the level of education: B.A. vs. M.A. or Ph.D.; (b) STEM background:
engineering (such as program engineering), STEM (such as a physicist), or none; and
(c) gender: male or female. In addition, Pearson correlations were conducted between the
participants’ age and each of the PS criteria. The findings revealed no significant differ-
ences in all the explored background variables, 0.64 < F(6, 158) > 1.90, as well as no
correlation between age and each of the PS criteria, 0.03 < r(120) < 0.17. Appendix A
presents descriptive statistics for the background variables (besides age), in relation to the
PS criteria.

3.2. The Feasibility of Incorporating the Contextual MM Problems in Classes

Table 3 shows the categories that arose regarding the feasibility of integrating the
contextual MM problems into secondary school classes.

According to Table 3, in general, the various stakeholders’ views regarding the feasibil-
ity of integrating the contextual MM problems differed. Regarding strengths, the teachers
emphasized the learner’s aspect, whereas the experts and policy makers emphasized the
characteristics of the contextual MM problem itself. Another difference was found in the
sub-criteria of both the weaknesses and threats; the teachers’ attitude was negative (the
teachers’ lack of confidence and the lack of flexibility in the educational system), whereas
the experts and policy-makers exhibited a positive attitude (a belief in the teachers’ ability
to assimilate the problems). However, the two stakeholder groups agreed on the need to
train teachers so that these problems would provide an opportunity for success.
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Table 3. The feasibility of integrating the contextual MM problems into secondary school classes,
based on the SWOT methodology.

Criteria Examples of Categories Retrieved in This Study
Experts and Policymakers Teachers

Strengths Authenticity and relevancy Increasing students’ motivation

Weaknesses Convincing teachers that they can
use the contextual MM problems

Teachers’ lack of confidence in explaining the
related scientific knowledge of the contextual

MM problems
Opportunities Teacher training sessions Teacher training sessions

Threats Availability of teachers to apply
the contextual MM problems

Conservative view of the education system and
the teachers

Next, we applied a descriptive analysis, and then presented the average score for the
advantages, i.e., the strengths and opportunities, and the disadvantages, i.e., the weaknesses
and threats, using the data obtained from the Likert-type questionnaire (see Figure 4).
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ANOVA with repeated-measures analyses, followed by Bonferroni analysis, performed
to investigate the differences between the various SWOT criteria. These revealed that the study
participants similarly valued the advantages of the contextual MM problems, namely, the
strengths and opportunities, and valued the disadvantages significantly less, namely, the weak-
nesses and threats, which they perceived as equally important, F(3, 114) = 120.84, p < 0.001,
η2 = 0.76. Further One-Way MANOVA analyses, performed to compare the two stakeholder
groups’ attitudes, revealed a similarity between the experts and the policy-makers, vs. the
teachers for both the advantages, F(2, 114) = 0.69, p > 0.05, η2 = 0.01, and the disadvantages,
F(2, 115) = 1.36, p > 0.05, η2 = 0.02. These findings indicate that both stakeholder groups
perceived that there was high feasibility of integrating the contextual MM problems into
classes, since they provided more weight to the strengths and the opportunity to use these
problems, and significantly less weight to the weaknesses and threats.

Lastly, One-Way MANOVA analyses were performed to investigate the differences in
attitudes regarding the feasibility of integrating the contextual MM problems into classes by
using the various background variables, i.e., the level of education, the STEM background,
and gender. In addition, Pearson correlations were conducted between the participants’
age and each of the SWOT criteria. The findings revealed no significant differences in all
the investigated background variables, 0.08 < F(4, 218), F(2, 218) < 2.30, as well as no
correlation between age and each of the SWOT criteria, 0.04 < r(120) < 0.07. Appendix B
presents descriptive statistics for the background variables (besides age), in relation to the
SWOT criteria.

4. Discussion

This study aimed to characterize contextual MM problems within the framework of
the PS framework [3], as well as to examine the feasibility of integrating these problems



Educ. Sci. 2022, 12, 454 10 of 13

into classes. Overall, according to two stakeholder groups from the mathematics field,
namely, (1) experts and policymakers, and (2) teachers, the contextual MM problems were
found to correspond to Schoenfeld’s framework for PS. Both stakeholder groups agreed
that the problems demonstrate the problem resources; however, they mainly perceived the
problems as being appropriate for more advanced students. It also seems that although
the algorithmic procedures precisely reflect the problem (particularly the sketches), these
problems are perceived as more appropriate for non-formal learning, such as enrichment
or inquiry learning. This finding strengthens the challenges of incorporating MM problems
into formal school education [11,12,38].

In addition, there was mutual agreement concerning the heuristics of the problems,
since all stakeholder groups considered the strategies and techniques in the problems as
necessary for effective PS. More specifically, they were positively influenced by the use
of appropriate representations such as dynamic illustrations and the relevant analogy
presented in the problems, which they considered as factors that motivate students. This is
in accordance with the definition of Stanic and Kilpatrick [19] for the use of PS as a context;
it describes its value in motivating students to study, which also justifies why one should
study mathematics, due to its relevancy to students’ lives [39].

Furthermore, all stakeholder groups perceived the problems as least reflecting the
testing and verification procedures; however, this was for different reasons. Apparently, the
teachers perceived the significance of maintaining the heuristics of the problems and not
reducing them in a procedural manner [18,19], and they perceived their role in facilitating
students in using the PS process [17]. Thus, they specifically suggested adding a student
help page. Furthermore, the experts and policy-makers especially valued the use of a
real scale to construct the mathematical problem, which indicates the student’s value
of being a “good” problem-solver, and who has the opportunity to inquire about other
representational systems outside (but related to) the world of mathematics [29–32].

Finally, considering that the contextual MM problems are retrieved from authen-
tic workplace scenarios, it is probable that they could differently affect the attitudes of
stakeholders with different backgrounds. Since various demographic variables did not
affect the participants’ attitudes, this indicates that the contextual MM problems were
well-characterized from the viewpoint of PS, which might also affect the application of MM
problems in practice [11,38,40].

Regarding the feasibility of integrating the contextual MM problems into classes, our
findings indicate that all stakeholders view the strengths and opportunities positively,
which means that they agree on the high feasibility of applying these problems in formal
school education. However, the two stakeholder groups understand the weaknesses and
threats of the contextual MM problems differently: the teachers considered the aforemen-
tioned criteria as inhibiting factors, whereas the experts and policy-makers considered these
factors as more of an opportunity. This highlights the extensive challenges that teachers
face when applying PS in mathematics classrooms. More specifically, in practice, they need
systemic support in the form of appropriate curricular content, and professional support to
make the required changes in their instructional practices [14–16,22].

Clearly, engaging students in PS is influenced by the teacher’s instructional decisions
e.g., [41]. Future research should acknowledge the significant role of teachers in supporting
students’ engagement in PS; therefore, future policies should involve ways of supporting
teachers in implementing PS in classes, particularly through contextual MM problems. This
suggestion refers to one limitation of this study, since our goal was to characterize the prob-
lems, rather than to investigate the processes that are actually taking place in class. Thus,
this study focused on the PS processes of resources that describe our current understanding
of cognitive structures, i.e., the constructive nature of cognition, cognitive architecture,
memory, and access to this, and heuristics, which refer to mathematical problem-solving
strategies. We also suggest focusing on students as the main participants in further research,
which will allow for one to characterize the contextual MM problems through their actual
implementation in class, using all the PS framework components.
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The Study’s Contribution

This study contributes theoretically to the relationship between mathematical mod-
elling [7–10] and PS as a context [3,19], particularly regarding the context of workplace
mathematics [4–6]. This investigation of the theoretical relationship, based on the perspec-
tives of two key stakeholder groups from the mathematics field, supports claims made by
scholars, e.g., [11,15,40,42] that MM and PS should be further theorized to better address
students’ practical needs.

Methodologically, our use of the Delphi methodology facilitated the elaboration of
our knowledge on characterizing contextual MM problems for secondary school, based on
Schoenfeld’s [3] PS framework. Moreover, the two-phase methodology that was applied in
this study, starting with the application of the Delphi methodology, yielded a quantitatively
valid Likert-type questionnaire that can be further used to characterize math problems in
other contexts.

Finally, from a practical viewpoint, we highlighted the importance of incorporating
contextual MM problems into classes, especially because they correspond to PS skills, which
require students to seek solutions, explore patterns, and formulate conjectures [3]. There is
evidence that the study level and success in school mathematics predicts future success
in the workplace [43,44]. Hence, contextual MM problems can better prepare students to
enter the workforce, particularly in STEM-oriented contexts [13].

Furthermore, the use of contextual MM problems is valuable for students, since it
can help them to understand the role that mathematics plays in the world, and how to
apply mathematics in situations that are likely to arise in their current and future lives and
professions, particularly in the contemporary science and technology-driven workforce [45].
Thus, it has the potential to attract more students to engage in high-level mathematics, as
well as in STEM-related fields.
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Appendix A

Table A1. Means and SD for background variables, in relation to PS criteria [3].

PS
C

ri
te

ri
a

PS Sub-Criteria

Gender Level of Education STEM Background
M F B.A. M.A. or Ph.D. Engineering STEM None

M SD M SD M SD M SD M SD M SD M SD

R
es

ou
rc

es

Intuitions and informal
knowledge regarding the domain 3.95 0.51 3.82 0.57 3.79 0.53 3.86 0.58 3.97 0.53 3.87 0.54 3.79 0.54

Facts, rules and algorithmic
procedures 4.67 0.63 4.76 0.69 4.78 0.70 4.69 0.66 4.75 0.62 4.83 0.66 4.68 0.72

“Routine” nonalgorithmic
procedures 3.99 0.59 4.22 0.69 4.11 0.73 4.24 0.61 4.22 0.69 4.17 0.58 4.20 0.69

H
eu

ri
st

ic
s Appropriate representations 4.43 0.80 4.69 0.76 4.63 0.87 4.67 0.70 4.67 0.73 4.73 0.67 4.56 0.86

Analogies and exploiting related
problems 4.55 0.84 4.57 0.82 4.56 0.85 4.58 0.79 4.56 0.87 4.68 0.62 4.52 0.93

Testing and verification
procedures 4.13 1.13 4.09 1.03 4.11 0.98 4.10 1.06 4.00 0.88 4.04 0.97 4.19 1.16
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Appendix B

Table A2. Means and SD for background variables, in relation to SWOT criteria [35,36].

SWOT Criteria
Gender Level of Education STEM Background

M F B.A. M.A. or Ph.D. Engineering STEM None
M SD M SD M SD M SD M SD M SD M SD

Strength 4.82 0.85 4.80 0.79 4.74 0.91 4.85 0.74 5.07 0.80 4.91 0.74 4.59 0.81
Weakness 3.33 0.78 3.27 0.86 3.31 0.80 3.27 0.90 3.37 0.82 3.38 0.71 3.10 0.96

Opportunity 4.66 0.64 4.78 0.74 4.59 0.80 4.88 0.64 4.86 0.61 4.78 0.65 4.69 0.82
Threat 3.39 0.80 3.42 0.75 3.40 0.79 3.41 0.75 3.52 0.65 3.36 0.75 3.39 0.82
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