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Abstract: The proteomic profile of extracellular vesicles (EVs) has been of increasing interest,
particularly in understanding cancer growth, drug resistance, and metastatic behavior. Emerging
data suggest that cancer-derived EVs carry an array of oncogenic cargo, including certain integrin
proteins that may, in turn, promote cell detachment, migration, and selection of future metastatic
sites. We previously reported a large comparison of secreted vesicle protein cargo across sixty
diverse human cancer cell lines. Here, we analyze the distinct integrin profiles of these cancer EVs.
We further demonstrate the enrichment of integrin receptors in cancer EVs compared to vesicles
secreted from benign epithelial cells. The total EV integrin levels, including the quantity of integrins
α6, αv, and β1 correlate with tumor stage across a variety of epithelial cancer cells. In particular,
integrin α6 also largely reflects breast and ovarian progenitor cell expression, highlighting the utility
of this integrin protein as a potential circulating biomarker of certain primary tumors. This study
provides preliminary evidence of the value of vesicle-associated integrin proteins in detecting the
presence of cancer cells and prediction of tumor stage. Differential expression of integrins across
cancer cells and selective packaging of integrins into EVs may contribute to further understanding
the development and progression of tumor growth and metastasis across a variety of cancer types.

Keywords: Exosomes; mass spectrometry; proteomics; biomarkers; cancer; extracellular vesicles;
microvesicles; oncosomes

1. Introduction

Integrins are well-conserved ubiquitous cell adhesion receptors that play important roles in
extracellular matrix attachment and signal transduction, contributing to pathways involved in cell
growth, survival, proliferation, and migration. Functional integrin molecules are heterodimers
composed of two integral membrane glycoprotein subunits, one α and one β, held together by disulfide
bonds. Serving as an extracellular matrix linker, the globular head of an integrin protein projects
extracellularly, while the C-terminal tails of both subunits anchor actin cytoskeleton components inside
the cell [1–9]. In vertebrates, the integrin family comprises 18 α subunits and eight β subunits that can
assemble into 24 heterodimers with various ligand-binding properties [3]. While a variety of ligands
bind integrin receptors, non-collagenous matrix proteins containing the arginine-glycine-aspartate
(RGD) sequence, including fibronectin, laminin, and vitronectin serve as major extracellular ligands
for integrin molecules [4,10]. The majority of integrin cytoplasmic tails bind anchor proteins such as
talin, α-actinin, and filamin which connect bundles of actin filaments. The ability of integrins to bind
both intra- and extra-cellular proteins facilitates the transmission of force across the plasma membrane,
and also contributes to their unique bidirectional signaling properties [11–15]. “Outside-in” integrin
signaling describes the sequence of extracellular ligand binding and the subsequent activation of
intracellular cytoskeletal components as well as various enzymes, including the focal adhesion kinase
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(FAK), Src-family kinases, small GTPases Ras and Rho, ABL-family kinases, and integrin-linked kinase
(ILK) [16]. The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK),
and the c-Jun N-terminal kinase (JNK) pathways are activated through these transduction mechanisms,
providing integrin-dependent regulation of cell cycle and proliferation [17]. The FAK-Src complex
also facilitates cell migration by disassembling focal adhesion complexes at the trailing edge of the
cell [18]. Furthermore, “inside-out” signaling occurs following cytokine or chemokine activation of
G protein-coupled receptors (GPCRs) which leads to integrin activation, assembly, and increased
extracellular ligand affinity [3,19].

The apparent multifaceted role of integrins in cell growth and migration has generated great
interest in the contribution of this protein family to cancer progression. Accumulating evidence
suggests integrin signaling plays multiple roles in the stepwise progression of cancer, including
tumor growth, detachment, angiogenesis, intravasation, homing and extravasation, and finally the
expansion of metastases [20–29]. It is believed that these mechanisms of cancer progression may be, in
part, regulated by integrin-switching. In these scenarios, integrins that promote cell adherence and
quiescence are downregulated, while those that foster the breakdown of cell adhesions and remodeling
of the extracellular matrix (ECM) may be simultaneously overexpressed [20,30].

It has been well understood that cellular integrin trafficking occurs through constitutive caveolin-
or clathrin-mediated endocytosis into endosomes for sorting, degradation, or recycling [31]. Integrin
localization to endosomes may also be important for FAK signaling [32]. More recently, integrin
secretion into small 40–200 nm extracellular vesicles (EVs), including exosomes and small microvesicles,
secreted from cells has been described [33–41]. The roles of extracellular vesicles in multiple steps of
cancer progression have also been of great interest [42]. In a seminal study published by Hoshino and
colleagues in 2015, tumor-derived EVs were demonstrated to harbor integrins that were instrumental in
preparing a pre-metastatic tumor niche and indeed guided organ-specific metastasis based on EV-cell
tropism [38]. Vesicles containing integrins α6β1 and α6β4 were found to be taken up specifically by
lung fibroblasts and epithelial cells and were associated with lung metastasis of progenitor cancer
cells. In contrast, vesicle αvβ5 directed uptake of EVs by liver Kupffer cells and promoted liver
metastasis. Small peptide inhibition of these respective integrin receptors significantly reduced cancer
metastasis to distant sites [38]. In another study, prostate cancer EVs were shown to transfer integrin
αvβ6 to non-tumorigenic cells, resulting in an increased migratory capacity of the recipient cells [37].
Similarly, EVs carrying αvβ3 from prostate cancer cells have been observed to increase cell migration
of surrounding recipient cells [35,36]. In the context of viral tumorigenesis, increased levels of integrin
subunits α4, αL, and β3 were demonstrated to be secreted into EVs following infection with the human
tumor virus Epstein-Barr virus (EBV); while α3, α6, and β1 integrins were decreased in EVs from EBV
or Kaposi sarcoma herpesvirus infected cells [39]. Finally, persistent EV secretion of integrin subunits,
such as β4 in the setting of prostate carcinoma, may also be useful in predicting chemotherapy-resistant
cells [34].

Altogether, a growing body of evidence suggests that integrins secreted into cancer EVs may
confer invasive or migratory phenotypes to naïve surrounding cells, and can direct organotropic
metastasis by site-specific uptake and microenvironment modification. Furthermore, EV integrins offer
novel targets as biomarkers for cancer progression. In a previous study, we conducted a large-scale
proteomic analysis of extracellular vesicle cargo secreted from a panel of sixty human cancer cells [40].
Here we further analyze the EV integrin profiles from these cancer cells. We additionally compare
the EV proteomes of breast cancer cells to that of a benign breast epithelial cell line, highlighting
the overexpression of many integrin subunits secreted from tumorigenic cells. Finally, the levels of
several vesicle-associated integrins correlate with increasing tumor stage and reflect cellular levels.
These findings support the utility of circulating integrins as potential cancer cell biomarkers and
emphasize the functional roles these proteins play in stepwise cancer progression.
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2. Materials and Methods

2.1. Cell Culture

Sixty cell lines from the National Cancer Institute (NCI-60) were acquired and cultured,
as previously described [40]. MCF10a cells were grown using the Mammary Epithelial Cell Growth
Medium BulletKit (Lonza, Basel, Switzerland, CC-3150) comprised of the basal medium MEBM
supplemented with the provided aliquots of bovine pituitary extract (BPE), human recombinant
epidermal growth factor (hEGF), insulin, and hydrocortisone. Instead of the GA-1000 aliquot provided
in the kit, 100 ng/mL of cholera toxin was added to the medium, as recommended by the American
Type Culture Collection (ATCC). At 90% confluence, the complete medium was aspirated and cells
were washed with warm sterile phosphate buffered saline (PBS). To minimize contaminating proteins,
cells were grown in BPE-free medium for another 48 h before EV enrichment.

2.2. Extracellular Vesicle Enrichment and Protein Quantification

NCI-60 and MCF10a EVs were processed as previously described in great detail [40,43].
The enrichment efficacy and purity of samples has been demonstrated numerous times through
nanoparticle tracking, immunoblot analysis, and electron microscopy by our laboratory [43–47]. Briefly,
serum-free cell-conditioned medium was aspirated from cell culture plates in three biological replicates,
and centrifuged at 500× g for 5 min, then at 2000× g for 30 min before incubation overnight with a 1:1
volume of 2X PEG solution (16% (w/v) polyethylene glycol, 1 M NaCl). Following the polyethylene
glycol incubation, samples were centrifuged at 3214× g for 60 min, and pellets were resuspended in
PBS for an ultracentrifugation purification step (100,000× g for 70 min). Final pellets were lysed in
strong lysis buffer (5% SDS, 10 mM EDTA, 120 mM Tris-HCl pH 6.8, 2.5% β-mercaptoethanol, 8 M urea)
with the Halttm protease inhibitor (ThermoFisher, Waltham, MA, USA, 78438) added. Vesicle protein
quantification was performed using the fluorescence-based EZQ™ Kit (ThermoFisher, Waltham, MA,
USA, R33200) according to the manufacturer’s instructions.

2.3. SDS-PAGE and In-Gel Digestion

NCI-60 EV protein was further processed as previously reported [40]. Similarly, in this study, 20
µg of MCF10a EV protein was loaded into a 4–20% polyacrylamide gel (Lonza, Basel, Switzerland,
59511) for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), gel fixation,
and Coomassie staining as described in detail [48]. Gel lanes were fractionated into five sections
and then subdivided into 1 mm3 cubes for trypsin digestion [43].

2.4. Mass Spectrometry

Mass spectrometry and protein identification of NCI-60 EV cargo were reported in our
previous study [40]. Additional analysis of NCI-60 integrin proteins was performed using data
published in the Supplementary Table S1 of our prior study. Trypsin-digested MCF10a EV protein
samples were submitted to the Florida State University Translational Science Laboratory for liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis, consistent with the protocol and
parameters used previously for NCI-60 cell-derived EVs [40]. The same Thermo LTQ Orbitrap Velos
nLC-ESI-LTQ-Orbitrap (high-resolution electrospray tandem mass spectrometer) was used in this
study to analyze the MCF10a EV protein. Raw peptide data from each of the five fractions of the
MCF10a samples were pooled and analyzed in the Scaffold software. Data was analyzed using three
search engine databases (MS-Amanda Proteome Discoverer, Mascot, and Sequest) and a recent UniProt
knowledgebase reviewed (Swiss-Prot) human protein database. Fragment tolerance was set to 0.80 Da
(monoisotopic). Fixed modifications included only carbamidomethyl (C), and variable modifications
included oxidation (M), N-terminal acetylation, and phosphorylation (STY). Digestion mode was set
specific for trypsin, with a maximum of two missed cleavages. The false discovery rate was set to 0.01.
MCF10a EV data were averaged amongst replicates, then normalized to previously analyzed NCI-60
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EV proteins by multiplying the integrin spectral counts by a calculated normalization factor (average
total spectral counts per sample across all the benign and cancer breast EVs divided by the total
spectral counts identified in each sample). Whole cell protein data published by Gholami et al. [49] was
previously normalized across the NCI-60 panel [40], and integrin expression was re-analyzed in this
study. Previously published mass spectrometry analysis of EVs from an additional non-tumorigenic
prostate epithelial cell line (PNT1A) [50] was utilized to compare integrin levels to various staged
tumor-derived samples in Figure 4. Spectral counts of PNT1A EV proteins identified by Worst and
colleagues were averaged amongst replicates, then corrected by a normalization factor (average total
spectral counts identified in PC3 prostate cancer EVs in the NCI-60 panel divided by the total spectral
counts identified in PC3 EVs within the same Worst et al. study [50]). Normalized spectral count
values were used in subsequent analyses in this study.

2.5. Protein Enrichment Analyses

Differential enrichment of biological processes between proteins identified in the MCF10a EVs
and proteins identified in all six breast cancer EV samples was compared using FunRich v3 [51,52].
All terms with an adjusted p-value less than 0.5 were determined to be significant. Displayed results
reflect the processes containing the highest percentage of proteins from each dataset.

2.6. Statistical Analyses

Differential expression of NCI-60 EV integrin proteins was previously analyzed by DESeq2, as
described in detail [40]. Simple linear regression analysis was performed to examine correlations
between cellular and EV integrin levels in this study. Relationships between levels of alpha and beta
subunits secreted into EVs were similarly analyzed by linear regression analysis. Statistical significance
of integrin levels across various tumor stages was evaluated by a single factor analysis of variance
(ANOVA) with post-hoc pairwise comparisons. Confidence intervals of 95% were used. Figures were
constructed using Microsoft Excel and CorelDraw X5 software.

3. Results

3.1. Extracellular Vesicle Integrin Profiling across the NCI-60 Panel

In a prior study, we reported a comprehensive comparison of extracellular vesicle proteins secreted
from sixty human cancer cells, highlighting both common and differentially expressed cargo [40]. Here,
we closely analyze the integrin profiles of EVs harvested across the panel of cancer cells. A striking
number of integrins were found to be significantly differentially expressed across cell-derived EV
samples, including alpha integrins α2, α3, α4, α6, α7, and αv, as well as beta integrins β1, β4, β5,
and β8. As we previously highlighted [40], integrin β1 was universally present in varying levels within
EVs secreted from all cells, while other integrins were more selectively expressed (Figure 1A, Figures
S1 and S2). For instance, integrins α2, α3, α6, and αv were generally secreted into EVs from solid
tumors. On the other hand, β2 integrin subunits are present exclusively on the surface of leukocytes
and were likewise found only to be secreted along with αL into the EVs from leukemia cells in this
study. Subunits α2, α3, α6, αv, β1, and β4 comprised the vast majority of integrins secreted into cancer
EVs (Figure 1B). Interestingly, integrin β1 has been previously proposed to be more highly expressed
in vesicles secreted from cancer cells than non-tumorigenic cells [38]. Because the β1 and β4 subunit
encompassed the chief beta subunits identified in cancer EVs, commonly secreted alpha subunits
were compared to beta subunit secretion. Spectral counts of integrins α2, α3, α6, and αv were plotted
against integrin β1 and β4 spectral counts across the NCI-60 EVs (Figure S3). Integrin α3 was found to
be most often secreted in a one-to-one ratio with the β1 subunit (Figure 1C). This positive correlation
and ratio highly suggest the abundance of integrin α3β1 secreted into cancer EVs.
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were noted to correlate highly with the respective progenitor cell levels, in a nearly 1:1 ratio. Integrins 

Figure 1. Tumor extracellular vesicles display distinct integrin profiles. (A) Spectral counts of alpha
and beta integrin subunits secreted into tumor extracellular vesicles (EVs) were compared across the
NCI-60 panel of human cancer cells; (B) Breakdown of EV alpha and beta integrin subunit composition
(percentages) averaged across the NCI-60 panel; (C) Direct comparison of vesicular α3 and β1 protein
spectral counts secreted by each of the 60 cancer cell lines.

3.2. Selected Vesicle Integrin Proteins Reflect Progenitor Cell Expression

In our previous study, we also reported that many proteins secreted into EVs reflect their
progenitor cell levels, suggesting the utility of vesicle cargo as cellular biomarkers [40]. Here,
normalized spectral counts of abundant integrin subunits secreted into breast cancer EVs were
compared to whole cell levels previously published [49] (Figure 2A). Integrin α2 levels in vesicles were
noted to correlate highly with the respective progenitor cell levels, in a nearly 1:1 ratio. Integrins α3,
α6, and β4 also demonstrated positive correlations between the cell and vesicle expression, though
notably with lower coefficients of determination. Interestingly, integrin αv demonstrated a strongly



Proteomes 2019, 7, 14 6 of 13

negative correlation between cell and vesicle protein levels, perhaps suggesting a more selective
packaging of the protein into EVs. Correlations between cell and vesicle integrin levels were further
examined amongst several other epithelial cell lines. Vesicle integrins αv and β3 were positively
correlated with progenitor cell levels in kidney-derived EVs (Figure 2B), while vesicle integrins α3 and
α6 best-represented cellular levels in colonic and ovarian tissue, respectively (Figure 2C,D).
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Figure 2. Various vesicle-associated integrins represent progenitor cell expression across epithelial
cancer lines. Spectral counts of integrin subunits in (A) breast; (B) kidney; (C) colon; and (D) ovarian
cancer-derived EVs compared to respective whole cell spectral counts previously reported.

3.3. Integrin Expression Differs in Cancer Cell-Derived EVs Compared to Benign EVs

Multiple integrins secreted into breast cancer-derived EVs appeared to reflect respective cellular
protein levels. To begin to understand potential changes in tumor-derived EVs, we focused on the
further examination of the vesicle integrin profiles from breast tissue. Extracellular vesicles from the
benign breast epithelial cell line MCF10a were harvested and similarly purified for mass spectrometry
analysis (Figure 3A and Table S1). Proteins common to all six breast cancer-derived EVs were compared
to those found in MCF10a EVs (Figure 3B). Significant overlap between common cancer and benign
EV proteins was seen, although a number of proteins appeared to be present or absent only in breast
cancer cell-derived EVs. In an unbiased enrichment analysis, proteins enriched in breast cancer EVs
were involved in biological processes including integrin surface interactions, β1 integrin interactions,
and syndecan-mediated signaling (Figure 3C). Interestingly, normalized spectral count comparison of
integrin subunits across breast cell-derived EVs demonstrated significant overexpression of integrins
present in cancer EVs (Figure 3D). Only integrins α1, α6, αv, and β1 were identified in benign breast
EVs. Notably, integrin α1 appeared to be present at higher levels in benign breast EVs than most
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cancer EVs. The breakdown of common alpha and beta integrin subunits found in breast cancer EVs
closely resembled the general profile of cancer EV integrins (Figures 1B and 3E). While integrin β1
remained the predominant beta subunit in benign breast EVs, integrin α1 comprised the majority
of alpha subunits (Figure 3F). Integrins α2, α3, and α5 were not present in benign EVs compared to
cancer EVs. Differences in these expression profiles suggest that “integrin switching” may be reflected
in vesicles secreted from progenitor cancer cells.
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Figure 3. Breast cancer EV integrin profiles differ from benign breast cell-derived vesicles. (A)
Coomassie-stained gel purification of MCF10a EV proteins; (B) Overlap of total vesicle proteins
identified by mass spectrometry from MCF10a cells (benign breast) compared to those commonly
identified in all six breast cancer cell lines in the NCI-60 panel; (C) Enrichment analysis of proteins
identified in benign breast EVs versus breast cancer cell-derived EVs; (D) Spectral count comparison
of the most abundant integrin subunits secreted by benign (blue) or tumor (red) breast cells; (E)
Breakdown of EV alpha and beta integrin subunit composition (percentage of total alpha or beta
proteins, respectively) secreted from breast cancer cells; (F) Vesicle composition of integrin subunits
secreted by MCF10a breast epithelial cells (percentage of total integrins identified in samples).
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3.4. EV Integrin Levels Predict Cancer Stage

The data in this study support the hypothesis that integrin levels are likely increased in vesicles
secreted from tumorigenic breast cells compared to benign breast epithelial cells. To examine EV
integrin levels across tumor stages, breast cancer lines were categorized by the relative tumor stage
according to clinical information provided by the American Type Culture Collection (ATCC) database.
Additional NCI-60 epithelial cancer lines from colon, kidney, lung, ovarian, and prostate tissue
with available ATCC clinical information were categorized and examined here as well. As tumor
staging varies substantially across specific cancer types and is difficult to directly compare across
tissue types, staging criteria in this study was determined as follows: stage 1 denoted non-metastatic
cells (HS578T, HT29, 786-O, IGROV1, and OVCAR-3), stage 2 denoted tumors that had spread to
regional lymph nodes (BT549, HCT-15, and NCI-H522), and stage 3 included those with documented
metastasis to distant organs (MCF7, MDA-MB-231, MDA-MB-468, T47D, Colo205, SW620, CAKI,
NCI-H226, SK-OV-3, DU145, and PC3). Tumor-derived EVs were compared to vesicles secreted
from benign MCF10a cells, as well as previously published mass spectrometry analysis of benign
prostate epithelial cells (PNT1A cells) [50]. Benign MCF10a and PNT1A cells were classified as stage
0. Total spectral counts of all integrin proteins identified in cell-derived EVs were seen to increase
in samples originating from advancing stages of the tumor (Figure 4). In particular, higher levels of
integrins α6, αv, and β1 were secreted from more aggressive progenitor cancer cells. These preliminary
findings demonstrate the potential utility of circulating integrin proteins to detect early tumors and
predict more aggressive cancers.
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Figure 4. Epithelial cancer stage correlates with EV integrin levels. Spectral counts of representative
vesicle integrin subunits compared across benign and tumorigenic cancer lines. Tumor stage was
categorized based on clinical information provided by the American Type Culture Collection (ATCC)
database. Average spectral counts of integrins within each tumor stage were compared to benign
cell-derived EV levels by ANOVA. *p < 0.05, **p < 0.01.

4. Discussion

Generating increasing excitement across many scientific fields, the trafficking patterns and content
of extracellular vesicles have shed recent light onto mechanisms of cancer growth and metastasis.
In this study, we focus on the differential expression and packaging of integrin proteins into EVs from
a variety of cancer cell types. While EV integrin content may serve as a unique circulating fingerprint
representing an underlying malignancy, several integrin proteins may be similarly packaged into many
cancer-derived EVs. Here, we highlight integrin subunit β1 as a commonly secreted integrin into the
majority of EVs. Despite prior evidence suggesting the β1 subunit is only secreted in cancer-derived
EVs, here we identified this protein secreted in low levels from benign cells as well. However,
we demonstrate that in cancer cell-derived EVs, the β1 subunit specifically couples to a high degree
with the α3 subunit to form a functional integrin protein heterodimer. Interestingly, the α3β1 integrin
has been previously demonstrated to preferentially bind laminins involved in extracellular matrix
assembly [53,54] and decreased expression has been noted in many epithelial cancer cells [23,55–60].
Interaction of membrane-bound α3β1 integrin with the adjacent extracellular matrix may serve to
inhibit cellular invasion through outside-in signal transduction. Indeed, increased expression of
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several oncoproteins, including n-Myc and c-Myc have been found to be associated with decreased
cellular α3β1 integrin levels [61–63]. Given that α3β1 integrin is known to interact with several
tetraspanin proteins including CD63 and CD81 [64], it is possible that EV secretion of α3β1 integrin
may serve to decrease intracellular levels, thereby facilitating downstream oncogenic pathways.
We have previously demonstrated CD63-dependent protein secretion into EVs as a major mechanism
to regulate intracellular signaling activity in this manner [45,47].

In this study, we also identified the vesicle-associated integrin subunit α2 as highly correlated
with breast cell levels, suggesting the utility of this protein as a representative circulating biomarker.
The α2 subunit has previously been proposed as a marker of advancing colorectal cancer [65] and has
been additionally implicated in prostate cancer metastasis to the bone [66]. Vesicle levels of integrin α6
similarly reflected progenitor cell levels in breast and ovarian tissue, and furthermore was significantly
increased in EVs derived from later stage metastatic cells. These data suggest the potential utility
of EV-associated α6 protein as a marker of advancing epithelial cancer, and particularly reflective of
breast and ovarian cell expression.

Strikingly, total EV integrin levels appeared to be present in accumulating levels as the cancer
stage increased. Integrins α6, αv, and β1 were individually observed to significantly increase with
tumor stage. While this study provides profiling of EV integrins across a wide variety of progenitor
cells, we certainly acknowledge the limitation of using immortalized cell lines rather than primary
tumor specimens. While the NCI-60 panel provides the opportunity to analyze a wide variety of
cancer cell types from various tissue sources, clinical information available to researchers regarding the
original specimens is sparse. Further investigation is clearly warranted to assess the clinical application
of these vesicle integrins in the context of cancer diagnosis. Certainly, the future study of the unique
EV integrin fingerprints from varying cancer types highlighted in this study may facilitate further
application to diagnosing malignancies in clinical settings.

Finally, although beyond the scope of this study, our findings here present an opportunity to
further explore the roles of vesicle integrins in cancer metastasis and tissue targeting. As mentioned
above, significant work from the Lyden lab has provided evidence that EV integrins may guide
tissue-specific metastases into lung or liver microenvironments [38,67]. Here we expand on the
proteomic analysis of cancer cell-derived EV integrins, creating a profile across sixty unique cancer
cells with a propensity to seed to various metastatic sites. We also compare vesicle integrin expression
between benign and tumorigenic epithelial cells, demonstrating increased integrin secretion and
integrin-switching in cancer EVs that suggests a role of these vesicle proteins in cancer progression.
Altogether, the analyses conducted in this study provide evidence of widespread differences in integrin
secretion across various cancer cell types and further suggest changes in cancer EV integrins compared
to those secreted from benign cells. Given the growing body of evidence surrounding the roles of
integrin proteins in the stepwise progression of cancer and the abundance of integrins present in
cancer EVs, recognition and elucidation of the differential integrin secretion from cancer cells may
deliver novel means to understand global mechanisms of tumorigenesis and metastasis. Furthermore,
future investigations into integrin-directed EV uptake will be essential to facilitating innovative vesicle
engineering for targeted or therapeutic delivery of cargo.
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