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Abstract: In the last decade, various mobile applications have been developed to improve and
measure spatial abilities using different spatial tests and tasks through augmented reality (AR),
Virtual Reality (VR), or embedded 3D viewers. The Mental Cutting Test (MCT) is one of the most well-
known and popular tests for this purpose, but it needs a vast number of tasks (scenarios) for effective
practice and measurement. We have recently developed a script-aided method that automatically
generates and permutes Mental Cutting Test scenarios and exports them to an appropriate file format
(to GLB (glTF 2.0) assets) representing the scenarios. However, the significant number of permutations
results in more than 1,000,000 assets, requiring more than 6 GB of storage space. This paper introduces
an encoding scheme consisting of four stages to handle this issue through significantly reducing the
storage space, making the app suitable for everyday individual use, even on a mobile phone. The
proposed method encodes a subset of assets from which it can decode the whole dataset with 3% time
complexity compared to classical Blender’s computations, exceeding the compression ratio of 10,000
and storage space saving 99.99%. This paper explains the features of the original assets, introduces
the encoding and decoding functions with the format of documents, and then measures the solution’s
efficiency based on our dataset of MCT scenarios.
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1. Introduction
1.1. Measuring Spatial Skills

We use many human skills regularly in our daily life related to spatial skills, such as
spatial awareness, spatial visualization, and orientation, mental folding, mental cutting,
and mental rotation. In addition, some people may need these skills at work, so we need to
develop them during the school years and beyond (see, e.g., [1–5]). This challenging task
usually belongs to the teaching of mathematics, where various tools are used in multiple
pedagogical situations, including blueprints, real-space models, and software products to
achieve the desired effect [6–8]. The primary goal is to map out the optimal and efficient
combination of these tools.

In STEM fields, there are also study programs at several universities in which students’
spatial skills must reach a predefined level. Tests are paper-based, and usually, there is
little chance to practice due to the limited number of tasks available. Even when generating
some paper-based tasks, there is a high risk of incorrectly setting the level and correctness
of the exercises. Further, some industries recruit employees with spatial skills tested
during job interviews. Several jobs require excellent visual skills from applicants, such
as engineers [9] and air traffic controllers. For example, people who would like to apply
for an air traffic controller position have to participate in a particular test called FEAST
(https://feast-info.eurocontrol.int, accessed on 17 December 2022), which includes specific
exercises testing the visual skills of the participants.
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Overall, there is a significant demand for applying emerging technologies that could
support the development and evaluation of spatial skills through electronic versions of
classical tests.

During the last couple of years, virtual and augmented reality have proven to be
efficient support for educational tasks in several fields of mathematics, from functions to
3D transformations [10–15]. We strongly believe that this method can further shape the
future of educating mathematics regarding spatial abilities. Our research focuses mainly on
developing an augmented reality framework that can significantly improve the test results
for measuring spatial skills.

There are various existing standardized tests to measure these skills. One of the most
frequently used evaluation methods is the so-called Mental Cutting Test (MCT), which was
initially taken as part of a college entrance exam [16].

Each task or scenario of this test represents an image of a 3D model, usually a truncated
cube and a cutting plane in an axonometric view. Testees must select the correct section of
the model out of five planar figures (the exact format is described in the next section).

Many papers have studied the outcomes of these tests in various contexts (see, e.g., [17,18]
and references therein). Our previous results and those of other researchers have revealed
typical mistakes [19] and gender differences in MCT outcomes [20,21]. However, experience
has shown that traditional tools have limited potential to improve this situation. There are
recent results incorporating state-of-the-art technologies such as virtual and augmented
reality in developing spatial abilities [22,23]. However, with the introduction of these
technologies, we typically want to stay within the classical tests that traditionally measure
spatial abilities adequately. The ultimate goal is to enable students to practice effectively
for these tests. In [24], we have created an augmented reality app prototype that provides
tasks analogous to the traditional paper-based Mental Cutting Test, further reinforcing its
positive effect through gamification.

Several researchers started to deal with VR in the last decade and design applications
aiming to improve the users’ spatial skills with the VR function [25–27]. This approach
proved effective and yielded better results than simple paper-and-pencil exercises [28].
However, the initial popularity of VR and the motivation of users started to decrease. The
main reasons are clear. First, using VR requires investing in special headgear and powerful
hardware. This means that students either have to buy their own devices to participate
in these exercises or universities and researchers must provide enough devices for their
students. Manufacturers have started to develop plastic or paper frames where users can
put their mobile phones and imitate the functions of a VR headset. This provides a less
expensive but low-quality method of creating the necessary environment. On the other
hand, using a VR headgear frequently causes discomfort, so many users cannot wear it (or
only wear it for a limited time) [29,30].

To illustrate the decreasing motivation around the VR world, the Samsung Galaxy Gear
VR is a great example, which was introduced in 2014 as a result of a cooperation between
Samsung and Oculus. With the use of the special headgear, the top-category cell phones of
Samsung could be transformed into VR headgear. Using the GearVR Framework, develop-
ers had an opportunity to develop their applications for the platform. However, the Note
10 and Note 10+ devices were the first that did not support the GearVR headgear. Shortly
after, the VR era of Samsung finally ceased at the end of 2020 (https://www.engadget.com/
samsung-is-killing-its-vr-applications-now-that-gear-vr-is-dead-181025444.html, accessed
on 17 December 2022). In parallel, Samsung (like most manufacturers) became engaged
in developing AR technology instead of VR and equipped their devices with additional
sensors to provide a better user experience.

The popularity of cell phones and web applications has motivated researchers to
extend their interest in this field. Nevertheless, one of the main differences compared
to desktop applications is the limited computing, memory, and storage capacity. These
problems become even more pronounced when working with 3D models [31,32], as in the

https://www.engadget.com/samsung-is-killing-its-vr-applications-now-that-gear-vr-is-dead-181025444.html
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case of MCT test scenarios. For this reason, great interest has been shown in developing
different compression methods [33,34].

Consequently, the methodology of augmented reality can be more effectively and
widely used to develop spatial abilities [35], but—as a key step—it requires an effective
compression technique to store and provide a great number of MCT scenarios.

This paper presents a method that only requires a mobile phone with average ca-
pabilities while providing a very realistic spatial view of hundreds of MCT scenarios to
better understand the spatial relationships between objects. To this aim, the core idea is
to reduce the size of the dataset and thus increase the efficiency of the applications. Each
scenario of our dataset has a size of only a few kilobytes, which is quite efficient (and
the choice of the media type was derived from this feature). Each model encodes the
given permutation factors (shape, rotation, scale, cutting plane), metadata, and materials,
but the metadata are omitted, the materials are stored globally in one instance, and the
permutation factors are represented with small arrays in the data chunks. Thus, by keeping
them without redundancy, we can significantly reduce the dataset size while guaranteeing
efficient reconstruction and usage.

1.2. Our Dataset of MCT Scenarios

In 2019, we started to design and implement methods that can enhance the work with
MCT exercises. Our vision was that—due to the lack of supporting materials, including
assets of exercises—various applications could support both students and instructors,
improving the development, examination, and practice of MCT exercises [36]. The first
version of our script-aided, Blender-based method [37] applied a set of 19 cutting planes
on user-defined shapes. Over the past months, the initial method has been enhanced by
introducing multiple permutation factors, yielding a dataset with the following features:

1. We have developed additional, manually permuted meshes for each classic mesh.
Without using groups G02, G04, G08, and G25, a total number of 205 different manu-
ally designed meshes are available (see Figure 1).

2. Thirty-one cutting planes are combined with each mesh (see Figure 2).
3. Twenty-four rotation vectors are used to rotate each mesh to each possible orientation

using Euler rotation (note that multiple orientations of symmetric shapes can be
considered the same).

4. Seven scaling vectors yield various meshes, applying a multiplier of 0.7 in one or
two dimensions.

We chose two formats to encode our documents. In the case of 2D assets, we prefer
SVG (Scalable Vector Format), while in the case of 3D models, our choice was GLB, which
is one of the de facto graphical standards and one of the most popular specifications since
it is widely supported in different platforms and programming languages. Moreover,
it guarantees an efficient representation of all the information about the models. The
geometrical features, materials, and textures can be encoded in a single file. Each asset
contains a JSON chunk representing the basic information about the asset. The specification
supports different methods to encode the binary data; self-contained binary chunks (blobs)
are preferred in our case, but it is still possible to refer to external resources using their URLs.

The source code and description of the extended method can be found in our GitHub
repository (https://github.com/viskillz/viskillz-blender, accessed on 17 December 2022).

https://github.com/viskillz/viskillz-blender
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Figure 1. A set of shapes abstracted and reconstructed from the well-known sheet of MCT exercises
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Figure 2. The set of intersection planes demonstrated in a simple cube that were used to permute the
scenarios.
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Figure 2. The set of intersection planes demonstrated in a simple cube that were used to permute
the scenarios.

1.3. Our Vision

The dataset with the recently implemented permutation steps contains more than
1 million (1,067,640) scenarios, including small redundancy due to the symmetrical features
of the shapes. Focusing on the GLB models for supporting AR, VR, and 3D developments,
the assets have a total size of 6,521,971,888 bytes, but the needed disk storage is more
than 8 GB in a Windows 11 operating system. Therefore, filtering and processing assets
or constructing exercises manually or automatically in an application requires storing
the dataset in the database. Thus, a method should be found to allow developers to
compress the dataset, making us able to serve content in real time. One possible solution



Educ. Sci. 2023, 13, 101 5 of 21

is to find existing compression algorithms; in the case of GLB assets, Draco compression
(https://google.github.io/draco/, accessed on 17 December 2022) is a well-known and
universal method to compress the assets.

However, different features of the permutation algorithm should be detected in the
assets. With the design and development of a domain-specific algorithm, it is possible to
achieve a better compression ratio. In this paper, we describe the common features of the
assets and introduce an encoding scheme that consists of four levels.

2. Creation and Structure of the Graphical Assets

In this technical section, we introduce the original GLB documents. We focus on the
JavaScript Object Notation (JSON) chunk and its properties since this part of the document
contains all the properties describing its data chunk. We give a short code snippet for each
property, then discuss which values are required or can be omitted in the encoding scheme
since they are optional features containing metadata.

Before explaining the JSON chunk, we must mention an unexpected behavior of
Blender. If a user creates a custom object or opens a new project and uses the default cube,
it does not have a texture or material. However, Blender adds a UV map to each object by
default, which behavior cannot be changed. We believe that this behavior affects most of
the assets generated using Blender, and it is hard to detect. In this case, the list of textures is
empty, and it is not possible to remove the UV map of multiple objects on the UI; designers
should adjust each object separately, which takes great effort. This is important because
Blender generates a texture for each object, resulting in an empty UV map. It produces a
significant overhead since the average size of the related data takes 20–25% of our models
(resulting in a total size of 5,070,079,296 bytes without the UV map). Thus, the rest of this
paper deals with two scenarios:

• Each model has the UV map due to the behavior of Blender;
• The UV map of each model was removed before the processing.

Our assets were generated with Blender version 3.3. Thus, the description and the
calculations are based on the output of this version.

2.1. Properties of the JSON Chunk
2.1.1. Property Asset

The first property of each JSON document is called the asset, which contains the
general attributes of the actual asset, such as its version number. Our assets follow the
2.0 version of the specification [31], and Blender also encodes the name of the generator
tool (see Figure 3). Of course, these values are globally identical; none of the assets store
different values in these properties. On the other hand, the property generator can be
omitted from the documents since this optional attribute does not provide any necessary
and meaningful information for the processors.
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"asset": {
"generator": "Khronos glTF Blender I/O v3.2.43",
"version": "2.0"
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2.1.2. Properties Scene and Scenes

These properties describe the asset’s scenes and their hierarchy. Figure 4 shows that our
assets contain a single scene, whose index is stored in the scene property. The specification
follows the most practical and classic indexing, which refers to the first element of an array
with an index of 0. Thus, the index of our scene is a constant value of 0.

The property scenes describes each scene; thus, this property is a singleton list in our
assets. Its first and only element is a Scene object that describes its name and refers to its

https://google.github.io/draco/
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corresponding node with its ID. The nodes property has a constant value of [0,1], since each
scenario contains a 3D mesh and the representation of the 2D cutting plane. Additionally,
they are also being encoded in a strict order. The name attribute is optional, and its value is
always the Scene literal. However, they are optional metadata that do not help the parsing
and rendering methods of an asset.
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"scene": 0,
"scenes": [

{
"name": "Scene",
"nodes": [0, 1]

}
]

Figure 4. Properties scene and scenes of the JSON chunk in a MCT asset.

"nodes": [
{

"mesh": 0,
"name": "R31",
"rotation": [-0.65, 0.65, -0.27, 0.27],
"translation": [0.5, 0, 0.5]

},
{

"mesh": 1,
"name": "Classic.0109.011",
"rotation": [0.70, 0, -0.70, 0]

}
]

Figure 5. Property nodes of the JSON chunk in a MCT asset.
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2.1.3. Property Nodes

This property describes the nodes of the asset, which can be interpreted as objects in
Blender’s terminology.

In Figure 5, the first object of the array describes the cutting plane, while the second
object represents the 3D mesh. The order of the elements—based on the relationship of
the corresponding objects in Blender—can be different. However, the naming convention
of intersection frames (having IDs starting with R) and 3D meshes (having IDs beginning
with the Classic prefix) lets us easily distinguish them in any document. Furthermore,
there must be an identical prefix assigned to the cutting planes. Then, the meshes can be
named casually. In the case of a document in which the 3D mesh is the first element of the
array, we can apply a swap operation on the array, resulting in deterministic order in all
the documents. The constant value of the previous scenes property occurred for the same
reason reason.
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Each object starts with the property mesh, which refers to the corresponding mesh
object with its ID. The order of the Node and Mesh objects strictly follow the same order in
their arrays. Thus, each of these properties contains the index of the actual Node object (this
feature will also be considered in the description of properties having similar sequences in
the rest of the document). It is followed by the name property, which contains the name
of the corresponding Blender object. They are optional metadata again for which it is not
mandatory that they are encoded.

The rest of the properties contain more useful information since the local transforms
of each node are listed in these properties. If a transform was not applied in Blender, the
matrix_world property of the object differs from the identity matrix. Thus, a GLB file
contains the sequence of non-applied transformations in the order of rotation, scale, and
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translation. They are optional, but each appears if a corresponding transform should be
applied to the encoded mesh. The rotation property contains the unit quaternions in order
(x,y,z,w), and the scale property contains the scaling factors in (x,y,z) order. In contrast,
property translations contain the node’s translation in (x,y,z) order.

2.1.4. Property Meshes

This property is an array of Mesh objects and connects the nodes to their Accessor objects.
Figure 6 shows that each Mesh object starts with its name property, which are optional

metadata again. In our Blender scene, each mesh contains exactly one primitive. Thus,
each primitives array is a singleton in the assets. The only Primitive object describes the
mapping between the features of the mesh and the Accessor objects, which will tell how
the corresponding binary data can be retrieved for the given features. All the values are
constant for each scenario because the first four accessors describe the cutting planes,
and the last four accessors describe the 3D meshes. Values of the attributes object and
the indices property are derived from this feature. Identical materials are applied to our
assets, encoded in values of material properties using their indices. These values are also
deterministic. The first material belongs to the intersection frame, and the second material
belongs to the 3D mesh.

Property meshes is the first in which we can realize the encoded empty textures since
property TEXCOORD_0 denotes the Accessor object, which describes the texture of a mesh.
As Figure 6 shows, accessors #2 and #6 refer to the textures if they are set; otherwise, each
mesh has only two attributes and the indices property (and thus only 3 Accessor objects).

Version January 6, 2023 submitted to Educ. Sci. 7 of 20

"meshes": [
{

"name": "Cube.318",
"primitives": [{

"attributes": {"POSITION": 0, "NORMAL": 1, "TEXCOORD_0": 2},
"indices": 3,
"material": 0

}]
},
{

"name": "Cube.360",
"primitives": [{

"attributes": {"POSITION": 4, "NORMAL": 5, "TEXCOORD_0": 6},
"indices": 7,
"material": 1

}]
}

]

Figure 6. Property meshes of the JSON chunk in a MCT asset.
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2.1.5. Property Materials

This property contains the materials of each asset.
Figure 7 shows that we use two materials on the meshes of our assets. Various proper-

ties can be used in each material to obtain the required appearance of the corresponding
meshes. We are serving our cutting planes with a simple, black material. On the other
hand, we apply a light gray, metallic material to the 3D meshes; this makes the users able
to detect the edges more easily, thanks to the reflections. Thus, the property materials has a
globally identical value.



Educ. Sci. 2023, 13, 101 8 of 21
Version January 6, 2023 submitted to Educ. Sci. 8 of 20

"materials": [
{

"pbrMetallicRoughness": {
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"roughnessFactor": 0.5

}
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"pbrMetallicRoughness": {
"baseColorFactor": [0.8, 0.8, 0.8, 1],
"metallicFactor": 0.5,
"roughnessFactor": 0.3

}
}

]

Figure 7. Property materials of the JSON chunk in a MCT asset.

"accessors": [
{

"bufferView": 0,
"componentType": 5126,
"count": 56,
"max": [1.0802764892578125, 1.0802803039550781, 1.0802764892578125],
"min": [-1.0802764892578125, -1.0802764892578125, -1.0802764892578125],
"type": "VEC3"

},
...
{

"bufferView": 7,
"componentType": 5123,
"count": 30,
"type": "SCALAR"

}
]

Figure 8. Properties accessors, bufferViews and buffers of the JSON chunk in a MCT asset.
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assets contain 8 buffers, while non-textured assets contain 6 buffers having the same data 256
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because it is required for a POSITION accessor and optional in other cases. Accessor objects 258

having indices 2 and 6 refer to textures, encoding pairs of float values. 259
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2.1.6. Property Accessors

This property contains the essential high-level properties of the byte buffers, such as
their types, sizes (number of elements), and domain range, making processors able to read
the content of the binary buffer.

Figure 8 shows that each Accessor object refers to a BufferView object with its ID. This
value is identical since each buffer is encoded in the built-in binary chunk. The value of
property componentType indicates the datatype of a buffer: Code 5126 denotes an IEEE 754
float type (4 bytes), while code 5123 refers to an unsigned, short integer (2 bytes). Property
type tells the structure of the corresponding buffer: Code VEC3 tells that the buffer contains
3-length vectors of the specified datatype, VEC2 means 2-length vectors, while SCALAR
means that single values are encoded.
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Figure 8. Properties accessors, bufferViews and buffers of the JSON chunk in an MCT asset.

The properties type, componentType, and bufferView have constant values, since
textured assets contain eight buffers, while non-textured assets contain six buffers having
the same data types in a strict order. The properties min and max only appear in the first
buffer of each mesh because it is required for a POSITION accessor and optional in other
cases. Accessor objects with indices 2 and 6 refer to textures, encoding pairs of float values.
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2.1.7. Properties BufferViews and Buffers

Finally, these properties give a low-level description of each binary buffer. Elements
of property bufferViews describe a sequence of bytes behind an Accessor, and the property
buffers provides the size of each view.

Figure 9 shows properties bufferViews and buffers of our assets. Textured assets have
eight BufferView objects, while non-textured assets have six entries in their bufferViews
property. Our assets are specific because we do not use external buffers; thus, each feature
is encoded in a single, carried, binary chunk of the assets. Thus, the properties of these
objects are specific: only the value of the byteLength property needs to be stored since
views are sequentially encoded in the binary chunk, and their offsets are deterministic. On
the other hand, the buffers property has exactly one entry containing the total length of
views in its byteLength property.
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"bufferViews": [
{

"buffer": 0,
"byteLength": 672,
"byteOffset": 0

},
...
{

"buffer": 0,
"byteLength": 60,
"byteOffset": 2752

}
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"buffers":[{ "byteLength":2812 }]

Figure 9. Properties accessors, bufferViews and buffers of the JSON chunk in a MCT asset.
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2.2. Permutation-Based Features

We have shown that several properties can be eliminated from the encoded files due
to the specific features of our assets. Thus, some properties may be omitted from encoded
assets, and others can be easily reconstructed from less information. In this section, we
mention some important features of our assets.

2.2.1. Property Nodes

Elements of the nodes array describe the frame that denotes the cutting plane, then the
shape, which is being intersected by the plane. The permutation step changes their features
to yield all the possible combinations in the dataset:

1. Each 3D mesh is rotated using 24 different rotation vectors.
2. Each 3D mesh is scaled using seven different scaling vectors.
3. A total number of 31 cutting planes are combined with each 3D mesh. On the other

hand, four different meshes represent a cutting plane. The rest of them can be yielded
by applying transformation operators on the set of selected frames.

Thus, we detach the transformations of meshes from individual documents and store
them in a global configuration. For example, if a cutting plane appears in multiple assets,
the same features should be coded each time in the documents. Moreover, if a shape
appears multiple times, its features can also be omitted from the redundant encoding.
However, scaling operations were applied in Blender since the Bisect operator deals with
local coordinates, and this step serves as a more accessible base for computations. Thus,
considering the permutation algorithm, the following properties need to be extracted from
documents and should be stored in a global configuration:

1. A cleaned Node object for each cutting plane
(a total number of 31 objects);
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2. A cleaned Node object for each rotation vector
(a total number of 24 objects).

2.2.2. Property Accessors

The assets contain a deterministic number of Accessor objects: the length of property
accessors is 8 in the case of textured assets and 6 in the case of non-textured assets. Their
order, property type, and property contentType are identical in both options. The first three
or four Accessor objects belong to the cutting plane, and the last three or four Accessor
objects belong to the actual shape.

Moreover, accessors of cutting planes can be simplified. The only difference between
them appears in the min and max attributes of their POSITION (second) accessor: Accessors
of the first 19 cutting planes (numbered from P01 to P19) and the least 12 planes (numbered
from P20 to P31) are identical. This feature is derived from the size of the cutting planes:
P01-P19 result in the same dimensions on all global axes, while P20-P31 do not satisfy this
criterion and result in asymmetric sizes. As a result, only four Accessor objects need to be
stored: we chose planes P01, P10, P16, and P20. Furthermore, these accessors can be stored
in the global configuration and applied to all scenarios permuted from any 3D shape.

Since the number of possible permutations results from the number of scaled shapes,
the number of rotation vectors and the number of intersecting planes, a total number of
32 ∗ 4 accessors should be stored to yield the accessors of each permutation of a shape.
On the other hand, only the property count of each Accessor object should be kept with
the min and max properties of the second accessors individually; other properties have
globally identical values.

2.2.3. Properties BufferViews and Buffers

The values of these properties can be computed from the properties of Accessor objects,
using their order and properties type, contentType, and length.

2.2.4. Data Chunk

As can be derived from the description of the JSON chunk, binary data are self-stored
in each asset, and Accessor and BufferView objects can be used to retrieve a required
sub-sequence of the binary encoded data. Now we can examine whether finding a pattern
in these byte sequences is possible, as we know that most JSON properties—such as the
buffers, bufferViews, and accessors—can be clearly separated into their shape-dependent
and plane-dependent components.

The sequence of Accessor objects tells the answer. The first part of each binary chunk
belongs to the cutting plane, while the rest contains the binary data of the actual mesh.
Thus, the first part of the binary data—like the properties of the JSON document—can be
removed from individual assets and stored in a global document. The first 1984 bytes of
each buffer belong to the cutting planes; the rest of the bytes belong to the actual shape in
the case of textured assets. Otherwise, the first 1536 bytes belong to the cutting plane.

3. Reduced Storage of the Dataset for Efficient Use in Application

In the previous sections, we described the basic features of scenarios. Based on the
background knowledge, various data formats can be designed to store the local and global
features of assets. In this section, we introduce the multi-level scheme allowing us to reduce
the needed storage to store the dataset and encode the information in the most suitable
format for the actual use case.

Figure 10 shows that the encoding and decoding steps form a pipeline of individual
operations on the dataset; the input of each encoding function is the output of the upper
layer, and the input of each decoding function is the output of the lower layer. Each level
has its encoding and decoding functions, denoted with f ◦L

E (DL−1) and f ◦L
D (DL), where

subscripts E and D refer to Encoding and Decoding, while superscript ◦L refers to the
number of the corresponding level (where ◦L = 0 denotes the original dataset and levels
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are numbered from 1 to 4 inclusive). Thus, the original assets and encoded documents are
noted with DL

G, where the optional subscript G notes the ID of the corresponding group.
Moreover, documents can be textured or non-textured. Thus, additional letters T and N can
be added optionally to the superscripts to distinguish them, resulting in notations DN◦L

G
and DT◦L

G .

Figure 10. The multi-level encoding scheme.

3.1. Key Document

Introduce function fK(D0
G) that extracts the globally identical features from a given dataset,

including each property mentioned above, and then encodes them in a JSON document.
The function can be called with any group of assets since the retrieved properties are

globally identical. Consequently, this function must be called only once on a dataset, allow-
ing us to retrieve the needed values in each invocation of f ◦1D (D1

G). Thus, the parameter
list of the first decoding function must be extended by introducing another parameter Dk,
resulting in the form f ◦1D (D1

G, DK). The size of the document is 22,958 bytes in the case
of textured documents and 19,000 bytes in the case of non-textured documents, using no
indentation nor spaces between tokens. On the other hand, the structure of this document
can be optimized to achieve a smaller size. However, multiple values should be fetched
during the decoding of an asset. Thus, we prefer efficient accessibility to the minimized size
of a single document. In this approach, needed values can be easily fetched after reading
the document into memory; then, only accessing entries from the dictionary is needed
instead of applying transforms on any value.

3.2. First Level

The encoding function f ◦1E (D0
G) consumes a set of original assets that belong to the

same group and then returns a JSON document denoted with D1
G, containing all the

properties that should be stored to reconstruct the original assets with the use of Dk. As
Figure 11 suggests, the content of the binary chunk is stored without any processing, so the
content of the buffer sequence is encoded as a single series of characters, following their
original order. The hexadecimal representation of the bytes was chosen since the numerical
types stored in the binary chunk have sizes of 2 or 4 bytes. Thus, an encoding is needed
such that each value can be encoded with a different series of characters without padding.
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the use of which each value can be encoded with a different series of characters without 375

padding. 376

{
"accessors": {

"0100": {
"000": [24, 24, 24, 30 ],
"001": [24, 24, 24, 30 ],
...

},
"0101": {...},
...

},
"accessors-max": {

"0100": [1, 0.9999990463256836, 1],
"0101": [1, 1, 1],
...

},
"accessors-min": {

"0100": [-1, -0.9999990463256836, -1],
"0101": [-1, -1, -1],
...

},
"data": {

"0100": {
"000": "000080bff0ff7...0c001700",
"001": "000080bf28333...0c001700",
...

},
...

}
}

Figure 11. The structure of DT◦01
1 , having four numbers in each array of property accessors.

Precision errors can be also detected in the scalars of properties accessors-max and accessors-min,

The decoding function f ◦1
D (D1

G, Dk) reconstructs the original assets of group G by 377

combining the relevant local and global values stored in the properties of D1
G and Dk. 378

With the use of f ◦1
E (D0

G) storage sizes can be reduced by 99.91% in the case of DT◦1
G , 379

achieving a compression ratio 1,065 compared to DT◦0
G dataset. Both compression ratio of 380

(99.91%) and saved storage size (1,077) are similar in the case of DN◦0
G and DN◦1

G . 381

3.3. Second level 382

The encoding function f ◦2
E (D1

G) returns a second-level encoded JSON document D2
G. 383

The new document keeps properties accessors-max and accessors-min of D1
G but elim- 384

inates property accessors by processing and transforming the hexadecimal of property 385

data. 386

The idea of the transform operation is to encode each buffer content separately instead 387

of encoding the original continuous sequence of bytes as a single hexadecimal value. As a 388

result, the sliced values of property data in D2
G contain information about their lengths, as 389

each original string literal is replaced with a list of string literals. Each list contains four 390

values in the case of DT◦2
G and three in the case of DN◦2

G . Moreover, observing property data 391

of multiple D2
G documents, we can recognize that several subsequences appear multiple 392

times in the lists. This feature is derived from the type of data stored in the GLB documents: 393

the first three buffers have IEEE 754 scalar values in vector types, and the last buffer 394

contains 2-byte unsigned integers. As most of them contain geometric information and our 395

assets have common features, most of the scalars appear multiple times in the same buffer. 396

Thus, the size of D2
G can be decreased by collecting the set of unique scalar values in each 397

Figure 11. The structure of DT◦01
1 , with four numbers in each array of the property accessors. Precision

errors can be also detected in the scalars of properties accessors-max and accessors-min.

The decoding function f ◦1D (D1
G, Dk) reconstructs the original assets of group G by

combining the relevant local and global values stored in the properties of D1
G and Dk.

With the use of f ◦1E (D0
G), storage sizes can be reduced by 99.91% in the case of DT◦1

G ,
achieving a compression ratio of 1065 compared to DT◦0

G dataset. Both the compression
ratio (99.91%) anthe d saved storage size (1077) are similar in the case of DN◦0

G and DN◦1
G .

3.3. Second Level

The encoding function f ◦2E (D1
G) returns a second-level encoded JSON document D2

G.
The new document keeps properties accessors-max and accessors-min of D1

G but eliminates
property accessors by processing and transforming the hexadecimal of the property data.

The idea of the transform operation is to encode each buffer content separately instead
of encoding the original continuous sequence of bytes as a single hexadecimal value. As a
result, the sliced values of property data in D2

G contain information about their lengths, as
each original string literal is replaced with a list of string literals. Each list contains four
values in the case of DT◦2

G and three in the case of DN◦2
G . Moreover, observing property data

of multiple D2
G documents, we can recognize that several subsequences appear multiple

times in the lists. This feature is derived from the type of data stored in the GLB documents.
The first three buffers have IEEE 754 scalar values in vector types, and the last buffer
contains 2-byte unsigned integers. As most of them contain geometric information and
our assets have common features, most of the scalars appear multiple times in the same
buffer. Thus, the size of D2

G can be decreased by collecting the set of unique scalar values in
each buffer with lengths of [8, 8, 8, 4] characters in the case of DT◦2

G and [8, 8, 4] in the case
of DN◦2

G . The set of unique character sequences can be used as the keyset of a codebook,
which allows us to eliminate the original sequences from the documents, replacing them
with their identifiers. We introduce hash function h◦2n (x), which returns the index of a
scalar value in the sequence of the unique values fetched from the nth buffer Bn. The
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required compression can be performed by substituting the s ∈ Bn representation of each
scalar value with its corresponding h◦2n (s) hash value. The keynote behind this operation is
that the count of distinct scalar values (and thus each index value) requires fewer digits
to be encoded than the original scalar values with representation that is 4 or 8 characters
long . Thus, the use of h◦2n (x) decreases the size of each buffer using 3, 4, 3, and 1 bytes to
hash 242, 13,713, 63, and 118 different values of the buffers using their indices. Another
possible option could be to collect all the unique scalar values globally and store them
in Dk. However, this approach would require [563, 8082, 102, 118] different indices for the
buffers. Furthermore, in the case of B0, it would require changing the length of the hash
values from two digits to four digits. In the case of our dataset, it is better to use shorter
hash values and create a codebook for each group. However, another dataset containing
shapes with various vertices would require more digits in the hash values. In that case, the
global approach would be more efficient.

The decoding function f ◦2D (D2
G) consumes a second-level encoded document and

returns the corresponding first-level encoded document (D1
G). The function splits the

hexadecimal series of hash values encoded in property data and replaces them with the
original sequences from property data. As the final step, the function merges the elements
of each list of property data and re-adds property accessors to the document containing the
size of each buffer.

With the use of f ◦2E (D1
G), storage sizes can be reduced by 62.02% in the case of DT◦2

G ,
achieving a compression ratio of 2.633 compared to the DT◦1

G dataset, 2.804 compared
to DT◦0

G .

3.4. Third Level

The encoding function f ◦3E (D2
G) consumes a second-level encoded JSON document

(D2
G) and returns a third-level encoded JSON document (D3

G). Similarly to function f ◦2E (D1
G),

its output keeps the accessors-max and accessors-min properties of the document D2
G but

applies a second hash function h◦3n (x) on the values of property data, where subscript n
denotes the index of the buffer.

The hexadecimal values still contain significant redundancy, observing the data prop-
erties of D2

G documents. The purpose of this feature is simple, as we have already hashed
each scalar value, but the first three buffers contain vectors of types VEC3, VEC3, and VEC2.
Not just the same scalar values, but the same vectors appear multiple times in the original
sequences. The first and second buffers contain triplets of float values, while the third
vector (that encodes the textures) contains integer pairs. Thus, the statistical features of the
subsequences can be analyzed again, verifying that several triples and pairs of hash values
appear multiple times. Using h◦3n (x) decreases the size of the first three buffers using 2, 4,
and 1 byte(s) to hash 789, 1179, and 82 different values of the buffers using their indices.

The decoding function f ◦3D (D3
G) consumes a third-level encoded JSON document (D3

G)
and returns a second-level encoded JSON document (D2

G). Similarly to function f ◦2D (D2
G),

it splits the hexadecimal sequences of property data, replaces the hash values with the
original values from property data-cb-byte-2, and then joins the strings. Finally, property
data-cb-byte-2 is removed to retrieve format D2

G.
By adding the codebook as a property data-cb-byte-2 and applying function h◦3n (x) on

property data, storage sizes can be reduced by 37.89% in the case of textured documents,
achieving a compression ratio of 1.610 compared to the DT◦2

G dataset and 4034 compared to
DT◦0

G dataset. The values are similar in the case of the non-textured dataset.

3.5. Fourth Level

All the previous encoding functions returned valid JSON documents. JSON documents
have a lightweight syntax and much less overhead than other formats, such as XML.
However, the size of the dataset can be reduced by introducing a binary format instead of
a text format. This approach eliminates all tokens of JSON syntax, and our identifiers, as
well as the property data, can be encoded as a sequence of bytes instead of hexadecimal
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character sequences. Moreover, floating numbers in JSON documents are encoded using
multiple precision digits but can be encoded using IEEE 754 types. Thus, the encoding
function f ◦4E (D3

G) encodes the properties of D3
G and decreases the size of the dataset using

binary encoding. Figure 12 describes the binary format of DT◦4
G and DN◦4

G documents.
With the use of the binary encoding, storage sizes can be reduced by 53.15% in the

case of textured documents, achieving a compression ratio of 2.134 compared to the DT◦3
G

dataset and 9634 compared to the DT◦0
G dataset. The values are similar in the case of the

non-textured dataset.

Figure 12. The structure of DT◦4
G and DN◦4

G binary files. Notations of types are derived from the struct
module of Python [38].

3.6. Evaluation
3.6.1. Verification

As a first approach, it seems evident that the encoding and decoding algorithms can
be verified by encoding and decoding all the assets, then comparing the original and the
retrieved files bitwise. However, the bitwise equality of the original and the decoded
dataset cannot be guaranteed due to the use of IEEE 754 types. As Figure 11 shows, the
raw output of Blender already contains precision errors that can be derived primarily from
the use of type IEEE 754 as a sequence of rotation, and scale operations have been applied
on most of the assets in Blender.

1. Each calculation with an IEEE 754 type increases the probability of a higher error in
the result.

2. Moreover, the original mesh is designed manually. Thus, designers may make minor
errors in setting the coordinates of vertices. Consequently, minor errors occur in the
bytes of the data chunk and the values of the JSON chunk.

3. Finally, our decoding algorithm applies a multiplication on the min and max proper-
ties of Accessor objects to simulate the scaling operation.

If an error occurs in the data chunk, the equality of the file sizes can be guaranteed.
However, if a value of the JSON chunk is represented with a precision error, the file
size changes. Thus, a comparison method should be implemented, and in using it, the
verification can be performed:
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1. The properties of their JSON chunks should be compared recursively. In the case of
floating values, their difference should be above a given threshold ε. Objects must
contain the same key-value pairs, while the order of the elements in two arrays should
also be the same.

2. The binary chunks can be compared bitwise, except the sequences that belong to a
buffer using floating values. In that case, the comparison must be performed using
the given threshold ε.

3. Only globally unique metadata (such as property asset) can be reconstructed and
checked since the algorithm does not code any metadata in D1

G but in Dk.

The comparison can be formed on the dataset using ε = 0.00000005, which is an
acceptable value for type IEEE 754.

3.6.2. Analysis

We have already calculated the compression ratio and saved disk space of each encoding
level in the description of each encoding function using the textured and non-textured
versions of the dataset. However, the runtime of every function should be measured to
determine whether the method is acceptable in practice. The aim of the compression is to
decrease the size of the dataset, making the storage in file systems and databases possible
or easier. Thus, original assets should be decoded without requiring time-consuming calcu-
lations, enabling applications to serve content online. Table 1 shows the time complexity
of each decoding function, including all the previous decoding functions (that need to be
executed) and I/O operations.

During the analysis, we found that the features of the encoding scheme offer an
alternate process for yielding the dataset from Blender, decreasing the runtime significantly:

1. Export only the subset of assets from Blender, which is required as an input of fK(D0
G)

and f ◦1E (D0
G). Denote the set of assets with D0

G∗.
2. Create Dk with function call fK(D0

GS).
3. Encode each group to retrieve D1

G with a function call f ◦1E (D0
G∗).

4. Decode each document to retrieve the full dataset with a function call f ◦1D (D1
G, Dk).

As Table 2 shows, the original exporting process of Blender requires an average of
33,886 s. On the other hand, the exporting process of the subset requires only an average
of 478.1459 s; the encoding process needs 0.2605 s. Finally, the decoding process needs an
average of 498.7475 s. Thus, the alternate process requires an average of 977.1520 s instead
of Blender’s 33,886 s, resulting in 2.8836% of the original runtime by eliminating geometric
computations and permuting the assets without using Blender.

Table 1. Decoding time in seconds of each function.

Group DT◦1
G DT◦2

G DT◦3
G DT◦4

G DN◦1
G DN◦2

G DN◦3
G DN◦4

G

01 23.89 24.38 23.98 24.47 22.89 22.71 23.48 23.88
03 24.08 23.90 23.75 24.43 22.99 22.97 23.42 23.51
05 19.38 19.13 19.64 19.27 18.67 18.38 19.18 18.75
06 19.52 19.50 19.90 19.17 18.66 18.50 19.30 19.04
07 24.35 24.65 25.39 24.27 22.70 23.34 23.67 23.67
09 24.29 24.87 24.65 24.80 23.23 23.18 23.68 23.84
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Table 1. Cont.

Group DT◦1
G DT◦2

G DT◦3
G DT◦4

G DN◦1
G DN◦2

G DN◦3
G DN◦4

G

10 24.88 24.93 24.63 24.26 23.53 23.01 24.04 24.09
11 27.13 26.86 27.61 26.35 25.76 26.15 26.38 26.49
12 24.28 24.83 24.43 24.46 23.58 23.47 23.92 23.96
13 19.40 20.17 19.76 19.53 18.53 18.73 19.26 19.08
14 24.21 24.64 25.35 24.47 23.23 23.48 24.13 23.91
15 24.30 24.99 25.28 24.45 23.25 23.93 23.60 24.29
16 23.94 24.90 24.69 24.27 23.35 23.83 23.79 23.84
17 24.45 25.05 25.21 24.17 23.25 23.80 24.14 24.18
18 24.29 24.66 24.94 24.32 23.13 23.38 23.78 23.93
19 24.70 25.01 24.92 24.03 23.09 23.91 24.21 23.96
20 24.43 25.47 25.28 24.48 23.10 24.14 24.03 23.77
21 24.48 24.74 25.12 24.60 23.38 23.81 23.92 23.87
22 24.29 24.83 24.93 24.11 23.47 23.52 23.50 23.57
23 24.08 24.82 24.97 24.09 23.23 24.14 24.10 24.33
24 24.37 25.06 24.56 24.43 23.18 23.91 23.94 23.74

Total 498.75 507.38 508.98 498.42 476.20 482.30 489.46 489.71

Table 2. Time complexities of the original (Blender) and enhanced (hybrid) exporting processes.

Group Original (s)
Enhanced (s)

Ratio (%)
Exporting Encoding Decoding Sum

01 1624.3172 22.7412 0.0158 23.8874 46.6444 2.8716
03 1636.5026 23.3132 0.0162 24.0778 47.4072 2.8969
05 1307.6983 19.1244 0.0082 19.3816 38.5143 2.9452
06 1300.7097 18.7861 0.0112 19.5166 38.3140 2.9456
07 1633.5453 23.3287 0.0124 24.3548 47.6960 2.9198
09 1632.9955 23.1342 0.0125 24.2930 47.4398 2.9051
10 1671.4794 23.1511 0.0083 24.8838 48.0431 2.8743
11 1839.2504 25.4292 0.0156 27.1265 52.5714 2.8583
12 1638.0409 23.4728 0.0121 24.2773 47.7622 2.9158
13 1321.5149 19.1439 0.0062 19.4022 38.5523 2.9173
14 1633.9655 23.8631 0.0125 24.2062 48.0819 2.9426
15 1654.7123 23.3419 0.0156 24.3038 47.6613 2.8803
16 1657.0160 23.2236 0.0094 23.9401 47.1731 2.8469
17 1672.3261 23.3899 0.0156 24.4518 47.8574 2.8617
18 1656.3157 23.4130 0.0110 24.2897 47.7137 2.8807
19 1686.8150 23.1013 0.0156 24.7023 47.8192 2.8349
20 1680.0384 23.1084 0.0094 24.4292 47.5470 2.8301
21 1684.0271 23.4228 0.0156 24.4811 47.9195 2.8455
22 1651.6237 23.2053 0.0183 24.2945 47.5181 2.8771
23 1649.9467 23.2368 0.0094 24.0782 47.3244 2.8682
24 1654.0871 23.2149 0.0094 24.3676 47.5919 2.8772

Total 33,886.9280 478.1459 0.2605 498.7456 977.1520 2.8836
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3.6.3. Remarks

1. Each calculation was performed on a Zenbook UX433FA-A5082T notebook with an
SSD and OS Windows 11.

2. During the measurements, only our Blender script or standalone Python scripts were
executed on the computer. All the other non-essential processes had been stopped,
including Windows Defender.

3. The Blender script was executed using the built-in interpreter of Blender 3.3, using
our wrapper script.

4. The wrapper script and encoding process were interpreted with Python version 3.10.6
in a Miniconda 4.14.0 environment.

5. Each mentioned runtime is an average of processes in the case of our Blender script,
and five processes in the case of our encoding and decoding functions.

6. A pre-processing step was executed before the encoding process to guarantee that
all the shapes had the same materials without precision errors that affected the
calculations. The material shown in Figure 7 has been added to all the assets in
this step.

3.7. Applications

The ultimate aim of our research was to create an easy-to-use open-access database
and application framework supporting students in their learning process to acquire more
thorough spatial skills. In this process, the application of augmented reality is a great asset
to understand spatial relations better, but these tools typically require powerful hardware
and large storage capacity; none of them are available in students’ cell phones. Moreover,
the lack of a large number of tasks is a further limitation to effective skill development.
These bottlenecks are effectively resolved by our contribution described above.

The encoding scheme presented in the previous chapter is already used in our appli-
cations viSkillz Browser and viSkillz Quiz. The app viSkillz Browser (see Figure 13) allows
users to browse the raw output of the permutation algorithm, while the application viSkillz
Quiz combines a survey and MCT exercises. In addition, both of the applications offer
3D models to their users, encoded with the proposed encoding algorithm and stored
in a MongoDB database. More details about the applications can be found in our pre-
vious publication [36]. Moreover, the applications can be accessed via the addresses
https://viskillz.inf.unideb.hu/browser and https://viskillz.inf.unideb.hu/quiz, accessed
on 17 December 2022 . A sample quiz can be launched using the token EN. The develop-
ment of further apps in several platforms is available for anyone using the 3D data (see,
e.g., Figures 13–15).

Figure 13. Screenshot of our viSkillz Browser application, storing and serving our models using the
proposed method.

https://viskillz.inf.unideb.hu/browser
https://viskillz.inf.unideb.hu/quiz
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Figure 14. Screenshots of an iOS application using our API.

Figure 15. Screenshot of the built-in 3D viewer of the Windows 11 operating system. With the
application, it is possible to display the assets, modify them, or interact with them.

4. Conclusions

In this paper, we dealt with processing a dataset containing assets of Mental Cutting
Test exercises. MCT is one of the most popular tests through which spatial skills can
be improved and evaluated; however, designing a significant number of scenarios is a
time-consuming process. Thus, we have developed our script-aided process in the last few
years, which applies permutation steps automatically on the manually designed meshes.
The permutations include scaling, rotation, and using a set of cutting planes. However, it is
not apparent how the whole dataset can be stored in a database without limitations, since
the dataset size exceeds 6 GB.

As a result of this paper, we introduced an encoding scheme that processes the GLB
assets and retrieves their common properties. The basis of the algorithm is that the various
permutation factors can be detected in the byte sequences of the assets; thus, it is not
required to store each asset, making an application able to serve them. Our algorithm can
encode and decode the dataset using ε = 0.00000005, achieving saved disk space of 99% and
a compression ratio of over 11.000.
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Moreover, we can avoid executing the entire generation process in Blender, including
time-consuming transform calculations. As an alternate solution, a subset of the original
assets needs to be generated, from which all the required information can be retrieved
using our encoding functions. Then, the whole dataset can be restored using the decoding
functions, requiring only 2.8836% of the original runtime.

Finally, using our encoding scheme, users can detach materials from the geometric
data of their assets since materials are stored in DK. Various versions of DK can be created,
containing different materials. Thus, different assets can be retrieved for different purposes.
This approach follows the excellent practice of storing documents and styles separately
using other technologies such as HTML and CSS.

Based on the common features of various spatial exercises, similar encoding schemes
can be designed to minimize the size of a dataset and offer better efficiency in the develop-
ment process of applications for the purpose of effectively improving spatial skills, even
with limited hardware and storage capacity.
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