

Article A Numerical Method for Computing Double Integrals with Variable Upper Limits

Olha Chernukha ^{1,2,*}, Yurii Bilushchak ^{1,2}, Natalya Shakhovska ³ and Rastislav Kulhánek ⁴

- ¹ Centre of Mathematical Modelling, Pidstryhach Institute of Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine, 15 Dudayev Str., 79005 Lviv, Ukraine; bil@cmm.lviv.ua
- ² Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine
- ³ Institute of Computer Sciences and Information Technologies, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine; Nataliya.B.Shakhovska@lpnu.ua
- ⁴ Department of Information Systems, Faculty of Management, Comenius University, Odbojárov 10, 814 99 Bratislava, Slovakia; rastislav.kulhanek@fm.uniba.sk
- * Correspondence: cher@cmm.lviv.ua

Abstract: We propose and justify a numerical method for computing the double integral with variable upper limits that leads to the variableness of the region of integration. Imposition of simple variables as functions for upper limits provides the form of triangles of integration region and variable in the external limit of integral leads to a continuous set of similar triangles. A variable grid is overlaid on the integration region. We consider three cases of changes of the grid for the division of the integration region into elementary volumes. The first is only the size of the imposed grid changes with the change of variable of the external upper limit. The second case is the number of division elements changes with the change of the external upper limit variable. In the third case, the grid size and the number of division elements change after fixing their multiplication. In these cases, the formulas for computing double integrals are obtained based on the application of cubatures in the internal region of integration and performing triangulation division along the variable boundary. The error of the method is determined by expanding the double integral into the Taylor series using Barrow's theorem. Test of efficiency and reliability of the obtained formulas of the numerical method for three cases of ways of the division of integration region is carried out on examples of the double integration of sufficiently simple functions. Analysis of the obtained results shows that the smallest absolute and relative errors are obtained in the case of an increase of the number of division elements changes when the increase of variable of the external upper limit and the grid size is fixed.

Keywords: double integral; variable upper limit; variable integration region; division element; variable grid; cubature; triangulation; Taylor series; absolute error; relative error

1. Introduction

When solving various engineering and scientific problems, we fail to deal with the necessity to calculate double integrals with variable integration limits. Thus, the analytical solution for the problem of migration of contaminants with a solving in multilayered water filters can be obtained only in integral form. Then, the resulting solution must be integrated once again to determine the concentration of particles absorbed on the filter skeleton over a certain time interval. In this case, the time variable which is in the upper limit of the external integral should not be considered as a parameter, because to establish the optimal regimes of operation of industrial filters still need to solve numerically the functional equation containing this double integral over a time interval of unknown length [1–4]. Similar problems arise for

determining the amount of radioactive contamination that gets groundwater during radiation pollution of the soil,

Citation: Chernukha, O.; Bilushchak, Y.; Shakhovska, N.; Kulhánek, R. A Numerical Method for Computing Double Integrals with Variable Upper Limits. *Mathematics* 2022, *10*, 108. https://doi.org/ 10.3390/math10010108

Academic Editors: Theodore E. Simos and Charampos Tsitouras

Received: 17 November 2021 Accepted: 24 December 2021 Published: 30 December 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

- the quantity of heat that a multiphase porous body can lose or get,
- determining the loss of alloying doping impurities of reinforced material during intensive exploitation of the object in conditions of the aggressive external environment, etc. [5–7].

Therefore, it is necessary to develop numerical methods for integrating double integrals with variable limits and an intricate integrand.

In the literature (for example, [8–10]) methods of double integration have been developed, but within definite limits.

The first method explicitly devised for multiple integrals was published in 1877 in a paper by James Clerk Maxwell [11] proposed the formulas for the rectangle and the rectangular parallelopipedon [12]. After the 1950s, several new methods were devised, which have begun to make the numerical evaluation of multiple integrals available as a working tool for scientists and engineers [13]. Krylov, V. I. and I. P. Mysovskikh made a significant contribution to the theory of approximate calculation of integrals [14,15]. General overviews to the problems of numerical approximation of multiple integrals are contained in [13,16]. Encyclopedic work on multiple numerical integrations was published by Arthur H. Stroud [17]. Cubature formulas have been developed for different regions of integration, namely cubature formulas for the cube [17,18], for triangle [18,19], for the sphere [20], for the space with weight function $\exp(-r^2)$ [16,21], for the space with weight function $\exp(-r)$ [16,22] and for the simplex [23,24]. In addition, we can mention the class of Monte Carlo methods, which has been extended by S. M. Ulam and John von Neumann [25,26]. Monte Carlo methods are constructed on a fundamentally different basis. They use random sampling to obtain numerical results, but an aleatory generation of points makes the problem more dependent on luck, increasing the chance of obtaining uncertainties in the results [27–29].

As concerns double and multiple integrals, numerical integration methods are developed to calculate the definite integrals and the integrals with definite limits in the external integration [1] and solve Volterra's integral equations [30], i.e., the regions of integration are constant or fixed. In the work [19], it collects together theoretical results in the area of numerical cubature over triangles. The theory relating to regular integrands and the corresponding theory of singular integrands are considered here. The existence of cubature formulas for planar regions was shown by A. H. Stroud, which used m² points with polynomial precision 2 m⁻¹ [30,31]. Thus, in [32], sufficient conditions are formulated for the existence of cubature formulas using fewer than m² of points with the same polynomial accuracy.

As a rule, only elements that are fully within the scope of the integration region are taken into account, while others are rejected. As a result, the problem of assurance of the accuracy of the calculations, because to increase the accuracy it is proposed increasing the number of elements of the division, i.e., compressing the grid, and in turn for complex and intricate integrands, this leads to a significant accumulation of computational error.

Approximations of the double integral $\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$ are obtained under the assumption that the partial derivatives of the integrand belong to the Lebesgue space L_p for certain $1 \le p \le \infty$ [33]. In this case, it is not enough to satisfy the condition that integrand f(x, y) is a simple integrated function. So it is necessary to impose additional restrictions: if the integrand is real in the domain $\Omega = [a; b] \times [c; d]$ then the formulas for numerical integration of the double integral exist under the assumption that the mixed partial derivative f_{xy} belongs to one of the Lebesgue spaces $L_p(\Omega)$ for some $1 \le p \le \infty$ (if $p = \infty$, then f(x, y) is a continuously differentiable function of both variables). Thus, it is assumed that the norm $||f_{xy}||_p$ is limited. Moreover, the integration error can be estimated in the terms of the norm $||f_{xy}||_p$ [33].

In the case of double integral with variable limits, it is not possible to estimate the calculation error by classical methods. Moreover, the variable limits of the integral

$$I(\tau) = \int_{0}^{g_{1}(\tau)} \int_{0}^{g_{2}(\tau')} f(\tau', \tau'', \tau) d\tau'' d\tau'$$
(1)

are functions of independent variables τ , $\tau' \in [0; \infty)$ that leads to variableness of the integration region.

We suppose that integral (1), functions $f(\tau', \tau'', \tau)$, $g_1(\tau)$ and $g_2(\tau')$ satisfy necessary restrictions (in particular, functions $g_1(\tau)$, $g_2(\tau')$ are continuous functions of their arguments). Without loss of generality, we can accept that $g_1(\tau) = \tau$ and $g_2(\tau') = \tau'$, because, if the inverse functions $g_1^{-1}(\tau)$ and $g_2^{-1}(\tau')$ exist, then using change of variables $t = g_1(\tau)$ and $t' = g_2(\tau')$ the integral (1) can be reduced to the form

$$I(\tau) \equiv I\left(g_1^{-1}(t)\right) = \int_0^t \int_0^{t'} f(t', \tau'', t) \frac{\partial g_2^{-1}(t')}{\partial t'} d\tau'' dt'.$$
 (2)

Note that zero values of the lower limits of integration can be obtained using the additive property of an integral.

2. Construction of Formula for Computing Double Integrals with Variable Upper Limits

A method of numerical integration of double integrals with variable upper limits, which we propose, may be divided into such steps:

- determination of integration region;
- overlaying square or rectangular grid on the integration region;
- decomposing of integration region into subregions, which consist of square (rectangular) and triangular elements;
- application of cubatures in the subdomain consisting of square elements;
- realization of triangulation division along the variable boundary $\tau'' = \tau'$;
- calculating the volumes of elementary elements based on triangles;
- calculation of the original integral;
- determination of calculation error.

2.1. Determination of Integration Region

The region of integration of the integrand (1) in the space $O\tau\tau'\tau''$ has the form of an inclined triangle (Figure 1). Taking into account that τ is a variable, i.e., it changes continuously in \Re or in the interval $[0;\infty)$ (for example, if τ is time) or in any closed interval, then with the change of τ the region of integration in space $O\tau\tau'\tau''$ remains a triangle. The change of variable τ leads to a change in the maximum values of τ' and τ'' .

For $\tau = \tau_1$ we have max $\tau' = \max \tau'' = \tau_1$, and for $\tau = \tau_2$ we have max $\tau' = \max \tau'' = \tau_2$ (Figure 1a). These regions are similar triangles that are in parallel planes, i.e., they are at the same angle θ to the plane $O\tau'\tau''$ (Figure 1a). However, an area of the surface of integration changes. For $\tau = 0$ the integration, the region is the point (0, 0, 0).

Figure 1. Region of integration in the space $O\tau\tau'\tau''$ (**a**) and schematic representation of the set of integration regions in the space $O\tau'\tau''z$ (**b**).

Let us make a projection of the surface of integration on the plane $O\tau'\tau''$ (Figure 1b). Then we obtain the set of regions of integration in the space $O\tau'\tau''z$.

As a result, we obtain a family of integrands parameterized by the variable τ (Figure 2).

Figure 2. Schematic representation of the set of integrands in the space $O\tau'\tau''z$.

2.2. Overlaying a Grid for the Variable Region of Integration

Let us overlay a square grid on the projection of the integration region (Figure 3a). Then we take into account the variableness of the integration region. Note, that with changes of value of τ either the number of division elements N_{el} or the width of the grid (step) *h* can change, i.e., $N_{el} = N_{ei}(\tau)$, $h = h(\tau)$ and $h(\tau) = \frac{\tau}{N_{el}(\tau)}$.

If we consider that the integration region *S* is a triangle, then with increasing τ from t_1 to t_2 the integration region remains a triangle, increases, and the area of the additional region S_a increases by $S_a = (t_2^2 - t_1^2)/2$ (Figure 3b). Then, if the grid for $\tau = t_1$ ($N_{el} = N_{ei}(t_1)$, $h = h(t_1)$) is fixed, then at the same step *h* the number of division elements increases by $N_a = \frac{t_2 - t_1}{h}$ elements. If we fix the number of division elements N_{el} , then with the changing τ from t_1 to t_2 there is a change in the width of the grid $h = \frac{t_2}{N_{el}}$. Note that the number of elements and the width of the grid can change together, and the relation $hN_{el} = t_2$ is always fulfilled.

Figure 3. Decomposition of the integration region for fixed τ (**a**) and of the integration region for increasing τ from t_1 to t_2 (**b**).

At the same time, if necessary, the additional region S_a can be divided with a different grid from the grid of the region S with the width $h_{t_2} = \frac{t_2 - t_1}{N_a}$.

Analogous reasoning can be made for the rectangular grid, but we restrict ourselves to the case of the square grid.

2.3. Formula for Finding a Double Integral with Variable Upper Limits

We break up the integration region $S(\tau)$ into $N_{el}(\tau)$ small subregions. Then we apply the cubature formula with the weight function $w(\tau', \tau'') \equiv 1$. Depending on the number of division elements changes or the grid width changes when changing the variable τ we get the following cases.

(A) With the change of τ , only the size of the imposed grid $h(\tau)$ changes

$$\int_{0}^{\tau} \int_{0}^{\tau'} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{el}^{N_{el}} \iint_{(V_{el}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau',$$
(3)

(B) With the change of τ , only the number of division elements $N_{el}(\tau)$ changes

$$\int_{0}^{\tau} \int_{0}^{\tau'} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{el}^{N_{el}(\tau)} \iint_{(V_{el})} f(\tau', \tau'', \tau) d\tau'' d\tau',$$
(4)

(C) With the change of τ , both the size of the grid and the number of division elements change

$$\int_{0}^{\tau} \int_{0}^{\tau'} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{el}^{N_{el}(\tau)} \iint_{(V_{el}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau',$$
(5)

where V_{el} is the volume of the individual element of division of the integration region.

As a result of the division of the integration region, we obtained square (Figure 4a) and triangular (Figure 4b) elements. Here the summation is carried out over all elements $\bigcup_{el} V_{el} = [0, \tau'] \times [0, \tau]$.

Figure 4. Subregions consisting of square (a) and triangular (b) elements at the fixed τ .

We separate square and triangular elements:

$$(A) \sum_{el}^{N_{el}} \iint_{(V_{el}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{sq_{el}}^{N_{sq_{el}}} \iint_{(V_{sq_{el}}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau' + \sum_{tr_{el}}^{N_{tr_{el}}} \iint_{(V_{tr_{el}}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau',$$
(6)

$$(B)\sum_{el}^{N_{el}(\tau)} \iint_{(V_{el})} f(\tau',\tau'',\tau) d\tau'' d\tau' = \sum_{sq_{el}}^{N_{sq_{el}}(\tau)} \iint_{(V_{sq_{el}})} f(\tau',\tau'',\tau) d\tau'' d\tau' + \sum_{tr_{el}}^{N_{tr_{el}}(\tau)} \iint_{(V_{tr_{el}})} f(\tau',\tau'',\tau) d\tau'' d\tau',$$
(7)

$$(C)\sum_{el}^{N_{el}(\tau)} \iint_{(V_{el}(\tau))} f(\tau',\tau'',\tau) d\tau'' d\tau' = \sum_{sq_{el}}^{N_{sq_{el}}(\tau)} \iint_{(V_{sq_{el}}(\tau))} f(\tau',\tau'',\tau) d\tau'' d\tau' + \sum_{tr_{el}}^{N_{tr_{el}}(\tau)} \iint_{(V_{tr_{el}}(\tau))} f(\tau',\tau'',\tau) d\tau'' d\tau',$$
(8)

where sq_{el} is the square element, tr_{el} is the triangular element, $N_{sq_{el}}$ and $N_{tr_{el}}$ are the numbers of square and triangular elements, $V_{sq_{el}}$ and $V_{tr_{el}}$ are the volumes of square and triangular elements,

Let us select the elements V_{el} , which are squares (Figure 4a). Here we apply numerical integration in cubatures. So, we have

$$(A) \iint_{\substack{\bigcup \\ sq_{el} \\ sq_{el}}} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{sq_{el}}^{N_{sq_{el}}} \iint_{(V_{sq_{el}}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} h^{2}(\tau) f(\tau'_{i}, \tau''_{j}, \tau),$$
(9)

 $n \equiv const$, $n \in N$, n - 1 is the number of square elements in the longest line, $h(\tau)$ is the grid width depending on τ .

$$(B) \iint_{\substack{\bigcup \\ sq_{el}(\tau)}} f(\tau',\tau'',\tau) d\tau'' d\tau' = \sum_{sq_{el}}^{N_{sq_{el}}(\tau)} \iint_{(V_{sq_{el}})} f(\tau',\tau'',\tau) d\tau'' d\tau') = \sum_{i=1}^{n(\tau)-1} \sum_{j=i+1}^{n(\tau)} h^2 f(\tau'_i,\tau''_j,\tau),$$
(10)

 $h \equiv const$, $n(\tau)$ changes with changing τ .

$$(C) \iint_{\substack{\bigcup \\ sq_{el}(\tau)}} f(\tau',\tau'',\tau) d\tau'' d\tau' = \sum_{sq_{el}}^{N_{sq_{el}}(\tau)} \iint_{(V_{sq_{el}}(\tau))} f(\tau',\tau'',\tau) d\tau'' d\tau' = \sum_{i=1}^{n(\tau)-1} \sum_{j=i+1}^{n(\tau)} h^{2}(\tau) f(\tau'_{i},\tau''_{j},\tau),$$
(11)

 $n(\tau)$ and $h(\tau)$ change with changing τ . Note that $h(\tau) = \tau/n(\tau)$. Consider the subregion consisting of triangles only (Figure 4b). The sum of the volumes of the elements with a triangular base takes the form

(A)
$$\sum_{tr_{el}} \iint_{(V_{tr_{el}}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{i=1}^{n} h^2(\tau) f(\tau'_i, \tau''_i, \tau),$$
 (12)

(B)
$$\sum_{tr_{el}(\tau)} \iint_{(V_{tr_{el}})} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{i=1}^{n(\tau)} h^2 f(\tau'_i, \tau''_i, \tau),$$
 (13)

(C)
$$\sum_{tr_{el}(\tau)} \iint_{(V_{tr_{el}}(\tau))} f(\tau', \tau'', \tau) d\tau'' d\tau' = \sum_{i=1}^{n(\tau)} h^2(\tau) f(\tau'_i, \tau''_i, \tau),$$
(14)

where *n* is the number of triangular elements; $\tau'_{i+1} = \tau'_i + h(\tau)$; τ'_i and τ''_i are the values of τ' and τ'' in the *i*th node (the *i*-th triangular elements).

Note that the number of triangular elements is 1 more than the square elements in the longest line.

By Formulas (6)–(8), we sum the relations (9)–(11) and (12)–(14) respectively. Then we obtain the formulas of numerical integration for a double integral with variable upper limits:

(A)
$$\int_{0}^{\tau} \int_{0}^{\tau'} f(\tau', \tau'', \tau) dx dy \approx \left(\frac{1}{2} \sum_{i=1}^{n} h^2(\tau) f(\tau'_i, \tau''_i, \tau) + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} h^2(\tau) f(\tau'_i, \tau''_j, \tau) \right),$$
(15)

(B)
$$\int_{0}^{\tau} \int_{0}^{\tau'} f(\tau', \tau'', \tau) dx dy \approx \left(\frac{1}{2} \sum_{i=1}^{n(\tau)} h^2 f(\tau'_i, \tau''_i, \tau) + \sum_{i=1}^{n(\tau)-1} \sum_{j=i+1}^{n(\tau)} h^2 f(\tau'_i, \tau''_j, \tau) \right),$$
(16)

$$(C) \int_{0}^{\tau} \int_{0}^{\tau'} f(\tau',\tau'',\tau) dx dy \approx \left(\frac{1}{2} \sum_{i=1}^{n(\tau)} h^2(\tau) f(\tau'_i,\tau''_i,\tau) + \sum_{i=1}^{n(\tau)-1} \sum_{j=i+1}^{n(\tau)} h^2(\tau) f(\tau'_i,\tau''_j,\tau) \right),$$
(17)

where $\tau'_{i+1} = \tau'_i + h(\tau); \tau''_{i+1} = \tau''_i + h(\tau).$

Schematically, such a method of numerical integration for a double integral with variable upper limits at a fixed value of τ is presented in Figure 5.

Figure 5. Scheme of numerical double integration with variable upper limits for the fixed τ .

3. Error of Numerical Integration

We find the error of numerical integration by the Taylor formula [34,35]. The main term of the error is [36,37].

$$R(\tau) = \int_{0}^{\tau} \int_{0}^{\tau'} f(\tau, \tau', \tau'') d\tau'' d\tau' - S(\tau) \cdot f(\tau, \tau'_{c}, \tau''_{c}),$$
(18)

where $S(\tau)$ is the area of the region of integration, (τ'_c, τ''_c) is the central point of the region of integration.

We choose the central point of the integration region (τ'_c, τ''_c) in the vicinity of which we expand the function

$$F(\tau,\tau',\tau'') = \int_0^\tau \int_0^{\tau'} f(\tau,\tau',\tau'') d\tau'' d\tau'$$

into the Taylor series

$$F(\tau, \tau', \tau'') = F(\tau, \tau'_c, \tau''_c) + (\tau' - \tau'_c)F'_{\tau'}(\tau, \tau'_c, \tau''_c) + (\tau'' - \tau''_c)F'_{\tau''}(\tau, \tau'_c, \tau''_c) + \dots$$

Note that the function $F(\tau, \tau', \tau'')$ can be expanded into a Taylor series if in some vicinity of the point (τ'_c, τ''_c) its continuous partial derivatives exist up to n + 1 order [38].

Let $f(\tau, \tau', \tau'')$ be continuous in the domain $[0, \tau] \times [0, \tau]$. Then it is integrated into this domain, as well as integrated into any subdomain of $[0, \tau] \times [0, \tau']$ [38]. Then $F(\tau, \tau', \tau'')$ is continuous in the domain $[0, \tau] \times [0, \tau]$. If $f(\tau, \tau', \tau'')$ is continuous in the domain $[0, \tau] \times [0, \tau]$. If $f(\tau, \tau', \tau'')$ is continuous in the domain $[0, \tau] \times [0, \tau]$. If $f(\tau, \tau', \tau'')$ is continuous in the domain $[0, \tau] \times [0, \tau]$.

Taking into consideration that $F(\tau, \tau', \tau'')$ is the double integral with variable upper limits, we obtain (by the analogy of double integration in cubatures)

$$F(\tau,\tau'_{c},\tau''_{c}) = \int_{0}^{\tau} \int_{0}^{\tau'_{c}} f(\tau,\tau'_{c},\tau''_{c}) d\tau'' d\tau' = f(\tau,\tau'_{c},\tau''_{c}) \int_{0}^{\tau} \int_{0}^{\tau'_{c}} d\tau'' d\tau' = f(\tau,\tau'_{c},\tau''_{c}) \tau\tau'_{c};$$

$$F'_{\tau'}(\tau,\tau'_{c},\tau''_{c}) = \int_{0}^{\tau} \int_{0}^{\tau'_{c}} f'_{\tau'}(\tau,\tau',\tau''_{c})|_{\tau'=\tau'_{c}} d\tau'' d\tau' = \int_{0}^{\tau} f(\tau,\tau'_{c},\tau''_{c}) d\tau' = f(\tau,\tau'_{c},\tau''_{c}) \tau;$$

$$F'_{\tau''}(\tau,\tau'_{c},\tau''_{c}) = \int_{0}^{\tau} \int_{0}^{\tau'_{c}} f'_{\tau''}(\tau,\tau'_{c},\tau'')|_{\tau''=\tau''_{c}} d\tau'' d\tau'' = f'_{\tau''}(\tau,\tau'_{c},\tau''_{c})|_{\tau''=\tau''_{c}} \tau\tau'_{c};$$

...

Here we have used Barrow's theorem [38]

$$\left(\int_{a}^{t} f(x)dx\right)' = f(t)$$

Note that as distinct from double integrating within the definite limits, the first derivatives do not disappear and must be taken into account. We include them in error.

We will write down separately the errors for triangular and square elements. The integration error (18) for each triangular element takes the form

$$R_{i}(\tau) = 1/2S_{tr_{el}i}(\tau) \left(h(\tau)F'_{\tau'}(\tau,\tau'_{c},\tau''_{c}) + h(\tau)F'_{\tau''}(\tau,\tau'_{c},\tau''_{c}) \right) \left(i = \overline{1,n(\tau)} \right).$$
(19)

The error of integration (18) for each square element is

$$R_{ij}(\tau) = 1/24S_{sq_{el}ij}(\tau) \left(h^2(\tau) F''_{\tau'\tau'}(\tau, \tau'_c, \tau''_c) + h^2(\tau) F''_{\tau''\tau''}(\tau, \tau'_c, \tau''_c) \right) \left(i = \overline{1, n(\tau) - 1}, \ j = \overline{i + 1, n(\tau)} \right).$$
(20)

Here $S_{tr_{el}i}(\tau)$ and $S_{sq_{el}ij}(\tau)$ are areas of the *i*th triangular element and the *ij*th square element accordingly.

Summing the expressions (19) and (20) for the region in which the integral is defined, we obtain the error of our method

$$R(\tau) \approx \frac{h(\tau)}{2} \left(\iint_{(V_{quad_{el}}(\tau))} F'_{\tau'}(\tau, \tau', \tau'') d\tau' d\tau'' + \iint_{(V_{quad_{el}}(\tau))} F'_{\tau''}(\tau, \tau', \tau'') d\tau' d\tau'' \right) + \frac{h^{2}(\tau)}{24} \left(\iint_{(V_{triangular_{el}}(\tau))} F''_{\tau'\tau'}(\tau, \tau', \tau'') d\tau' d\tau'' + \iint_{(V_{triangular_{el}}(\tau))} F''_{\tau''\tau''}(\tau, \tau', \tau'') d\tau' d\tau'' \right)$$
or
$$R(\tau) = O(2h(\tau) + 2h^{2}(\tau)) = O(2h(\tau)).$$
(21)

Since higher degrees of $h(\tau)$ are rejected in the estimates (19) and (20), the relation for the error (21) is asymptotic, and it is satisfied at $h(\tau) \rightarrow 0$ with an accuracy to the terms of a higher order of smallness than $h(\tau)$.

If we impose the definite limits of integration, the obtained Formula (21) is reduced to the classical formula for the error by the expansion of an integrand into the Taylor series and estimation of the error of the method takes the form $R(\tau) = O(2h^2(\tau))$.

4. Examples of Numerical Integration for the Double Integral with Variable Upper Limits

To test the efficiency and reliability of the obtained formulas of the numerical method, we apply it to the integration of sufficiently simple functions for which the integration expression can be found analytically.

I. Let such an integrand be given $f(\tau', \tau'') = \tau' \tau''$. The surface formed by the function $f(\tau', \tau'')$ over the integration region is shown in Figure 6.

Figure 6. The surface generated by the function $f(\tau', \tau'') = \tau'\tau''$.

Then we calculate the integral $I_{num} = \int_{0}^{\tau} \int_{0}^{\tau'} \tau' \tau'' d\tau' d\tau''$ by Formulas (15)–(17) depending on the number of division elements changes and the grid width and analytically, namely $I_{analyt} = \frac{1}{8}\tau$.

The results of calculations are shown in Tables 1–4 for different numbers of triangular elements $n(\tau)$ and grid width $h(\tau)$. It is given the values of the total volumes of square $V_{sq_{el}}$ and triangular $V_{tr_{el}}$ elements, the difference between the analytical and numerical calculation $|I_{analyt} - I_{num}|$, as well as the relative error $E(\tau) = |I_{analyt} - I_{num}/I_{analyt}|$ [39,40]. We choose such basic values of parameters $n(1) = 10^4$, $h(1) = 10^{-4}$.

Table 1 shows the corresponding values for the case when only the size of the imposed grid $h(\tau)$ changes with the change of τ , (A). The calculated values for the case when only the number of division elements $N_{el}(\tau)$ changes. With the change of τ , (B) are presented in Table 2. In Tables 3 and 4 it is shown the corresponding values of integration parameters for the case when with the change of τ , both the size of the grid and the number of division elements change (C). The change in the number of nodes in Table 3 is described by the

increasing function $n(\tau) = 10^4 \cdot \sqrt[3]{\tau}$, then $h(t) = 10^{-4} \cdot \sqrt[3]{\tau^2}$. The change in the number of nodes in Table 4 is described by the decreasing function $n(\tau) = 10^4 / \sqrt[3]{\tau}$, and then $h(t) = 10^{-4} \cdot \sqrt[3]{\tau^4}$.

Figure 7 demonstrates comparative graphs of absolute and relative errors in numerical integration by Formula (15) of the case of A, (16) of the case of B, (17) of the cases of C1 for increasing function $n(\tau)$ and C2 for decreasing $n(\tau)$.

Table 1. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \tau' \tau'' d\tau' d\tau''$ for the case of A.

<i>n</i> (τ)	$h(\tau)$	τ	V _{sqel}	V _{trel}	Ianalyt	Inum	$ I_{analyt} - I_{num} $	Ε(τ)
104	0.0001	1	0.124983331	0.000016667	0.125	0.124999998	$2 imes 10^{-9}$	$1.999999992 imes 10^{-8}$
10^{4}	0.0002	2	1.999733293	0.000266667	2	1.99999996	$4 imes 10^{-8}$	$1.999999992 imes 10^{-8}$
10^{4}	0.0003	3	10.123649798	0.00135	10.125	10.124999798	$2.03 imes10^{-7}$	$2.000000004 imes 10^{-8}$
10^{4}	0.0004	4	31.995732693	0.004266667	32	31.99999936	$6.4 imes10^{-7}$	$1.999999992 imes 10^{-8}$
10^{4}	0.0005	5	78.114581771	0.010416667	78.125	78.124998438	1.562×10^{-6}	$1.999999987 imes 10^{-8}$
10^{4}	0.0006	6	161.97839676	0.0216	162	161.99999676	$3.24 imes10^{-6}$	$2.000000004 imes 10^{-8}$
10^{4}	0.0007	7	300.084977331	0.040016667	300.125	300.124993998	$6.002 imes 10^{-6}$	$1.999999967 imes 10^{-8}$
10^{4}	0.0008	8	511.931723094	0.068266666	512	511.99998976	$1.024 imes10^{-5}$	$1.999999992 imes 10^{-8}$
10^{4}	0.0009	9	820.015633598	0.109350000	820.125	820.124983598	1.6402×10^{-5}	$1.999999987 imes 10^{-8}$
10^{4}	0.001	10	1249.833308334	0.166666666	1250	1249.999975	2.5×10^{-5}	$1.999999987 imes 10^{-8}$
10^{4}	0.0011	11	1829.880946731	0.244016666	1830.125	1830.12496339	3.6603×10^{-5}	$2.000000001 imes 10^{-8}$
10^{4}	0.0012	12	2591.654348161	0.345599999	2592	2591.99994816	$5.184 imes10^{-5}$	$2.000000004 imes 10^{-8}$
10^{4}	0.0013	13	3569.648911932	0.476016665	3570.125	3570.12492859	$7.1402 imes 10^{-5}$	$1.999999996 imes 10^{-8}$
10^{4}	0.0014	14	4801.359637295	0.640266665	4802	4801.99990396	9.604×10^{-5}	$1.999999967 imes 10^{-8}$
10^{4}	0.0015	15	6327.28112344	0.843749998	6328.125	6328.12487343	1.26562×10^{-4}	$1.999999974 imes 10^{-8}$
10^{4}	0.0016	16	8190.907569496	1.092266664	8192	8191.99983616	$1.6384 imes 10^{-4}$	$1.999999992 imes 10^{-8}$
10^{4}	0.0017	17	$1.0438732774534 \times 10^4$	1.392016663	$1.044 imes 10^4$	1.0440124791×10^4	$2.08803 imes 10^{-4}$	$2.00000001 imes 10^{-8}$
10^{4}	0.0018	18	$1.3120250137564 \times 10^4$	1.749599996	13122	1.3121999737×10^4	2.6244×10^{-4}	$1.999999987 imes 10^{-8}$
10^{4}	0.0019	19	$1.6287952657536 \times 10^4$	2.172016661	$1.629 imes10^4$	$1.6290124674 imes 10^4$	$3.25802 imes 10^{-4}$	$1.999999984 imes 10^{-8}$
104	0.002	20	$1.9997332933340 \times 10^4$	2.666666660	$2 imes 10^4$	$1.99999996 imes 10^4$	$4 imes 10^{-4}$	$1.999999987 imes 10^{-8}$

Fable 2. Calculation of integral	$\int_{0}^{\tau} \int_{0}^{\tau'} \tau' \tau'' d\tau' d\tau'' \text{ for the case B.}$
	0 0

<i>n</i> (τ)	$h(\tau)$	τ	V _{sq_{el}}	V _{trel}	I _{analyt}	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)
104	0.0001	1	0.124983331	$1.67 imes 10^{-5}$	0.125	0.124999998	$2.5 imes10^{-9}$	$2 imes 10^{-8}$
$2 imes 10^4$	0.0001	2	1.999866657	0.000133333	2	1.99999999	10^{-8}	$5 imes 10^{-9}$
$3 imes 10^4$	0.0001	3	10.12454998	0.00045	10.125	10.12499998	$2.25 imes 10^{-8}$	2.2222×10^{-9}
$4 imes 10^4$	0.0001	4	31.99893329	0.001066667	32	31.99999996	$4 imes 10^{-8}$	$1.25 imes 10^{-9}$
5×10^4	0.0001	5	78.1229166	0.002083333	78.125	78.12499994	$6.25 imes10^{-8}$	$8 imes 10^{-9}$
$6 imes 10^4$	0.0001	6	161.9963999	0.0036	162	161.9999999	$9.00002 imes 10^{-8}$	$5.5556 imes 10^{-10}$
$7 imes 10^4$	0.0001	7	300.1192832	0.005716667	300.125	300.1249999	1.225×10^{-7}	$4.0816 imes 10^{-10}$
$8 imes 10^4$	0.0001	8	511.9914665	0.008533333	512	511.9999998	1.60001×10^{-7}	$3.1250 imes 10^{-10}$
$9 imes 10^4$	0.0001	9	820.1128498	0.01215	820.125	820.1249998	2.02501×10^{-7}	$2.4692 imes 10^{-10}$
$10 imes 10^4$	0.0001	10	1249.983333	0.016666667	1250	1250	2.50003×10^{-7}	$2 imes 10^{-10}$
$11 imes 10^4$	0.0001	11	1830.102816	0.022183333	1830.125	1830.125	3.02503×10^{-7}	1.6529×10^{-10}
$12 imes 10^4$	0.0001	12	2591.9712	0.0288	2592	2592	3.60004×10^{-7}	$1.3889 imes 10^{-10}$
$13 imes 10^4$	0.0001	13	3570.088383	0.036616667	3570.125	3570.125	4.22503×10^{-7}	$1.1834 imes 10^{-10}$
$14 imes 10^4$	0.0001	14	4801.954266	0.045733333	4802	4802	4.90006×10^{-7}	$1.0204 imes 10^{-10}$
$15 imes 10^4$	0.0001	15	6328.068749	0.05625	6328.125	6328.124999	5.62506×10^{-7}	$8.8890 imes 10^{-11}$
$16 imes 10^4$	0.0001	16	8191.931733	0.068266667	8192	8191.999999	$6.40006 imes 10^{-7}$	$7.8126 imes 10^{-11}$
$17 imes 10^4$	0.0001	17	$1.044004312 imes 10^4$	0.081883333	$1.0440125 imes 10^4$	$1.0440125 imes 10^4$	7.22506×10^{-7}	$6.9205 imes 10^{-11}$
$18 imes 10^4$	0.0001	18	$1.31219028 imes 10^4$	0.0972	1.3122×10^4	1.3122×10^{4}	$8.10030 imes 10^{-7}$	$6.1731 imes 10^{-11}$
$19 imes 10^4$	0.0001	19	$1.629001068 imes 10^4$	0.114316667	$1.6290125 imes 10^4$	1.6290125×10^4	$9.02534 imes 10^{-7}$	$5.5404 imes 10^{-11}$
$20 imes 10^4$	0.0001	20	$1.999986667 imes 10^4$	0.133333333	$2 imes 10^4$	$2 imes 10^4$	$1.00003 imes 10^{-6}$	$5.0002 imes 10^{-11}$

<i>n</i> (τ)	$h(\tau)$	τ	V _{sq_{el}}	V _{trel}	I _{analyt}	Inum	$ I_{analyt} - I_{num} $	$E(\tau)$
$1 imes 10^4$	0.0001	1	0.1249833308	0.0000166667	0.125	0.1249999975	$2.5 imes10^{-9}$	$2 imes 10^{-8}$
$1.2599 imes 10^4$	0.000159	2	1.9997883178	0.000211657	2	1.9999999748	$2.5199263 imes 10^{-8}$	$1.26 imes 10^{-8}$
$1.4422 imes 10^4$	0.000208	3	10.1240638327	0.0009360699	10.125	10.1249999026	$9.735854 imes 10^{-8}$	$9.616 imes10^{-9}$
$1.5874 imes10^4$	0.000252	4	31.9973119127	0.0026878334	32	31.999999746	$2.539845 imes 10^{-7}$	$7.937 imes10^{-9}$
$1.71 imes 10^4$	0.000292	5	78.1189078477	0.0060916179	78.125	78.1249994656	$5.3435247 imes 10^{-7}$	$6.84 imes10^{-9}$
$1.8171 imes 10^4$	0.00033	6	161.9881119459	0.0118870728	162	161.9999990187	$9.8126738 imes 10^{-7}$	$6.057 imes10^{-9}$
$1.9129 imes10^4$	0.000366	7	300.1040789876	0.020919372	300.125	300.1249983596	$1.640392 imes 10^{-6}$	$5.466 imes 10^{-9}$
$2 imes 10^4$	0.0004	8	511.9658641067	0.0341333333	512	511.99999744	$2.5599998 imes 10^{-6}$	$5 imes 10^{-9}$
$2.0801 imes 10^4$	0.000433	9	820.0724266211	0.052569588	820.125	820.1249962091	$3.7908936 imes 10^{-6}$	$4.622 imes 10^{-9}$
$2.1544 imes 10^4$	0.000464	10	1249.9226335542	0.0773610595	1250	1249.9999946137	$5.3862598 imes 10^{-6}$	$4.309 imes10^{-9}$
$2.224 imes 10^4$	0.000495	11	1830.0152728757	0.1097197242	1830.125	1830.1249925998	$7.4001611 imes 10^{-6}$	$4.044 imes10^{-9}$
$2.2894 imes10^4$	0.000524	12	2591.849033527	0.1509565824	2592	2591.9999901094	$9.8905776 imes 10^{-6}$	$3.816 imes10^{-9}$
$2.3513 imes 10^4$	0.000553	13	3569.922538794	0.2024482909	3570.125	3570.1249870849	1.2915086×10^{-5}	$3.618 imes10^{-9}$
$2.4101 imes 10^4$	0.000581	14	4801.7343236731	0.2656597927	4802	4801.9999834658	$1.6534156 imes 10^{-5}$	$3.443 imes10^{-9}$
$2.4662 imes 10^4$	0.000608	15	6327.782853654	0.3421255371	6328.125	6328.1249791911	$2.0808869 imes 10^{-5}$	$3.288 imes10^{-9}$
$2.5198 imes 10^4$	0.000635	16	8191.56650064	0.4334735559	8192	8191.999974196	$2.5804043 imes 10^{-5}$	$3.15 imes10^{-9}$
$2.5713 imes 10^4$	0.000661	17	$1.04395836015357 \times 10^4$	0.541366883	$1.044 imes 10^4$	$1.04401249684 imes 10^4$	$3.1581314 imes 10^{-5}$	3.025×10^{-9}
$2.6207 imes 10^4$	0.000687	18	$1.31213323538976 \times 10^4$	0.6676078908	$1.3122 imes 10^4$	$1.31219999618 imes 10^4$	$3.8211616 imes 10^{-5}$	$2.912 imes10^{-9}$
$2.6684 imes 10^4$	0.000712	19	$1.6289310977079 imes 10^4$	0.8139771646	$1.629 imes 10^4$	$1.62901249542 \times 10^4$	$4.5756477 imes 10^{-5}$	$2.809 imes10^{-9}$
2.7144×10^4	0.000737	20	$1.99990175309358 \times 10^4$	0.9824147752	$2 imes 10^4$	$1.99999999457 imes 10^4$	$5.4289055 imes 10^{-5}$	2.714×10^{-9}

Table 4. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \tau' \tau'' d\tau' d\tau''$ for the case C for decreasing function $n(\tau) = 10^4 / \sqrt[3]{\tau}$.

<i>n</i> (τ)	$h(\tau)$	τ	$V_{sq_{el}}$	V _{tr_{el}}	I _{analyt}	I _{num}	$ I_{analyt} - I_{num} $	$E(\tau)$
104	0.0001	1	0.124983331	$1.67 imes 10^{-5}$	0.125	0.124999998	$2.5 imes 10^{-9}$	$2 imes 10^{-8}$
7937	0.000251984	2	1.999663957	0.000335979	2	1.999999937	$6.3496 imes 10^{-8}$	$3.1748 imes 10^{-8}$
6934	0.000432651	3	10.12305265	0.001946928	10.125	10.12499958	$4.2117 imes 10^{-7}$	$4.1597 imes 10^{-8}$
6300	0.000634921	4	31.9932259	0.006772487	32	31.99999839	1.6125×10^{-6}	$5.0391 imes 10^{-8}$
5848	0.000854993	5	78.10718307	0.017812357	78.125	78.12499543	4.5688×10^{-6}	$5.8481 imes 10^{-8}$
5503	0.001090314	6	161.960738	0.039251317	162	161.9999893	1.0699×10^{-5}	$6.6044 imes 10^{-8}$
5228	0.001338944	7	300.0484351	0.076542973	300.125	300.124978	2.1961×10^{-5}	$7.3174 imes 10^{-8}$
5000	0.0016	8	511.8634257	0.136533332	512	511.999959	$4.096 imes 10^{-5}$	$8 imes 10^{-8}$
4807	0.00187227	9	819.8974483	0.227480755	820.125	820.124929	7.0984×10^{-5}	$8.6553 imes 10^{-8}$
4642	0.002154244	10	1249.640843	0.359040639	1250	1249.999884	$1.1602 imes 10^{-4}$	$9.2815 imes 10^{-8}$
4496	0.002446619	11	1829.582077	0.54274169	1830.125	1830.124819	$1.8107 imes10^{-4}$	$9.8941 imes 10^{-8}$
4368	0.002747253	12	2591.20852	0.791208781	2592	2591.999728	$2.7171 imes 10^{-4}$	$1.0482 imes 10^{-7}$
4253	0.003056666	13	3569.005356	1.119249142	3570.125	3570.124605	$3.9475 imes 10^{-4}$	$1.1057 imes 10^{-7}$
4149	0.003374307	14	4800.456259	1.543183074	4802	4801.999442	$5.5791 imes 10^{-4}$	$1.1618 imes 10^{-7}$
4055	0.003699137	15	6326.043466	2.080764457	6328.125	6328.12423	$7.6970 imes 10^{-4}$	$1.2163 imes 10^{-7}$
3969	0.004031242	16	8189.246965	2.751994581	8192	8191.99896	$1.0401 imes 10^{-3}$	$1.2696 imes 10^{-7}$
3889	0.004371304	17	1.043654425×10^4	3.579369102	10440.125	$1.044012362 imes 10^4$	$1.3806 imes 10^{-3}$	1.3224×10^{-7}
3816	0.004716981	18	1.311741329×10^4	4.584905582	$1.3122 imes 10^4$	$1.31219982 imes 10^4$	$1.8022 imes 10^{-3}$	1.3735×10^{-7}
3748	0.00506937	19	1.628432755×10^4	5.79513508	$1.62901 imes 10^4$	$1.629012268 imes 10^4$	$2.3193 imes 10^{-3}$	1.4237×10^{-7}
3684	0.005428882	20	$1.999275854 imes 10^4$	7.238508734	$2 imes 10^4$	$1.999999705 imes 10^4$	$2.9473 imes 10^{-3}$	$1.4736 imes 10^{-7}$

Figure 7. Graphs of absolute (**a**) and relative (**b**) errors for four considered cases, A, B, C1, and C2, of the relation between the number of nodes and grid width for the integrand $f(\tau', \tau'') = \tau' \tau''$.

Note that the values closest to the analytical values of the integral are obtained in the case of the constant width of the grid and of increase in the number of partition elements together with an increase in the integration (Figure 7a,b). The results calculated by the

Formula (17) at the imposition of the increasing function of nodes quantity $n(\tau)$ (case C1, Figure 7) show that the values of absolute and relative errors are quite acceptable. However, in this case, the number of operations is smaller than in the case of B. Note that only one case C2, i.e., imposition of the decreasing function of the number of nodes $n(\tau)$, leads to a sharp increase in absolute and relative errors with increasing τ and can go beyond a given accuracy of calculations (Figure 7, Table 4). In the cases of A, B, and C1 the difference between the analytical and numerical calculations of $|I_{analyt} - I_{num}|$ is within the acceptable deviation.

In this case, at a denser grid overlaid on the variable region of integration both absolute and relative errors decrease. In particular, the difference $|I_{analyt} - I_{num}|$ decreases by two orders of magnitude when *n* increases by an order (Tables 1–4).

II. Consider next integrand $f(\tau', \tau'') = e^{\tau'}\tau''$ for the same values of τ . The surface formed by the function $f(\tau', \tau'')$ over the integration region is shown in Figure 8.

Figure 8. The surface generated by the function $f(\tau', \tau'') = e^{\tau'} \tau''$.

We also calculate the integral $I_{num} = \int_{0}^{\tau} \int_{0}^{\tau'} e^{\tau'} \tau'' d\tau' d\tau''$ by Formulas (15)–(17). The

analytical expression has been found in the form $I_{analyt} = \frac{1}{2}e^{\tau}(\tau^2 - 2\tau + 2) - 1$.

The results of calculations are presented in Tables 5–8 for different numbers of triangular elements $n(\tau)$ and grid width $h(\tau)$.

Table 5 shows the corresponding values for the case when only the size of the imposed grid $h(\tau)$ changes with the change of τ , (A). The calculated values for the case when only the number of division elements $N_{el}(\tau)$ changes with the change of τ , (B) are presented in Table 6. In Tables 7 and 8 it is shown the values of integration parameters for the case when with the change of τ , both the size of the grid and the number of division elements change (C), namely for $n(\tau) = 10^4 \cdot \sqrt[3]{\tau}$, $h(t) = 10^{-4} \cdot \sqrt[3]{\tau^2}$ and $n(\tau) = 10^4 / \sqrt[3]{\tau}$, $h(t) = 10^{-4} \cdot \sqrt[3]{\tau^4}$ correspondingly.

Figure 9 demonstrates comparative graphs of absolute (Figure 9a) and relative (Figure 9b) errors in numerical integration $\int_{0}^{\tau} \int_{0}^{\tau'} \exp(\tau')\tau'' d\tau' d\tau''$ by Formula (15) of the case of A, (16) of the case of B, (17) of the cases of C1 for increasing function $n(\tau)$ and C2 for decreasing $n(\tau)$.

Figure 9. Graphs of absolute (**a**) and relative (**b**) errors for four considered cases of A, B, C1, and C2 of the relation between the number of nodes and grid width for the integrand $f(\tau', \tau'') = \exp(\tau')\tau''$.

Table 5. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \exp(\tau')\tau'' d\tau' d\tau''$ for the case of A.

<i>n</i> (τ)	$h(\tau)$	τ	V _{sq_{el}}	V _{trel}	Ianalyt	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)
104	0.0001 1	1	0.359090906	0.00005	0.359140914	0.359140906	0.00000008	2.267×10^{-8}
10^{4}	0.0002 2	2	6.388217048	0.000838906	6.389056099	6.389055954	0.000000145	$2.271 imes10^{-8}$
10^{4}	0.0003 3	3	49.207665438	0.006175661	49.213842308	49.213841099	0.000001209	$2.457 imes10^{-8}$
10^{4}	0.0004 4	4	271.957783692	0.032958890	271.990750166	271.990742582	0.000007584	$2.788 imes10^{-8}$
10^{4}	0.0005 5	5	1260.363148341	0.148663157	1260.511852372	1260.511811497	0.000040874	$3.243 imes 10^{-8}$
10^{4}	0.0006 6	6	5242.968672666	0.605443177	5243.574315406	5243.574115843	0.000199562	$3.806 imes 10^{-8}$
10^{4}	0.0007 7	7	$2.028440925 imes 10^4$	2.303279570	$2.0286713430927 \times 10^4$	$2.028671252433 \times 10^4$	0.000906595	$4.469 imes 10^{-8}$
10^{4}	0.0008 8	8	$74514.5987 imes 10^4$	8.347082077	$7.4522.949676043 imes 10^4$	$7.452294578116 imes 10^4$	0.003894878	5.226×10^{-8}
10^{4}	0.0009 9	9	$2.633200401 \times 10^{5}$	29.171550908	$2.633492276462 \times 10^{5}$	$2.633492116479 \times 10^{5}$	0.015998222	$6.075 imes 10^{-8}$
10^{4}	0.001 1	10	$9.029849147 imes 10^5$	99.119591029	$9.0308409758708 \times 10^5$	$9.030840342614 \times 10^5$	0.063325711	$7.012 imes 10^{-8}$
10^{4}	0.0011 1	11	$3.023313605 \times 10^{6}$	329.30830951	$3.0236431566175 \times 10^{6}$	$3.023642913616 \times 10^{6}$	0.243001233	$8.037 imes10^{-8}$
10^{4}	0.0012 1	12	$9.926966186 imes 10^{6}$	1074.1821472	$9.9280412765592 \times 10^{6}$	$9.928040368388 \times 10^{6}$	0.908171151	$9.148 imes10^{-8}$
10^{4}	0.0013 1	13	$3.207151578 \times 10^{7}$	3450.8248242	$3.2074969920647 \times 10^{7}$	$3.207496660282 \times 10^{7}$	3.317823097	$1.034 imes10^{-7}$
10^{4}	0.0014 1	14	$1.022104076 \times 10^{8}$	1.09436987×10^4	$1.0222136315401 \times 10^{8}$	$1.022213512703 \times 10^{8}$	11.883732932	$1.163 imes 10^{-7}$
10^{4}	0.0015 1	15	$3.219638437 \times 10^{8}$	3.43246795×10^4	$3.219982101885 \times 10^{8}$	$3.219981683553 \times 10^8$	41.833202855	1.299×10^{-7}
10^{4}	0.0016 1	16	$1.004023709 \times 10^{9}$	1.06633314×10^{5}	$1.0041304878174 \times 10^9$	$1.004130342796 \times 10^{9}$	145.021310075	$1.444 imes10^{-7}$
10^{4}	0.0017 1	17	3.103582425×10^9	3.28507313×10^{5}	$3.1039114278344 \times 10^{9}$	$3.103910931908 \times 10^9$	495.926285982	$1.598 imes 10^{-7}$
10^{4}	0.0018 1	18	$9.519689251 \times 10^{9}$	1.00459738×10^{6}	$9.5206955239129 \times 10^9$	$9.520693848599 \times 10^9$	1675.31390521	$1.760 imes 10^{-7}$
10^{4}	0.0019 1	19	$2.900031626 \times 10^{10}$	3.05204684×10^{6}	$2.9003373905518 \times 10^{10}$	$2.9003368308 \times 10^{10}$	5597.53888766	$1.930 imes 10^{-7}$
10^{4}	0.002 2	20	$8.780566371 imes 10^{10}$	9.21813702×10^{6}	$8.781490036817 imes 10^{10}$	$8.7814881851 imes 10^{10}$	$1.85171357 imes 10^4$	$2.109 imes10^{-7}$

Table 6. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \exp(\tau')\tau'' d\tau' d\tau''$ for the case of B.

<i>n</i> (τ)	$h(\tau)$	τ	$V_{sq_{el}}$	V _{trel}	I _{analyt}	Inum	$ I_{analyt} - I_{num} $	Ε(τ)
1×10^4	0.0001	1	0.359090906	0.000050000	0.359140914	0.359140906	0.00000008	$2.267 imes10^{-8}$
$2 imes 10^4$	0.0001	2	6.38863661	0.000419453	6.389056099	6.389056063	0.00000036	5.682×10^{-9}
$3 imes 10^4$	0.0001	3	49.21178362	0.002058554	49.213842308	49.21384217	0.000000134	2.723×10^{-9}
$4 imes 10^4$	0.0001	4	271.98251	0.008239722	271.990750166	271.9907497	0.000000474	$1.743 imes10^{-9}$
$5 imes 10^4$	0.0001	5	1260.482118	0.029732632	1260.511852372	1260.511851	0.00000163	$1.293 imes10^{-9}$
$6 imes 10^4$	0.0001	6	5243.473403	0.100907198	5243.574315406	5243.57431	0.00000554	$1.057 imes 10^{-9}$
$7 imes 10^4$	0.0001	7	2.028638×10^{4}	0.329039947	2.0286713431×10^4	$2.028671341 \times 10^{4}$	0.0000185	$9.119 imes 10^{-10}$
$8 imes 10^4$	0.0001	8	7.452191×10^{4}	1.043385295	$7.4522.949676 \times 10^4$	$7.452294962 imes 10^4$	0.0000609	$8.172 imes 10^{-10}$
$9 imes 10^4$	0.0001	9	2.633168×10^{5}	32.41283402	$2.63349.227646 \times 10^{5}$	$2.633492274 imes 10^5$	0.000197509	$7.5 imes 10^{-10}$
$10 imes 10^4$	0.0001	10	9.02985×10^{5}	99.11959103	$9.03084097587 \times 10^5$	$9.03084.097 imes 10^5$	0.000633257	$7.012 imes 10^{-10}$
11×10^4	0.0001	11	3.023344×10^{6}	299.3711936	$3.023643.15661 \times 10^{6}$	$3.023643155 imes 10^{6}$	0.002008275	$6.642 imes 10^{-10}$
$12 imes 10^4$	0.0001	12	9.927146×10^{6}	895.1518087	$9.928041.27656 \times 10^{6}$	9.92804127×10^{6}	0.006306744	6.352×10^{-10}
$13 imes 10^4$	0.0001	13	3.207232×10^{7}	2654.480723	$3.20749699206 \times 10^{7}$	3.2074969×10^{7}	0.01963209	$6.121 imes 10^{-10}$
$14 imes 10^4$	0.0001	14	1.0221355×10^{8}	7816.927971	$1.02221363154 \times 10^{8}$	$1.02221363 imes 10^8$	0.060631293	$5.931 imes 10^{-10}$
$15 imes 10^4$	0.0001	15	3.21975326×10^{8}	2.2883121×10^4	$3.21998210189 \times 10^{8}$	3.2199821×10^{8}	0.185925351	5.774×10^{-10}
$16 imes 10^4$	0.0001	16	1.00406384×10^{9}	$6.6645826 imes 10^4$	$1.00413048782 \times 10^9$	$1.004130487 \times 10^{9}$	0.566489518	$5.642 imes 10^{-10}$
$17 imes 10^4$	0.0001	17	3.10371819×10^{9}	1.9323961×10^{5}	$3.10391142783 \times 10^{9}$	$3.103911426 \times 10^{9}$	1.716008036	$5.529 imes 10^{-10}$
$18 imes 10^4$	0.0001	18	9.52013741×10^{9}	5.5810971×10^{5}	$9.52069552391 \times 10^9$	$9.520695519 imes 10^9$	5.170722441	$5.431 imes 10^{-10}$
$19 imes 10^4$	0.0001	19	$2.9001768 imes 10^{10}$	$1.6063406 imes 10^{6}$	$2.9003373906 imes 10^{10}$	$2.900337389 imes 10^{10}$	15.50564977	$5.346 imes 10^{-10}$
$20 imes 10^4$	0.0001	20	$8.7810291 imes 10^{10}$	$4.6090691 imes 10^{6}$	$8.7814900368 imes 10^{10}$	$8.781490032 imes 10^{10}$	46.29284612	5.272×10^{-10}

Table 7. Ca	lculation o	of integral J	$\int \int exp(\tau') d\tau'$	$\tau'' d\tau' d\tau''$ for	the c	ase of	C for	increasing	function
$n(\tau) = 10^4 \cdot \sqrt[3]{v}$	/τ.	C) ()						

<i>n</i> (τ)	$h(\tau)$	τ	V _{sq_{el}}	V _{trel}	I _{analyt}	I _{num}	$ I_{analyt} - I_{num} $	<i>Ε</i> (τ)
1×10^4	0.0001	1	0.359090906	0.00005	0.359140914	0.359140906	0.000000008	$2.267 imes 10^{-8}$
1.2599×10^4	0.000159	2	6.388390157	0.000665851	6.389056099	6.389056008	0.000000091	$1.431 imes 10^{-8}$
$1.4422 imes 10^4$	0.000208	3	49.209559615	0.004282111	49.21384231	49.213841727	0.000000581	$1.181 imes10^{-8}$
1.5874×10^4	0.000252	4	271.969984343	0.020762813	271.9907502	271.990747156	0.000003010	$1.107 imes10^{-8}$
1.71×10^4	0.000292	5	1260.424900874	0.086937519	1260.511852	1260.511838393	0.000013978	$1.109 imes10^{-8}$
$1.8171 imes 10^4$	0.000330	6	5243.241062964	0.333192002	5243.574315	5243.574254966	0.000060439	$1.153 imes10^{-8}$
$1.9129 imes 10^4$	0.000366	7	$2.028550910579 \times 10^4$	1.204077378	$2.028671343 imes 10^4$	$2.0286713183168 \times 10^4$	0.000247759	$1.221 imes 10^{-8}$
$2 imes 10^4$	0.000400	8	$7.451877516118 \times 10^4$	4.173541146	$7.452294968 imes 10^4$	$7.4522948702324 \times 10^4$	0.000973719	$1.307 imes10^{-8}$
$2.0801 imes 10^4$	0.000433	9	$2.633351998384 \times 10^{5}$	14.02411031	$2.633492276 \times 10^{5}$	$2.63349223948742 \times 10^{5}$	0.003697458	$1.404 imes10^{-8}$
$2.1544 imes 10^4$	0.000464	10	$9.030380759622 \times 10^5$	46.007981335	$9.030840976 imes 10^5$	$9.03084083943526 \times 10^5$	0.013643550	$1.511 imes 10^{-8}$
2.224×10^4	0.000495	11	$3.023495037198 \times 10^{6}$	148.0702902	$3.023643157 \times 10^{6}$	$3.02364310748837 \times 10^{6}$	0.049129116	$1.625 imes 10^{-8}$
$2.2894 imes 10^4$	0.000524	12	$9.927571905155 \times 10^{6}$	469.198134373	$9.928041277 imes 10^{6}$	$9.92804110328883 \times 10^{6}$	0.173270407	$1.745 imes10^{-8}$
$2.3513 imes 10^4$	0.000553	13	$3.207350169621 \times 10^{7}$	1467.6243169	$3.207496992 \times 10^{7}$	$3.20749693205281 \times 10^{7}$	0.600118610	$1.871 imes 10^{-8}$
$2.4101 imes 10^4$	0.000581	14	$1.022168203424 \times 10^{8}$	4540.7657393	$1.022213632 \times 10^{8}$	$1.02221361108113 \times 10^{8}$	2.045892619	$2.001 imes 10^{-8}$
$2.4662 imes 10^4$	0.000608	15	$3.219842852655 \times 10^{8}$	$1.391804499 imes 10^4$	$3.219982102 \times 10^{8}$	$3.21998203310464 \times 10^{8}$	6.878038824	$2.136 imes10^{-8}$
$2.5198 imes 10^4$	0.000635	16	$1.004088146807 imes 10^9$	4.23181701×10^{4}	$1.004130488 \times 10^{9}$	$1.0041304649772 \times 10^9$	22.840187703	$2.275 imes 10^{-8}$
$2.5713 imes 10^4$	0.000661	17	$3.103783593579 \times 10^9$	$1.277592469 \times 10^{5}$	$3.103911428 imes 10^9$	$3.10391135282573 \times 10^{9}$	75.008696351	$2.417 imes10^{-8}$
$2.6207 imes 10^4$	0.000687	18	$9.520311948239 \times 10^9$	$3.83331.746 \times 10^{5}$	$9.520695524 \times 10^{9}$	$9.52069527998495 imes 10^9$	243.927973829	2.562×10^{-8}
2.6684×10^4	0.000712	19	$2.90022293451 \times 10^{10}$	$1.143774275 imes 10^{6}$	$2.900337391 imes 10^{10}$	$2.90033731193863 \times 10^{10}$	786.131675605	$2.71 imes 10^{-8}$
2.7144×10^4	0.000737	20	$8.78115018417 \times 10^{10}$	$3.396013293 imes 10^{6}$	$8.781490037 \times 10^{10}$	$\begin{array}{r} 8.78148978549772 \times \\ 10^{10} \end{array}$	2513.194845602	2.862×10^{-8}

Table 8. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \exp(\tau') \tau'' d\tau' d\tau''$ for the case of C for decreasing function

<i>n</i> (τ)	$h(\tau)$	τ	V _{sqel}	V _{trel}	Ianalyt	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)
1×10^4	0.0001	1	0.359090906	0.00005	0.359140914	0.359140906	0.00000008	$2.267 imes 10^{-8}$
7937	0.00025	2	6.387998913	0.001056956	6.389056099	6.389055869	0.00000023	$3.605 imes 10^{-8}$
6934	0.00043	3	49.204933446	0.008906347	49.21384231	49.213839793	0.000002515	$5.11 imes 10^{-8}$
6300	0.00063	4	271.938415361	0.052315697	271.9907502	271.990731058	0.000019107	$7.025 imes 10^{-8}$
5848	0.00085	5	1260.257520896	0.254211957	1260.511852	1260.511732853	0.000119519	$9.482 imes10^{-8}$
5503	0.00109	6	5242.473450803	1.100205612	5243.574315	5243.573656415	0.00065899	$1.257 imes10^{-7}$
5228	0.00134	7	$2.028230445327 \times 10^4$	4.405660679	$2.028671343 imes 10^4$	$2.0286710113953 \times 10^4$	0.003316973	$1.635 imes 10^{-7}$
5000	0.00160	8	$7.45062399341 \times 10^4$	16.694162437	$7.452294968 imes 10^4$	$7.4522934096532 \times 10^4$	0.015579511	$2.091 imes 10^{-7}$
4807	0.00187	9	$2.6328847285547 \times 10^5$	60.685556091	$2.633492276 imes 10^5$	$2.63349158411563 \times 10^{5}$	0.069234637	2.629×10^{-7}
4642	0.00215	10	$9.0287027597645 imes 10^5$	213.527730828	$9.030840976 imes 10^5$	$9.03083803707273 \times 10^{5}$	0.293879802	$3.254 imes10^{-7}$
4496	0.00245	11	$3.0229095073427 imes 10^{6}$	732.447132721	$3.023643157 imes 10^{6}$	$3.02364195447544 \times 10^{6}$	1.202142053	$3.976 imes 10^{-7}$
4368	0.00275	12	$9.925577309137 imes 10^{6}$	2459.207472851	$9.928041277 imes 10^{6}$	$9.92803651660984 \times 10^{6}$	4.759949403	$4.794 imes10^{-7}$
4253	0.00306	13	$3.206683772061 \times 10^{7}$	8113.8573721	$3.207496992 imes 10^7$	$3.2074951.5779861 \times 10^{7}$	18.3426607	$5.719 imes10^{-7}$
4149	0.00337	14	$1.0219491741747 \times 10^8$	$26376.7020856 \times 10^4$	$1.022213632 \times 10^{8}$	$\frac{1.02221294119557}{10^8} \times$	69.0344492	$6.753 imes10^{-7}$
4055	0.00370	15	$3.2191330803007 \times 10^8$	8.4647745487×10^4	$3.219982102 imes 10^8$	$3.21997955775555 \times 10^{8}$	254.4129479	7.901×10^{-7}
3969	0.00403	16	$1.0038609019518 \times 10^9$	$2.68665268872 imes 10^5$	$1.004130488 imes 10^9$	$\frac{1.00412956722071}{10^9} \times$	920.5966830	$9.168 imes10^{-7}$
3889	0.00437	17	$3.1030634405218 \times 10^9$	$8.44708315902 \times 10^5$	$3.103911428 imes 10^9$	$3.10390814883765 \times 10^{9}$	3278.9967729	$1.056 imes 10^{-6}$
3816	0.00472	18	$9.5180514287336 \times 10^9$	$2.63259037681 imes 10^{6}$	$9.520695524 imes 10^9$	$9.52068401911039 \times 10^{9}$	$1.1504802533 \\ imes 10^4$	$1.208 imes 10^{-6}$
3748	0.00507	19	$2.8995190932092 \times 10^{10}$	$8.14312624403 imes 10^{6}$	$2.900337391 \times 10^{10}$	$\begin{array}{c} 2.90033340583357 \times \\ 10^{10} \end{array}$	$3.9847182199 \\ imes 10^4$	1.374×10^{-6}
3684	0.00543	20	$8.7789741872444 \times 10^{10}$	$2.50220580946 imes 10^7$	$8.781490037 \times 10^{10}$	$8.78147639305388 imes 10^{10}$	$1.3643763326 \\ \times 10^5$	1.554×10^{-6}

When the integrand contains an exponential function, the sharp increase in the integrand has almost no effect on the value of both absolute and relative errors for numerical calculation of the integral by Formulas (16) and (17) under the increasing function of the number of nodes, i.e., case C1 (Figure 9, Tables 6 and 7).

 $n(\tau) = 10^4 / \sqrt[3]{\tau}.$

For this integral, the difference between the analytical and numerical calculation $|I_{analyt} - I_{num}|$ is also within the acceptable deviation for the cases of A, B, and C1. However, as distinct from the previous case I, the magnitude of this difference is an order larger. So, for the case of B and $n(\tau) = 10^4$, $\tau = 20 E(\tau)|_{f(\tau',\tau'')=\tau'\tau''} \sim 10^{-11}$, but $E(\tau)|_{f(\tau',\tau'')=e^{\tau'\tau''}} \sim 10^{-10}$ (Tables 2 and 6). Herewith, when increasing *n* by an order of magnitude, the relative error decreases by two orders.

III. Now we consider the integrand $f(\tau', \tau'') = \sin(\tau')\sin(\tau'')$ for the same values of τ . The surface formed by the function $f(\tau', \tau'')$ over the integration region is shown in Figure 10.

Figure 10. The surface generated by the function $f(\tau', \tau'') = \sin(\tau')\sin(\tau'')$.

The integral $I_{num} = \int_{0}^{\tau} \int_{0}^{\tau'} e^{\tau'} \tau'' d\tau' d\tau''$ is also calculated by Formulas (15)–(17). The

analytical expression has been found in the form $I_{analyt} = \frac{1}{4}\sin(2\tau) + \frac{1}{2}\tau$.

The results of calculations are presented in Tables 9–12 for different numbers of triangular elements $n(\tau)$ and grid width $h(\tau)$.

Table 9. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \sin(\tau') \sin(\tau'') d\tau' d\tau''$ for the case of A.

<i>n</i> (τ)	$h(\tau)$	τ	$V_{sq_{el}}$	V _{trel}	I analyt	Inum	$ I_{analyt} - I_{num} $	Ε(τ)
10^{4}	0.0001	1	0.105647349	$1.36 imes 10^{-5}$	0.105660985	0.105660983	2.2104×10^{-9}	$2.092 imes 10^{-8}$
10^{4}	0.0002	2	1.002616986	0.00011892	1.002735931	1.002735906	$2.498 imes10^{-8}$	$2.4912 imes10^{-8}$
10^{4}	0.0003	3	1.979799515	0.000235478	1.980035068	1.980034994	$7.4699 imes 10^{-8}$	3.7726×10^{-8}
10^{4}	0.0004	4	1.366917966	0.000350532	1.367268612	1.367268498	$1.1406 imes10^{-7}$	$8.3423 imes10^{-8}$
10^{4}	0.0005	5	0.255910847	0.000659001	0.256569932	0.256569848	$8.4197 imes10^{-8}$	$3.2816 imes 10^{-7}$
10^{4}	0.0006	6	-0.000147047	0.000940243	0.000793203	0.000793196	$7.1455 imes 10^{-9}$	$9.0085 imes10^{-6}$
10^{4}	0.0007	7	0.029143669	0.001138322	0.03028205	0.030281991	$5.9057 imes10^{-8}$	$1.9502 imes10^{-6}$
10^{4}	0.0008	8	0.654456042	0.00162879	0.656085164	0.656084832	$3.3157 imes10^{-7}$	$5.0537 imes 10^{-7}$
10^{4}	0.0009	9	1.824099302	0.002109486	1.826209439	1.826208788	$6.5074 imes10^{-7}$	$3.5633 imes 10^{-7}$
10^{4}	0.001	10	1.688705384	0.002385882	1.691092045	1.691091266	$7.7861 imes 10^{-7}$	$4.6042 imes10^{-7}$
10^{4}	0.0011	11	0.492557326	0.003026217	0.495584095	0.495583543	$5.5235 imes 10^{-7}$	$1.1145 imes10^{-6}$
10^{4}	0.0012	12	0.008454845	0.003735837	0.012190793	0.012190682	$1.1096 imes 10^{-7}$	$9.1021 imes10^{-6}$
10^{4}	0.0013	13	0.000181887	0.004101084	0.004283049	0.004282972	$7.7604 imes10^{-8}$	$1.8119 imes10^{-5}$
10^{4}	0.0014	14	0.367757939	0.004852591	0.372611315	0.37261053	$7.8514 imes10^{-7}$	$2.1071 imes 10^{-6}$
10^{4}	0.0015	15	1.54243883	0.005810256	1.548250775	1.548249086	$1.6894 imes10^{-6}$	$1.0911 imes 10^{-6}$
10^{4}	0.0016	16	1.909923509	0.006289715	1.91621532	1.916213223	$2.097 imes10^{-6}$	$1.0944 imes10^{-6}$
10^{4}	0.0017	17	0.805906553	0.00711257	0.813020769	0.813019123	$1.6468 imes10^{-6}$	$2.0255 imes 10^{-6}$
10^{4}	0.0018	18	0.049368684	0.00832315	0.057692369	0.057691835	$5.3471 imes 10^{-7}$	$9.2683 imes 10^{-6}$
10^{4}	0.0019	19	-0.00889084	0.008954612	$6.38 imes10^{-5}$	$6.38 imes10^{-5}$	$2.0367 imes10^{-8}$	$3.1927 imes10^{-4}$
10^{4}	0.002	20	0.165368576	0.009813722	0.175183423	0.175182297	1.1254×10^{-6}	6.4243×10^{-6}

16	of	26
16	of	26

					0 0			
<i>n</i> (τ)	$h(\tau)$	τ	$V_{sq_{el}}$	$V_{tr_{el}}$	Ianalyt	Inum	$ I_{analyt} - I_{num} $	Ε(τ)
$1 imes 10^4$	0.0001	1	0.105524426	0.000136557	0.105660985	0.105660983	2.2104×10^{-9}	$2.092 imes 10^{-8}$
$2 imes 10^4$	0.0001	2	1.002140706	0.000595219	1.002735931	1.002735925	$6.2451 imes 10^{-9}$	$6.2281 imes 10^{-9}$
3×10^4	0.0001	3	1.979249311	0.000785749	1.980035068	1.98003506	$8.2999 imes 10^{-9}$	$4.1918 imes 10^{-9}$
$4 imes 10^4$	0.0001	4	1.366391569	0.000877036	1.367268612	1.367268605	$7.1288 imes10^{-9}$	5.2139×10^{-9}
$5 imes 10^4$	0.0001	5	0.255251593	0.001318336	0.256569932	0.256569929	$3.3679 imes 10^{-9}$	$1.3127 imes10^{-8}$
$6 imes 10^4$	0.0001	6	-0.000773888	0.001567091	0.000793203	0.000793203	$1.9849 imes 10^{-10}$	$2.5023 imes 10^{-7}$
$7 imes 10^4$	0.0001	7	0.028655756	0.001626293	0.03028205	0.030282049	$1.2053 imes 10^{-9}$	$3.9801 imes 10^{-8}$
$8 imes 10^4$	0.0001	8	0.654048658	0.002036501	0.656085164	0.656085159	$5.1808 imes10^{-9}$	$7.8965 imes 10^{-9}$
$9 imes 10^4$	0.0001	9	1.823864762	0.002344669	1.826209439	1.826209431	$8.0338 imes10^{-9}$	$4.3992 imes 10^{-9}$
$10 imes 10^4$	0.0001	10	1.688705384	0.002386653	1.691092045	1.691092037	$7.7861 imes 10^{-9}$	$4.6042 imes10^{-9}$
$11 imes 10^4$	0.0001	11	0.492832533	0.002751558	0.495584095	0.495584091	$4.5649 imes 10^{-9}$	9.2111×10^{-9}
$12 imes 10^4$	0.0001	12	0.009077519	0.003113274	0.012190793	0.012190792	$7.7057 imes 10^{-10}$	$6.3209 imes 10^{-8}$
$13 imes 10^4$	0.0001	13	0.001128323	0.003154726	0.004283049	0.004283049	$4.592 imes 10^{-10}$	1.0721×10^{-7}
$14 imes 10^4$	0.0001	14	0.369144778	0.003466533	0.372611315	0.372611311	$4.0058 imes10^{-9}$	1.0751×10^{-8}
$15 imes 10^4$	0.0001	15	1.544376521	0.003874247	1.548250775	1.548250768	$7.5082 imes 10^{-9}$	$4.8495 imes 10^{-9}$
$16 imes 10^4$	0.0001	16	1.91228343	0.003931883	1.91621532	1.916215312	$8.1915 imes10^{-9}$	$4.2748 imes 10^{-9}$
$17 imes 10^4$	0.0001	17	0.808836335	0.004184429	0.813020769	0.813020764	$5.6983 imes 10^{-9}$	$7.0088 imes 10^{-9}$
$18 imes 10^4$	0.0001	18	0.053068232	0.004624136	0.057692369	0.057692368	$1.6503 imes 10^{-9}$	$2.8606 imes 10^{-8}$
$19 imes 10^4$	0.0001	19	-0.004649167	0.00471296	$6.37928 imes 10^{-5}$	$6.37928 imes 10^{-5}$	$5.6423 imes 10^{-11}$	$8.8446 imes10^{-7}$
$20 imes 10^4$	0.0001	20	0.170276281	0.004907139	0.175183423	0.17518342	$2.8136 imes 10^{-9}$	1.6061×10^{-8}

Table 10. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \sin(\tau') \sin(\tau'') d\tau' d\tau''$ for the case B.

Table 11. Calculation of integral	$\int_{-\infty}^{\infty} \int_{-\infty}^{\tau'} \sin(\tau') \sin(\tau'') d\tau' d\tau'$	" for the case of C for increasing function	on
C C	0 0	, i i i i i i i i i i i i i i i i i i i	
$n(au) = 10^4 \cdot \sqrt[3]{ au}.$			

<i>n</i> (τ)	$h(\tau)$	τ	$V_{sq_{el}}$	$V_{tr_{el}}$	I _{analyt}	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)
$1 imes 10^4$	0.0001	1	0.105647349	$1.36 imes 10^{-5}$	0.105660985	0.105660983	2.2104×10^{-9}	2.0920×10^{-8}
1.2599×10^{4}	0.000158743	2	1.002641527	$9.44 imes10^{-5}$	1.002735931	1.002735916	$1.5737 imes 10^{-8}$	$1.5694 imes 10^{-8}$
$1.4422 imes 10^4$	0.000208016	3	1.979871755	0.000163277	1.980035068	1.980035032	$3.5914 imes10^{-8}$	$1.8138 imes10^{-8}$
$1.5874 imes 10^4$	0.000251984	4	1.367047746	0.000220822	1.367268612	1.367268567	$4.5265 imes10^{-8}$	$3.3106 imes10^{-8}$
1.71×10^4	0.000292398	5	0.256184523	0.000385381	0.256569932	0.256569903	$2.8794 imes10^{-8}$	$1.1223 imes 10^{-7}$
$1.8171 imes 10^4$	0.000330196	6	0.000275759	0.000517442	0.000793203	0.000793201	$2.1641 imes 10^{-9}$	$2.7283 imes 10^{-6}$
$1.9129 imes 10^4$	0.000365937	7	0.029686958	0.000595077	0.03028205	0.030282034	$1.6139 imes10^{-8}$	$5.3297 imes 10^{-7}$
$2 imes 10^4$	0.0004	8	0.655270686	0.000814395	0.656085164	0.656085081	$8.2892 imes10^{-8}$	$1.2634 imes 10^{-7}$
$2.0801 imes 10^4$	0.000432672	9	1.825195161	0.001014127	1.826209439	1.826209289	$1.5040 imes 10^{-7}$	$8.2355 imes 10^{-8}$
2.1544×10^4	0.000464166	10	1.689984431	0.001107446	1.691092045	1.691091877	$1.6775 imes 10^{-7}$	$9.9198 imes10^{-8}$
$2.224 imes 10^4$	0.000494604	11	0.494223275	0.001360709	0.495584095	0.495583984	$1.1167 imes 10^{-7}$	$2.2533 imes 10^{-7}$
$2.2894 imes10^4$	0.000524155	12	0.010558975	0.001631797	0.012190793	0.012190772	$2.1171 imes 10^{-8}$	$1.7366 imes 10^{-6}$
2.3513×10^4	0.000552886	13	0.002538858	0.001744177	0.004283049	0.004283035	$1.4037 imes10^{-8}$	3.2773×10^{-6}
$2.4101 imes 10^4$	0.000580889	14	0.37059774	0.00201344	0.372611315	0.37261118	$1.3517 imes10^{-7}$	$3.6276 imes 10^{-7}$
$2.4662 imes 10^4$	0.000608223	15	1.545894543	0.002355955	1.548250775	1.548250498	$2.7776 imes 10^{-7}$	$1.7940 imes 10^{-7}$
$2.5198 imes 10^4$	0.000634971	16	1.913718874	0.002496117	1.91621532	1.91621499	$3.3027 imes 10^{-7}$	1.7236×10^{-7}
$2.5713 imes 10^4$	0.000661144	17	0.810254383	0.002766138	0.813020769	0.81302052	$2.4908 imes10^{-7}$	$3.0636 imes 10^{-7}$
$2.6207 imes10^4$	0.000686839	18	0.054516365	0.003175926	0.057692369	0.057692291	$7.7854 imes10^{-8}$	$1.3495 imes 10^{-6}$
$2.6684 imes 10^4$	0.000712037	19	-0.003292008	0.003355798	$6.38 imes10^{-5}$	$6.38 imes10^{-5}$	2.8606×10^{-9}	$4.4843 imes10^{-5}$
$2.7144 imes 10^4$	0.000736811	20	0.171567841	0.003615429	0.175183423	0.17518327	$1.5275 imes 10^{-7}$	$8.7193 imes10^{-7}$

		n($\tau) = 10^{2} / \sqrt[3]{\tau}.$					
<i>n</i> (τ)	<i>h</i> (τ)	τ	$V_{sq_{el}}$	V _{trel}	I _{analyt}	Inum	$ I_{analyt} - I_{num} $	Ε(τ)
104	0.0001	1	0.105647349	$1.36 imes 10^{-5}$	0.105660985	0.105660983	2.2104×10^{-9}	$2.092 imes 10^{-8}$
7937	0.000251984	2	1.002586062	0.00014983	1.002735931	1.002735892	$3.9654 imes10^{-8}$	$3.9546 imes 10^{-8}$
6934	0.000432651	3	1.979695314	0.000339599	1.980035068	1.980034913	$1.5536 imes10^{-7}$	$7.8465 imes10^{-8}$
6300	0.000634921	4	1.366711925	0.0005564	1.367268612	1.367268325	$2.8738 imes 10^{-7}$	$2.1019 imes10^{-7}$
5848	0.000854993	5	0.255442803	0.001126883	0.256569932	0.256569686	$2.462 imes10^{-7}$	$9.5957 imes 10^{-7}$
5503	0.001090314	6	-0.000915421	0.001708601	0.000793203	0.000793179	$2.3596 imes10^{-8}$	$2.9747 imes10^{-5}$
5228	0.001338944	7	0.028104478	0.002177356	0.03028205	0.030281834	$2.1607 imes 10^{-7}$	$7.1354 imes10^{-6}$
5000	0.0016	8	0.652826257	0.003257581	0.656085164	0.656083837	$1.3263 imes10^{-6}$	2.0215×10^{-6}
4807	0.00187227	9	1.82181826	0.004388363	1.826209439	1.826206623	$2.8162 imes 10^{-6}$	1.5421×10^{-6}
4642	0.002154244	10	1.68594866	0.005139771	1.691092045	1.691088431	$3.6134 imes10^{-6}$	$2.1367 imes 10^{-6}$
4496	0.002446619	11	0.488850453	0.00673091	0.495584095	0.495581363	$2.7325 imes10^{-6}$	$5.5137 imes10^{-6}$
4368	0.002747253	12	0.003637471	0.00855274	0.012190793	0.012190212	$5.8157 imes 10^{-7}$	$4.7706 imes 10^{-5}$
4253	0.003056666	13	-0.005360183	0.009642803	0.004283049	0.00428262	$4.2903 imes 10^{-7}$	$1.0017 imes10^{-4}$
4149	0.003374307	14	0.360910945	0.01169581	0.372611315	0.372606754	$4.561 imes10^{-6}$	$1.2241 imes10^{-5}$
4055	0.003699137	15	1.533911879	0.014328622	1.548250775	1.548240501	$1.0274 imes10^{-5}$	$6.6358 imes 10^{-6}$
3969	0.004031242	16	1.900354908	0.015847101	1.91621532	1.916202009	$1.3312 imes 10^{-5}$	$6.9469 imes 10^{-6}$
3889	0.004371304	17	0.794720939	0.018288942	0.813020769	0.813009881	$1.0888 imes10^{-5}$	$1.3393 imes10^{-5}$
3816	0.004716981	18	0.035877505	0.021811192	0.057692369	0.057688697	$3.6719 imes 10^{-6}$	$6.3647 imes 10^{-5}$
3748	0.00506937	19	-0.02382806	0.023891708	$6.38 imes10^{-5}$	$6.36 imes10^{-5}$	$1.4492 imes10^{-7}$	2.2717×10^{-3}
3684	0.005428882	20	0.148536366	0.026638764	0.175183423	0.17517513	$8.2924 imes 10^{-6}$	$4.7335 imes 10^{-5}$

Table 12. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau'} \sin(\tau') \sin(\tau'') d\tau' d\tau''$ for the case of C for decreasing function

Table 9 shows the corresponding values for the case when only the size of the imposed grid $h(\tau)$ changes with the change of τ , (A). The calculated values for the case when only the number of division elements $N_{el}(\tau)$ changes with the change of τ , (B) are presented in Table 10. In Tables 11 and 12 it is shown the values of integration parameters for the case when with the change of τ , both the size of the grid and the number of division elements change (C), namely for $n(\tau) = 10^4 \cdot \sqrt[3]{\tau}$, $h(t) = 10^{-4} \cdot \sqrt[3]{\tau^2}$ and $n(\tau) = 10^4 / \sqrt[3]{\tau}$, $h(t) = 10^{-4} \cdot \sqrt[3]{\tau^4}$ correspondingly.

Figure 11 demonstrates comparative graphs of absolute (Figure 11a) and relative (Figure 11b) errors in numerical integration $\int_{0}^{\tau} \int_{0}^{\tau'} \sin(\tau') \sin(\tau'') d\tau' d\tau''$ by Formula (15) of the case of A, (16) of the case of B, (17) of the cases of C1 for increasing function $n(\tau)$ and C2 for decreasing $n(\tau)$.

Figure 11. Graphs of absolute (**a**) and relative (**b**) errors for four considered cases of A, B, C1, and C2 of the relation between the number of nodes and grid width for the integrand $f(\tau', \tau'') = \sin(\tau')\sin(\tau'')$.

Note that for the periodic integrand, the closest to the analytical value of the integral is obtained in the case of the constant width of the grid and in the case of an increase in the number of partition elements together with an increase in the integration region (Figure 11a,b). Here the results for the absolute and relative error calculated by the Formula (17) for the imposition of the increasing function of the number of nodes $n(\tau)$, case C1

(Figure 11) are quite acceptable. For this integrand, the integration results obtained by Formulas (15)–(17) with increasing τ remain within the given accuracy of calculations (Figure 11, Tables 9–12).

In this case, the difference between the analytical and numerical calculation $|I_{analit} - I_{num}|$ is of the same order as for the integrand $f(\tau', \tau'') = \tau'\tau''$. When increasing *n* by an order of magnitude, the value of $E(\tau)$ also decreases by two orders of magnitude.

Note that for all three considered integrands, no significant accumulation of machine error was observed.

If we apply the proposed method to calculate the double integral with a given external limit of integration, the result is the same (within accuracy) as the value of the same integral, calculated by Maple. For example, according to the calculations in the Maple

integral $I_{\tau=5} = \int_{0}^{5} \int_{0}^{\tau'} \tau' \tau'' d\tau' d\tau'' = 78.125$, in our case $I_{\tau=5} = 78.124998438$ (the fifth line from the top in Table 1); integral $I_{\tau=5} = \int_{0}^{\tau} \int_{0}^{\tau'} \exp(\tau') \tau'' d\tau' d\tau'' = 1260.511852372$, in our case $I_{\tau=5} = 1260.511811497$ (the fifth line from the top in Table 5); integral $I_{\tau=5} = \int_{0}^{\tau} \int_{0}^{\tau'} \sin(\tau') \sin(\tau'') d\tau' d\tau'' = 0.256569932$, in our case $I_{\tau=5} = 0.256569848$ (the fifth line from the top in Table 9) under $\varepsilon = 10^{-7}$.

The CPU time of the program module was calculated by the algorithm in [41]. It was determined that the times of program execution for calculation of integral $I_{\tau=5} = \int_{0}^{5} \int_{0}^{\tau'} \tau' \tau'' d\tau' d\tau'' \text{ were from } 2.2189994808 \text{ s at } n = 10^4 \text{ and to } 215.3279999737 \text{ s}$

at
$$n = 10^5$$
; of integral $I_{\tau=5} = \int_{0}^{3} \int_{0}^{3} \exp(\tau') \tau'' d\tau' d\tau''$ were from 4.7030001646 s at $n = 10^4$

and to 463.6879999191 s at $n = 10^5$; of integral $I_{\tau=5} = \int_{0}^{5} \int_{0}^{\tau} \sin(\tau') \sin(\tau'') d\tau' d\tau''$ were from 6.4680001466 s at $n = 10^4$ and to 635.4220004054 s at $n = 10^5$.

5. Application of the Method to Calculating the Double Integral with Variable Upper Limits Depending on One External Variable

We use the proposed method to calculate double integrals with variable upper limits, which are functions of the external variable τ but do not depend on the integration variables. This kind of integrals is in some sense a partial case of the above integrals with due regard that there is no variable limit $\tau'' = \tau'$ in the region of integration (Figure 3). At the same

time, the integration region in $\int_{0}^{\tau} \int_{0}^{g(\tau)} f(\tau', \tau'', \tau) d\tau'' d\tau'$ is variable.

Taking into account that in all considered examples of the application of the method in chapter 4, the lowest values of absolute and relative errors are achieved in the case of increasing the number of variable elements of division and fixing the grid cell size, i.e., Case B, here we consider only this case of constructing a variable grid.

Divide the integration region $[0, g(\tau)] \times [0, \tau]$ into cells by a rectangular grid that contains $m(\tau)$ elements of the same length h_m along the axis $O\tau''$ and $n(\tau)$ elements of the same length h_n along the axis $O\tau'$. Then in the case of B, the cubature formula with weight function $w(\tau', \tau'') \equiv 1$ (16) is modified into the form

$$\int_{0}^{\tau} \int_{0}^{g(\tau)} f(\tau',\tau'',\tau) d\tau'' d\tau' \approx \sum_{i=1}^{n(\tau)} \sum_{j=1}^{m(\tau)} h_n h_m f(\tau'_i,\tau''_j,\tau),$$
(22)

where $\tau'_{i+1} = \tau'_i + h_n$; $\tau''_{i+1} = \tau''_i + h_m$.

1

We obtain the estimation of the error of the method for this case from Formula (21) taking into account the rectangular grid of division of the integration region and the notation introduced here. So, in the general case, we have

$$R(\tau) \approx \frac{h_n(\tau)h_m(\tau)}{24} \left(\iint_{\text{rectangular}_{el}}(\tau) F''_{\tau'\tau'}(\tau,\tau',\tau'')d\tau'd\tau'' + \iint_{(V_{\text{rectangular}_{el}}(\tau))} F''_{\tau''\tau''}(\tau,\tau',\tau'')d\tau'd\tau'' \right).$$
or
$$R(\tau) = O(2h_n(\tau)h_m(\tau)).$$

If the lengths of the sides of rectangular cells are constant (fixed), then we obtain the estimation of the method error in the classical form of the error of the cells method [42]. Consider the typical cases of the kind of function $g(\tau)$.

(1) $g(\tau) = \tau$.

In this case, the integration region is a square that enlarges equally along both coordinate axes in proportion to the growth τ (Figure 12).

Figure 12. Schematic representation of the set of integration regions in the points $\tau = \tau_1$, $\tau = \tau_2$, $\tau = \tau_3$ for $g(\tau) = \tau$.

Here we accept $n(\tau) = m(\tau)$, that is we impose a square grid. Then Formula (22) is simplified to the form

$$\int_{0}^{\tau} \int_{0}^{\tau} f(\tau', \tau'', \tau) d\tau'' d\tau' \approx \sum_{i=1}^{n(\tau)} \sum_{j=1}^{n(\tau)} h_n^2 f(\tau'_i, \tau''_j, \tau).$$

The application of this formula is implemented for the simple integrand $f(\tau', \tau'') = \tau' \tau''$. The results of the calculations are shown in Table 13.

(2) $g(\tau) = \alpha \tau$.

$n(\tau)$	$h(\tau)$	τ	I analyt	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)
10^{4}	0.0001	1	0.25	0.2499500000005	$4.999999995000368 \times 10^{-5}$	0.0001999999980001
$2 imes 10^4$	0.0001	2	4	3.999600000001	0.000399999999001372	$9.99999997503431 imes 10^{-5}$
$3 imes 10^4$	0.0001	3	20.25	20.2486500000015	0.00134999999849911	$6.66666665925489 imes 10^{-5}$
$4 imes 10^4$	0.0001	4	64	63.996800000021	0.00319999999793815	$4.999999999677836 \times 10^{-5}$
$5 imes 10^4$	0.0001	5	156.25	156.243750000003	0.0062499999974685	$3.99999999837984 imes 10^{-5}$
$6 imes 10^4$	0.0001	6	324	323.98920000003	0.0107999999970493	$3.33333333242263 \times 10^{-5}$
$7 imes 10^4$	0.0001	7	600.25	600.232850000004	0.0171499999964412	$2.85714285654997 imes 10^{-5}$
$8 imes 10^4$	0.0001	8	1024	1023.9744	0.0255999999958128	$2.499999999959109 imes 10^{-5}$
$9 imes 10^4$	0.0001	9	1640.25	1640.21355	0.0364499999969617	$2.22222222203699 \times 10^{-5}$
10^{5}	0.0001	10	2500	2499.9500000001	0.0499999999899683	$1.999999999959873 imes 10^{-5}$
$1.1 imes 10^5$	0.0001	11	3660.25	3660.18345000001	0.0665499999875465	$1.81818181784158 imes 10^{-5}$
$1.2 imes 10^5$	0.0001	12	5184	5183.9136	0.086399999995741	$1.666666666658451 imes 10^{-5}$
$1.3 imes 10^5$	0.0001	13	7140.25	7140.14015000001	0.109849999991645	$1.53846153834453 \times 10^{-5}$
$1.4 imes10^5$	0.0001	14	9604	9603.86280000001	0.137199999992846	$1.42857142849694 imes 10^{-5}$
$1.5 imes10^5$	0.0001	15	12656.25	$1.265608125 imes 10^4$	0.168750000001968	$1.33333333334889 \times 10^{-5}$

Table 13. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\tau} \tau' \tau'' d\tau' d\tau''.$

In this case, the integration region is a rectangle that enlarges with growth τ . If $\alpha > 1$ then the side length of this rectangle along the axis $O\tau''$ is always α times greater than the side length along the axis $O\tau'$. Then with increasing τ , the region of integration increases in two coordinates, but with a greater rate along the axis $O\tau''$ (Figure 13).

Figure 13. Schematic representation of set of integration regions in the points $\tau = \tau_1$, $\tau = \tau_2$, $\tau = \tau_3$ for $g(\tau) = \alpha \tau$, $\alpha > 1$.

If $\alpha < 1$ then the side length of this rectangle along the axis $O\tau''$ is always α times less than the side length along the axis $O\tau'$. Then with increasing τ , the region of integration increases in two coordinates, but with a greater rate along the axis $O\tau'$ (Figure 14).

When applying this method here and hereafter, under constructing a grid, it is not necessary to take into account the type of function $g(\tau)$, i.e., a rectangular grid can be overlayed in different combinations. We will abide by the structure of the function $g(\tau)$ when constructing the grid.

Figure 14. Schematic representation of set of integration regions in the points $\tau = \tau_1$, $\tau = \tau_2$, $\tau = \tau_3$ for $g(\tau) = \alpha \tau$, $\alpha < 1$.

Let $n(\tau) = \alpha m(\tau)$. Then Formula (22) is modified to the form

$$\int_{0}^{\tau} \int_{0}^{\alpha\tau} f(\tau',\tau'',\tau) d\tau'' d\tau' \approx \sum_{i=1}^{[n(\tau)]} \sum_{j=1}^{[n(\tau)]/\alpha} h_n^2 f(\tau'_i,\tau''_j,\tau)$$

The application of this formula is implemented to calculate the integral $\int_{0}^{\tau} \int_{0}^{\alpha \tau} \tau' \tau'' d\tau' d\tau''$. The results of the calculations are shown in Table 14 for $\alpha > 1$ and in Table 15 for $\alpha < 1$. (3) $g(\tau) = \tau^2$.

In this case, the integration region is also a rectangle that increases with growth τ . Moreover, the growth rate for this region along the axis $O\tau''$ is much greater than along the axis $O\tau'$ and the difference between them increases with the increase of τ (Figure 15).

Table 14. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\alpha \tau} \tau' \tau'' d\tau' d\tau'' \text{ for } \alpha > 1.$

<i>n</i> (τ)	<i>m</i> (τ)	h	τ	ατ	I _{analyt}	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)
10^{4}	$1.2 imes 10^4$	0.0001	1	1.2	0.36	0.359928001101	$7.199889950002 imes 10^{-5}$	0.00019999694305563
$2 imes 10^4$	$2.4 imes10^4$	0.0001	2	2.4	5.76	5.759424004401	0.000575995599001	$9.99992359377497 imes 10^{-5}$
$3 imes 10^4$	$3.6 imes10^4$	0.0001	3	3.6	29.16	29.158056009901	0.001943990098486	$6.66663271085926 imes 10^{-5}$
$4 imes 10^4$	$4.8 imes10^4$	0.0001	4	4.8	92.16	92.155392017602	0.004607982397975	$4.99998090058159 imes 10^{-5}$
$5 imes 10^4$	$6 imes 10^4$	0.0001	5	6	225	224.9910000275	0.00899997249754	$3.99998777668455 imes 10^{-5}$
$6 imes 10^4$	$7.2 imes 10^4$	0.0001	6	7.2	466.56	466.5444480396	0.015551960396756	$3.33332484498378 imes 10^{-5}$
$7 imes 10^4$	$8.4 imes10^4$	0.0001	7	8.4	864.36	864.3353040539	0.024695946096658	$2.85713662092863 imes 10^{-5}$
$8 imes 10^4$	$9.6 imes10^4$	0.0001	8	9.6	1474.56	1474.5231360704	0.036863929596676	$2.49999522546903 imes 10^{-5}$
$9 imes 10^4$	$1.08 imes 10^5$	0.0001	9	10.8	2361.96	2361.9075120891	0.052487910894209	$2.22221844968627 imes 10^{-5}$
10^{5}	$1.2 imes 10^5$	0.0001	10	12	3600	3599.92800011	0.071999889997197	$1.99999694436659 imes 10^{-5}$
$1.1 imes 10^5$	$1.32 imes 10^5$	0.0001	11	13.2	5270.76	5270.6641681331	0.095831866897384	$1.81817929287966 imes 10^{-5}$
$1.2 imes 10^5$	$1.44 imes 10^5$	0.0001	12	14.4	7464.96	7464.8355841583	0.124415841606742	$1.6666645448434 imes 10^{-5}$
$1.3 imes 10^5$	$1.56 imes 10^5$	0.0001	13	15.6	1.0282×10^4	$1.0281802 imes 10^4$	0.158183814097506	$1.5384597304162 \times 10^{-5}$
$1.4 imes 10^5$	$1.68 imes 10^5$	0.0001	14	16.8	$1.38298 imes 10^4$	1.3829562×10^{4}	0.197567784391717	$1.42856986955462 imes 10^{-5}$
$1.5 imes 10^5$	$1.8 imes 10^5$	0.0001	15	18	$1.8225 imes 10^4$	1.8224757×10^4	0.242999752483158	$1.33333197521623 imes 10^{-5}$

						0 0		
<i>n</i> (τ)	<i>m</i> (τ)	h	τ	ατ	I _{analyt}	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)
10^{4}	8000	0.0001	1	0.8	0.16	0.159967999101	$3.200089950003 imes 10^{-5}$	0.00020000562187521
$2 imes 10^4$	$1.6 imes10^4$	0.0001	2	1.6	2.56	2.559743996401	0.000256003599	0.00010000140585941
$3 imes 10^4$	$2.4 imes10^4$	0.0001	3	2.4	12.96	12.9591359919	0.000864008098498	$6.66672915508346 imes 10^{-5}$
$4 imes 10^4$	$3.2 imes 10^4$	0.0001	4	3.2	40.96	40.9579519856	0.002048014397987	$5.0000351513376 imes 10^{-5}$
$5 imes 10^4$	$4 imes 10^4$	0.0001	5	4	100	99.9959999775	0.004000022497471	$4.00002249747133 imes 10^{-5}$
$6 imes 10^4$	$4.8 imes10^4$	0.0001	6	4.8	207.36	207.3530879676	0.00691203239699	$3.33334895688194 imes 10^{-5}$
$7 imes 10^4$	$5.6 imes 10^4$	0.0001	7	5.6	384.16	384.1490239559	0.01097604409664	$2.85715433586008 \times 10^{-5}$
$8 imes 10^4$	$6.4 imes10^4$	0.0001	8	6.4	655.36	655.3436159424	0.016384057596909	$2.50000878859085 \times 10^{-5}$
$9 imes 10^4$	$7.2 imes10^4$	0.0001	9	7.2	1049.76	1049.7366719271	0.023328072896048	$2.22222916629024 imes 10^{-5}$
10^{5}	$8 imes 10^4$	0.0001	10	8	1600	1599.96799991	0.032000089996992	$2.00000562481205 \times 10^{-5}$
$1.1 imes 10^5$	$8.8 imes10^4$	0.0001	11	8.8	2342.56	2342.5174078911	0.042592108891502	$1.81818646657938 imes 10^{-5}$
$1.2 imes 10^5$	$9.6 imes10^4$	0.0001	12	9.6	3317.76	3317.7047038704	0.055296129589091	$1.66667057258786 \times 10^{-5}$
$1.3 imes 10^5$	$1.04 imes 10^5$	0.0001	13	10.4	4569.76	4569.6896958479	0.070304152086904	$1.53846486657734 imes 10^{-5}$
$1.4 imes 10^5$	$1.12 imes 10^5$	0.0001	14	11.2	6146.56	6146.4721918236	0.087808176383784	$1.42857429820557 \times 10^{-5}$
$1.5 imes 10^5$	$1.2 imes 10^5$	0.0001	15	12	8100	8099.8919997975	0.108000202488505	$1.33333583319142 imes 10^{-5}$

Table 15. Calculation of integral $\int_{0}^{\tau} \int_{0}^{\alpha \tau} \tau' \tau'' d\tau' d\tau'' \text{ for } \alpha < 1.$

Figure 15. Schematic representation of set of integration regions in the points $\tau = \tau_1$, $\tau = \tau_2$, $\tau = \tau_3$ for $g(\tau) = \tau^2$.

Let $n(\tau) = (m(\tau))^2$ under constructing the variable grid. Then the Formula (22) takes the form

$$\int_{0}^{\tau} \int_{0}^{\tau^{2}} f(\tau',\tau'',\tau) d\tau'' d\tau' \approx \sum_{i=1}^{[n(\tau)]} \sum_{j=1}^{[\sqrt{n(\tau)}]} h_{n}^{2} f(\tau'_{i},\tau''_{j},\tau)$$

The application of this formula is implemented to the calculation of the integral

$$\int_{0}^{\tau} \int_{0}^{\tau^{2}} \tau' \tau'' d\tau' d\tau'' \text{ (Table 16).}$$
(4) $g(\tau) = \frac{1}{\tau}, \tau \neq 0.$

In this case, the integration region is also a rectangle that changes with growth τ . The integration region increases proportionally along the axis $O\tau'$ and decreases along the axis $O\tau''$ (Figure 16).

	Table 16. Calculation of integral $\int_{0}^{1} \int_{0}^{1} \tau \tau^{\mu} d\tau d\tau^{\mu}$.												
<i>n</i> (τ)	<i>m</i> (τ)	h	τ	τ^2	Ianalyt	I _{num}	$ I_{analyt} - I_{num} $	Ε(τ)					
10^{4}	10^{4}	0.0001	1	1	0.25	0.2499500000005	$4.99999995 imes 10^{-5}$	0.00019999999800015					
$1.5 imes 10^4$	$2.25 imes 10^4$	0.0001	1.5	2.25	2.84765625	2.84727657060061	0.00037967939939	0.00013333048867551					
$2 imes 10^4$	$4 imes 10^4$	0.0001	2	4	16	15.998400030001	0.00159996999897	$9.999812493585 imes 10^{-5}$					
$2.5 imes 10^4$	$6.25 imes 10^4$	0.0001	2.5	6.25	61.03515625	61.0302735195325	0.0048827304675	$7.999865597957 imes 10^{-5}$					
$3 imes 10^4$	$9 imes 10^4$	0.0001	3	9	182.25	182.237850180001	0.01214981999854	$6.66656790043 \times 10^{-5}$					
$3.5 imes 10^4$	1.225×10^5	0.0001	3.5	12.25	459.56640625	459.540145657033	0.0262605929666	$5.71421074506 \times 10^{-5}$					
$4 imes 10^4$	$1.6 imes 10^5$	0.0001	4	16	1024	1023.9488006	0.05119939999953	$4.99994140621 \times 10^{-5}$					
$4.5 imes 10^4$	2.025×10^{5}	0.0001	4.5	20.25	2075.94140625	2075.84914316203	0.09226308796889	$4.44439750039 \times 10^{-5}$					
$5 imes 10^4$	$2.5 imes 10^5$	0.0001	5	25	2500	2499.87500152251	0.12499847749481	$4.99993909979 \times 10^{-5}$					
$5.5 imes 10^4$	3.025×10^{5}	0.0001	5.5	30.25	6920.16015625	6919.90851627453	0.25163997547092	$3.63633167137 \times 10^{-5}$					
$6 imes 10^4$	$3.6 imes 10^5$	0.0001	6	36	1.1664×10^{4}	11663.61120315	0.38879685001047	$3.33330632725 \times 10^{-5}$					
$6.5 imes 10^4$	4.225×10^{5}	0.0001	6.5	42.25	$1.885472266 \times 10^{4}$	$1.8854142515 imes 10^4$	0.58014095548511	$3.07689996859 \times 10^{-5}$					
$7 imes 10^4$	$4.9 imes10^5$	0.0001	7	49	2.941225×10^{4}	2.9411409656×10^4	0.8403441200813	$2.85712286575 \times 10^{-5}$					
7.5×10^4	5.625×10^5	0.0001	7.5	56.25	$4.44946289 imes 10^4$	$4.449344239 imes 10^4$	1.18651566808313	$2.6666492052 \times 10^{-5}$					
$8 imes 10^4$	$6.4 imes10^5$	0.0001	8	64	6.5536×10^{4}	$6.553436161 imes 10^4$	1.63838992020585	$2.4999846195 \times 10^{-5}$					

Table 16 Colordation of interval $\int \int d^{-1} d^{-1$

Figure 16. Schematic representation of set of integration regions in the points $\tau = \tau_1$, $\tau = \tau_2$, $\tau = \tau_3$ $(\tau_1 < \tau_2 < \tau_3)$ for $g(\tau) = \frac{1}{\tau}$.

If at constructing the grid we choose a variable number of elements according to the type of function $g(\tau)$, i.e., for this case $n(\tau) = \tau m(\tau)$, then with increasing τ the number of elements increases along the axis $O\tau'$, and decreases along the axis $O\tau''$ according to the change of the integration region. Then at each step, an additional check of the condition $m(\tau) \ge 1$ (or $n(\tau)/\tau \ge 1$) is required, as there must be at least one grid element along the axis $O\tau''$.

For this case, we carry out the calculation of integrals by the formula

$$\int_{0}^{\tau} \int_{0}^{1/\tau} f(\tau',\tau'',\tau) d\tau'' d\tau' \approx \sum_{i=1}^{[n(\tau)]} \sum_{j=1}^{[n(\tau)/\tau]} h_n^2 f(\tau'_i,\tau''_j,\tau).$$

Its application was realized for the calculation of the integral $\int_{0}^{\tau} \int_{0}^{1/\tau} \tau' \tau'' d\tau' d\tau''$ (Table 17).

Table 17. Calculation of integral $\int_{0}^{\tau} \int_{0}^{1/\tau} \tau' \tau'' d\tau' d\tau''$.

<i>n</i> (τ)	<i>m</i> (τ)	h	τ	1/τ	I _{analyt}	Inum	$ I_{analyt} - I_{num} $	Ε(τ)
104	10^{4}	0.0001	1	1	0.25	0.2499500000005	$4.999999995000368 imes 10^{-5}$	0.000199999998000147
$1.5 imes10^4$	$6.667 imes10^4$	0.0001	1.5	0.666667	0.25	0.249966662152403	$3.33378475972569 \times 10^{-5}$	0.000133351390389028
$2 imes 10^4$	$5 imes 10^4$	0.0001	2	0.5	0.25	0.249974990626	$2.50093740000442 \times 10^{-5}$	0.000100037496000177
$2.5 imes 10^4$	$4 imes 10^4$	0.0001	2.5	0.4	0.25	0.24997998477625	$2.00152237500155 \times 10^{-5}$	$8.00608950000621 \times 10^{-5}$
$3 imes 10^4$	$3.333 imes 10^4$	0.0001	3	0.333333	0.25	0.249983311108111	$1.6688891889241 imes 10^{-5}$	$6.6755567556964 \times 10^{-5}$
$3.5 imes10^4$	2.851×10^4	0.0001	3.5	0.285714	0.25	0.249985683863483	$1.43161365165711 imes 10^{-5}$	$5.72645460662842 \times 10^{-5}$
$4 imes 10^4$	$2.5 imes 10^4$	0.0001	4	0.25	0.25	0.24998746015825	$1.25398417499468 \times 10^{-5}$	$5.01593669997873 \times 10^{-5}$
$4.5 imes10^4$	2.222×10^4	0.0001	4.5	0.222222	0.25	0.24998883837947	$1.11616205303462 \times 10^{-5}$	$4.4646482121385 imes 10^{-5}$
5×10^4	$2 imes 10^4$	0.0001	5	0.2	0.25	0.2499899376025	$1.00623974999731 \times 10^{-5}$	$4.02495899998926 \times 10^{-5}$
$5.5 imes 10^4$	$1.818 imes 10^4$	0.0001	5.5	0.181818	0.25	0.249990833536177	$9.1664638230205 \times 10^{-6}$	$3.6665855292082 \times 10^{-5}$
$6 imes 10^4$	$1.667 imes 10^4$	0.0001	6	0.166667	0.25	0.24999157666707	$8.42333292975208 \times 10^{-6}$	$3.36933317190083 \times 10^{-5}$
$6.5 imes10^4$	1.538×10^4	0.0001	6.5	0.153846	0.25	0.249992202066328	$7.79793367231825 \times 10^{-6}$	$3.1191734689273 \times 10^{-5}$
$7 imes 10^4$	1.429×10^4	0.0001	7	0.142857	0.25	0.249992734599321	$7.26540067850518 imes 10^{-6}$	$2.90616027140207 \times 10^{-5}$
$7.5 imes10^4$	$1.333 imes10^4$	0.0001	7.5	0.133333	0.25	0.249993192686191	$6.80731380930144 imes 10^{-6}$	$2.72292552372058 imes 10^{-5}$
$8 imes 10^4$	$1.25 imes 10^4$	0.0001	8	0.125	0.25	0.249993590043062	$6.40995693757569 imes 10^{-6}$	$2.56398277503028 \times 10^{-5}$

In our opinion, for this case of the type of function $g(\tau)$ it is advisable to choose the construction of the grid in the case C1 with the correct (appropriate) choice of function $m(\tau)$ and step $h_m(\tau)$.

If the function $g(\tau)$ is periodic (for example $g(\tau) = \sin(\tau)$), then the region of integration is variable and rectangular. At the intervals of this function increasing, the integration region increases along the axis $O\tau''$, and at the intervals of decrease, it decreases along the axis $O\tau''$, respectively. That is, the increasing and decreasing of the integration region have cyclical (periodic) nature. Then the variable integration grid must be chosen by the case C1 with the choice of suitable periodic functions as $m(\tau)$ and $h_m(\tau)$.

6. Conclusions and Perspectives

All obtained results are new. The numerical method for calculating doubles integrals with variable upper limits was developed. It can be divided into several stages as determining the variable region of integration; overlaying the square or rectangular grid on the integration region; separating the integration subregions consisting of square and triangular elements; applying the cubatures in the subregion with square elements; triangulation partition along variable boundary; calculating the volumes of elementary elements with triangular basis, calculating the reference integral and establishing the calculation error.

The variable region of integration leads to the necessity to change the grid of its division into elementary volumes. The variable of the upper limit of the external integral has a significant effect. Here we consider three cases of a possible change of the grid, namely when this variable changes, we change only the size of the imposed grid and fix the number of partition elements; only the number of division elements changes, and the grid size is fixed, as well as both the number of division elements and the grid size change under fixing their multiplication. In the latter case, we considered an assignment of increasing and decreasing functions describing the change in the number of integration nodes on specific examples. In all considered examples of the application of the proposed method the smallest values of absolute and relative errors are reached for the case of an increase of the number of division elements changes and the grid size is fixed. At the same time, the question remains whether the choice of the function of the number of integration nodes, which increases much more sharply, will give rise to descent the error of the method. Additionally, note that the imposition of a variable grid on the integration region, if necessary, can be applied to definite double integrals.

When finding the estimate of the error of the method, we expanded the integral itself into a Taylor series using Barrow's theorem. If we impose the definite limits of integration, the obtained formula will be reduced to the classical formula for expanding an integrand into the Taylor series. It is also necessary to carry out an individual investigation on the influence of setting variables of the number of elements of the division of the integration region and the size of the grid on the error estimate. In this paper, we have considered the case when a double integral with variable limits can be reduced to an integral with simple variables in the upper limits of integration and zero lower limits. However, the proposed changes of variables are not always appropriate. Therefore, further research is needed on numerical integration, which limits functions, including the establishment of conditions and constraints on these functions, the integrand, and the variable region of integration that will be formed.

Author Contributions: Conceptualization, O.C. and Y.B.; methodology, O.C. and N.S.; software, Y.B. and N.S.; validation, O.C., Y.B., N.S. and R.K.; formal analysis, O.C. and Y.B.; investigation, O.C. and Y.B.; resources, R.K.; data curation, N.S.; writing—original draft preparation, O.C. and Y.B.; writing—review and editing, R.K.; visualization, Y.B.; project administration, R.K.; funding acquisition, R.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ahmedov, A.A.; bin Abd Sathar, M.H. Numerical integration of the integrals based on Haar wavelets. J. Phys. Conf. Ser. 2013, 435, 012042. [CrossRef]
- Bomba, A.; Safonyk, A. Modelling of processes of liquids cleaning from multicomponent impurities in sorption filters. *Phys. Math.* Model Inf. Technol. 2012, 16, 32–41.
- Chernukha, O.; Bilushchak, Y.; Pakholok, B. System approach to mathematical description of transport processes with chemical reaction in multiphase multicomponent body. In Proceedings of the 2020 IEEE 2nd International Conference on System Analysis & Intelligent Computing (SAIC), Kyiv, Ukraine, 5–9 September 2020; pp. 144–149. [CrossRef]
- 4. Chernukha, O.; Bilushchak, Y. Interpolation of Boundary Condition at Time-Interval of Unknown Lenghth for the Problem of Convective Diffusion in a Three-Layered Water Filter. In *Modeling, Control and Information Technologies, Proceedings of III International Scientific and Practical Conference, Kyiv, Ukraine, 14–16 November 2019*; National University of Water and Environmental Engineering: Kyiv, Ukraine, 2019; pp. 25–28.
- 5. Klasson, K.T.; Taylor, P.A. Remediation of Groundwater Contaminated with Radioactive Compounds. *Environ. Ecol. Chem.* **2006**, 3, 26–44.
- 6. Lekatoua, A.; Karantzalisa, A.E.; Evangeloua, A.; Gousiaa, V.; Kaptayb, G.; Gacsib, Z.; Baumlib, P.; Simonb, A. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour. *Mater. Des.* **2015**, *65*, 1121–1135. [CrossRef]
- Ma, R.; Zheng, C.; Liu, C. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2012; pp. 4774–4784.
- 8. Panteleev, A.V.; Kudryavtseva, I.A. Chislennye metody. Praktikum. In *Numerical Methods: Practical Work*; Infra-M: Moscow, Russia, 2017; p. 416.
- 9. Ueberhuber, C.W. Numerical Computation, Vol. II; Springer: Berlin, Germany, 1997.
- 10. Zadachin, V.M.; Konyushenko, I.G. *Numerical Methods*; Publishing Kharkiv National Economic University: Kharkiv, Ukraine, 2014; p. 180.
- 11. Maxwell, J.C. On approximate multiple integration between limits of summation. Cambridge Phil. Soc. Proc. 1880, 3, 39-47.
- 12. Preston, C.; Hammer, A.W. Wymore Numerical Evaluation of Multiple Integrals I. Math. Tables Other Aids Comput. 1957, 11, 59–67.
- 13. Haber, S. Numerical evaluation of multiple integrals. SIAM Rev. 1970, 12, 481–526. [CrossRef]
- 14. Krylov, V.I. Approximate Calculation of Integrals; Nauka: Moscow, Ukraine, 1967.
- 15. Mysovskikh, I.P. Interpolatory Cubature Formulas; Izdat. Nauka: Moscow, Russia, 1981.
- 16. Cools, R. An encyclopaedia of cubature formulas. J. Complex. 2003, 19, 445–453. [CrossRef]
- 17. Solodusha, S.; Bulatov, M. Integral Equations Related to Volterra Series and Inverse Problems: Elements of Theory and Applications in Heat Power Engineering. *Mathematics* **2021**, *9*, 1905. [CrossRef]
- 18. Sobolev, S.L.; Vaskevich, V. The Theory of Cubature Formulas; Springer: New York, NY, USA, 1997; p. 438. [CrossRef]
- 19. Lyness, J.N.; Cools, R. A survey of numerical cubature over triangles. In *Preprint MCS-P410-0194, Mathematics and Computer Science Division*; Argonne National Laboratory: Argonne, IL, USA, 1994. [CrossRef]
- 20. Dai, F.; Xu, Y. Approximation Theory and Harmonic Analysis on Spheres and Balls; Springer: New York, NY, USA, 2013. [CrossRef]
- 21. Glaubitz, J. Stable high order quadrature rules for scattered data and general weight functions. *SIAM J. Numer. Anal.* **2020**, *58*, 2144–2164. [CrossRef]

- 22. Glaubitz, J. Construction and Application of Provable Positive and Exact Cubature Formulas. arXiv 2021, arXiv:2108.02848.
- 23. Costabile, F.A.; Guzzardi, L. On a class of embedded cubature formulae on the simplex. Av. Cienc. Ing. 2014, 6, A19–A25.
- 24. Keast, P. Cubature formulas for the sphere and the simplex (Technical report). J. Comput. Appl. Math. 1987, 17, 151–172. [CrossRef]
- 25. Metropolis, N.; Ulam, S. The Monte Carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [CrossRef]
- Neumann, J. Various techniques used in connection with random digits. National bureau of standards symposium. *Appl. Math. Ser.* 1951, 12, 36–38.
- 27. Caflisch, R.E. Monte carlo and quasi-monte carlo methods. Acta Numer. 1998, 7, 1–49. [CrossRef]
- 28. Filho, A.C.B.B. A computational algorithm for the numerical integration of a function of one or more variables. *Int. J. Sci. Res.* **2018**, *7*, 923–928. [CrossRef]
- 29. Robert, C.; Casella, G. Monte Carlo Statistical Methods, 2nd ed.; Springer: New York, NY, USA, 2004.
- 30. Stroud, A.H.; Secrest, D. Gaussian Quadrature Formulas; Prentice-Hall, Inc.: London, UK, 1966; 374p.
- 31. Cools, R.; Rabinowitz, P. Monomial cubature rules since "Stroud": A compilation. J. Comput. Appl. Math. 1993, 48, 309–326. [CrossRef]
- 32. Franke, R. Obtaining Cubatures for Rectangles and Other Planar Regions by Using Orthogonal Polynomials. *Math. Comput.* **1971**, 25, 803–817. [CrossRef]
- 33. Poole, D. Linear Algebra: A Modern Introduction, 2nd ed.; Thomson Brooks/Cole: Toronto, ON, Canada, 2006; 736p.
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; 9th Printing; US Government Printing Office: Washington, DC, USA, 1972; p. 880.
- 35. Whittaker, E.T.; Watson, G.N. Forms of the Remainder in Taylor's Series: A Course in Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1990; pp. 95–96.
- 36. Laurie, D.P. Practical error estimation in numerical integration. J. Comput. Appl. Math. 1985, 12–13, 425–431. [CrossRef]
- 37. Gavrilyuk, I.P.; Makarov, V.L. Methods of Calculation. Part 1; Publishing Vyshcha Shkola: Kyiv, Ukraine, 1995; p. 367.
- Dorogovtsev, A.Y. Mathematical Analysis. A Short Course in a Modern Presentation, 2nd ed.; Publishing Fakt: Kyiv, Ukraine, 2004; p. 560.
- 39. Robert, S. Woodward Mathematical Monographs, No 7. Probability and Theory of Errors; Trieste Publishing Pty Limited: Victoria, Australia, 2017; p. 82.
- 40. Topping, J. Theory of Errors. In Errors of Observation and Their Treatment; Chapman and Hall: London, UK, 1972; p. 120. [CrossRef]
- Elsayed, B.; Sultan, A.; Abdallah, G. A Comparative Study among New Hybrid Root Finding Algorithms and Traditional Methods. *Mathematics* 2021, 9, 1306. [CrossRef]
- 42. Verzhbitsky, V.M. Numerical Methods. Linear Algebra and Nonlinear Equations: Textbook; Publishing House Higher School: Moscow, Russia, 2000.