
����������
�������

Citation: Zhu, K.; Li, L.D.; Li, M.

School Timetabling Optimisation

Using Artificial Bee Colony

Algorithm Based on a Virtual

Searching Space Method. Mathematics

2022, 10, 73. https://doi.org/

10.3390/math10010073

Academic Editors: Ioannis G. Tsoulos

and Frank Werner

Received: 6 November 2021

Accepted: 21 December 2021

Published: 26 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

School Timetabling Optimisation Using Artificial Bee Colony
Algorithm Based on a Virtual Searching Space Method

Kaixiang Zhu 1,*, Lily D. Li 2,* and Michael Li 2,*

1 School of Engineering & Technology, CQ University, Rockhampton 4701, Australia
2 Tertiary Education Division, School of Engineering & Technology, CQ University,

Rockhampton 4701, Australia
* Correspondence: k.zhu@cqu.edu.au (K.Z.); l.li@cqu.edu.au (L.D.L.); m.li@cqu.edu.au (M.L.);

Tel.: +61-0466-307-631 (K.Z.)

Abstract: Although educational timetabling problems have been studied for decades, one instance of
this, the school timetabling problem (STP), has not developed as quickly as examination timetabling
and course timetabling problems due to its diversity and complexity. In addition, most STP research
has only focused on the educators’ availabilities when studying the educator aspect, and the educators’
preferences and expertise have not been taken into consideration. To fill in this gap, this paper
proposes a conceptual model for the school timetabling problem considering educators’ availabilities,
preferences and expertise as a whole. Based on a common real-world school timetabling scenario,
the artificial bee colony (ABC) algorithm is adapted to this study, as research shows its applicability
in solving examination and course timetabling problems. A virtual search space for dealing with
the large search space is introduced to the proposed model. The proposed approach is simulated
with a large, randomly generated dataset. The experimental results demonstrate that the proposed
approach is able to solve the STP and handle a large dataset in an ordinary computing hardware
environment, which significantly reduces computational costs. Compared to the traditional constraint
programming method, the proposed approach is more effective and can provide more satisfactory
solutions by considering educators’ availabilities, preferences, and expertise levels.

Keywords: educational timetable; school timetabling; constraint satisfaction problem; optimisation;
artificial bee colony algorithm

1. Introduction

The problem of timetabling can be defined as a computational problem that allo-
cates resources in given periods under particular constraints to achieve desirable goals [1].
Educational timetabling is one of the fundamental tasks affecting educational institutes’
operations and productions. Educational timetabling problems (ETPs) are constraint satis-
faction problems involving multiple aspects, such as educators, students and educational
resources. Based on the types of educational activities, ETPs can be roughly categorised as
course timetabling, examination timetabling and school timetabling problems [2]. Course
timetabling arranges educational facilities, such as classrooms and laboratories, ensuring
no single student takes more than one course at the same time and no classroom hosts
more than one class at a time. Examination timetabling prevents an individual student
from taking more than one exam simultaneously but allows exams to share rooms and/or
invigilators. Generally, the problem of the school timetabling is to allocate educators to
classes with the considerations of their availability and expertise [3], which is the focus of
this study.

School timetabling problems (STPs) have been recognised as a non-polynomial (NP)
complete problem, as its variables vary from one educational institute to another [4],
and therefore, the efficient solution algorithms for this problem have not been found [5].
Although STPs have been studied since the 1960s [6], this area has not been developed as
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quickly as course timetabling and examination timetabling problems, likely because of the
isolation of studies in particular schools [7]. In addition, the wide variety of school timeta-
bles complexifies the problems. For example, some schools [8,9] treat courses, educators
and rooms as resources to be allocated, whereas some schools bind courses and educators
as a pair to be assigned [9,10].

To solve STPs, many computational intelligent methods and approaches have been
applied, which are mainly categorised as heuristic approaches and novel approaches [11,12].
Heuristic approaches consist of metaheuristics and hyper-heuristics. Metaheuristics ap-
proaches are inspired by natural phenomena, aiming at seeking better solutions rather than
the best solution [13,14]. Hyper-heuristics uses metaheuristics methods to select a meta-
heuristic to solve generalised solutions [15]. Novel approaches include hybrid approaches,
fuzzy logic approaches and MAS. Hybrid approaches employ different methods to solve
a problem in order to alleviate the weakness of a single method [16,17]. Fuzzy logic ap-
proaches aim to solve those problems which are hard to be quantitated and modelled as they
do not have a precisive classification [18,19]. MAS deploys serval computational intelligent
methods as an agent to play different roles to collaboratively fulfil a common goal [20].

Based on the abovementioned approaches, many applications are developed to solve
STPs. In the metaheuristics field, Odeniyi, Omidiora, Olabiyisi and Aluko proposed a modi-
fied simulated annealing approach for Fakunle Comprehensive High School in Nigeria [21].
With the aid of the annealing scheme through the temperature parameter introduction,
the approach successfully reduced the convergence time and computational cost brought
by the annealing algorithm in dealing with large search spaces. A simple genetic algorithm
(SGA) was adopted by Sutar and Bichkar [22] to solve an STP with knowledge-augmented
operators and probabilistic repair in the crossover step. The result of the modified approach
against the OR-Library dataset [22] suggested that SGA could produce faster solutions for
GA-based optimisation problems than the conventional GA method. In the hyper-heuristics
area, Ahmed, Ozcan and Kheiri [23] combined five different selection hyper-heuristics with
three-move acceptance methods to challenge the ITC2011 instances. The outcome indicated
that the approach was better than evolutionary algorithms [24] and an adaptive large
neighbourhood search algorithm [25] but not when compared to hybridised simulated an-
nealing (SA) and stagnation-free late acceptance hill climbing [26]. Hybrid approaches are
combinations of various approaches. Those combined approaches for solving STPs include,
but are not limited to, cat swarm optimisation (CSO) with a local search algorithm [27] and
particle swarm optimisation (PSO) with hybrid artificial fish swarm (AFS) [28]. Babaei,
Karimpour and Oroji employed a fuzzy c-means clustering algorithm to solve STPs for
Islamic Azad University [29] to reduce redundancy and consider lecturers’ preferences.
When school timetabling is being planned, it will get multiple stakeholders involved, such
as educators, heads of school and administrators, to negotiate. Therefore, MAS is often
applied to simulate the process and the parties of the negotiations. Oprea [30] demonstrated
that MAS could handle the negotiations between faculties and minimise resource conflicts,
while Tkaczyk, Ganzha and Paprzycki [31] emulated the school timetabling workflow of
the University of Gdansk with MAS.

Although many efforts have been made in the educational timetabling research field
for decades, there has still been no consensus about the standard formulation and data
format [9]. In addition, most STP research has only focused on educators’ availabilities
when they studied the educator aspect [7,32], and the attributes of educators’ preferences
and expertise were not taken into consideration. To address this issue, this paper chooses a
common real-world school timetabling scenario to study and takes educators’ preferences
towards units (also known as “courses” in some literature) and the corresponding expertise
level into account. Based on the chosen scenario, this paper presents a model of the STP and
proposes a modified ABC algorithm to solve the problem. Although, to the authors’ best
knowledge, ABC has not been applied to STPs, it has potential in tackling STPs, as it has
successfully solved ETPs in the course [33,34] and examination [16,35,36] timetabling fields.
In addition, this paper introduces a novel VSS method to reduce search space. The proposed
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approach is simulated with a randomly generated large dataset. The experiment results
demonstrate that the proposed approach is able to solve the STP and handle a large dataset
in an ordinary computer hardware environment.

The contributions of this research include a conceptual model and its mathematical
formulation for the STP, considering educators’ availabilities, preferences and expertise
as a whole; a novel VSS method for reducing the computational cost of handling a large
searching space; and a modified ABC algorithm to solve the proposed STP model.

The organisation of this article is as follows. Section 2 presents the problem formula-
tion, including a conceptual model of the STP, identification of hard and soft constraints and
formulation of the objective function. Section 3 presents a review of the related bio-inspired
optimisation methods. Section 4 describes the proposed approach, consisting of a concept
of educator allocation, a modified ABC algorithm and a VSS construction method. Section 5
simulates the proposed approach with a case based on a local university’s business scenario.
A comparison study between the proposed approach and the Constraint Programming
(CP) is presented in Section 6. Section 7 concludes the article and indicates future works.

2. Problem Formulation

As the descriptions and terminology of STP are dramatically different from study to
study [7], this section firstly defines the STP studied and the terms used in this paper. After
that, hard constraints and soft constraints of the STP will be identified, followed by the
objective function formulation.

2.1. Terminology

A course refers to an academic program that students need to learn to gain university
degrees; for example, in a Bachelor of Mobile Application degree, Mobile Application is
the course name.

A unit refers to the academic subject within a course, e.g., Java programming is a unit
of the course Mobile Application.

A class refers to the particular teaching activity being scheduled in a timeslot in a day,
which could be a lecture, a tutorial, a workshop and/or other educational activities.

An educator refers to the educational staff who delivers lectures, tutorials, work-
shops, etc.

A school week is from Monday to Friday.
A school day is a day of a school week.

2.2. School Timetabling Concept Model

In this study, three parameters of educators have been taken into consideration: pref-
erences, availabilities and expertise. The objective of the school timetabling is to allocate all
the school educators to a scheduled course timetable that satisfies all the preferences, avail-
abilities and expertise as much as possible. The conceptual model of the school timetabling
is presented in Figure 1. In the beginning, a course timetable is preconstructed according to
all university course information. That is, all the class activities have been scheduled with
their timeslots in a school week. The course timetable has ensured that every single student
will not take more than one unit at the same time. Educators provide their availabilities
in a school week and their preferences, along with preference levels, against each unit.
After that, the head of school will generate a school timetable by allocating educators to the
scheduled course timetable according to educators’ availabilities, preferences and expertise.
The level of expertise against units is predefined by the head of school.



Mathematics 2022, 10, 73 4 of 19

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 20 
 

 

preferences and expertise. The level of expertise against units is predefined by the head 
of school. 

 
Figure 1. School timetabling concept model. 

2.3. Symbols and Notations 
Parameters 

L Total number of educators 
O Total number of units 
K Total number of classes in a school week 
P Maximum preference value 
E Maximum expertise value 
V Number of classes that an educator is allowed to deliver in a school week 
H Number of hours in a school day (e.g., from 8:00 a.m. to 6:00 p.m., there are 10 h) 
D Number of days in a school week 
M Maximum number of hours a class lasts 

Variables 

d Duration (in hours) of each class, 𝑑 = 1, … 𝑀  
t Set of educators, 𝑡 = 𝑡 , … , 𝑡  
r Set of units, 𝑟 = 𝑟 , … , 𝑟  
c Set of classes, 𝑐 = 𝑐 , … , 𝑐  
p Set of preference, 𝑝 = 0, … , 𝑃 * 
e Set of expertise, 𝑒 = 0, … , 𝐸 * 
A Set of timeslots of a school week, 𝐴 = 1, … , 𝐻 × 𝐷  
u Number of units that cannot be allocated with educators 

* When p = 0, it indicates that an educator does not prefer a unit. When e = 0, it means that 
the educator is not capable to deliver the unit. By default, all the p and e are 0. They need 
to be set by educators and the head of school. 
Notation 𝐴  Set of timeslots that educator 𝑡  is available in the school week. If educator 𝑡  is 

available during a whole school week, then 𝐴 = 1, … , 𝐻 × 𝐷 . 𝐴  Set of timeslots that class 𝑐  is scheduled to in the school week. If class 𝑐  is sched-
uled in the first three hours of the school week, then 𝐴 = 1,2,3 . 

2.4. Hard Constraints 
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2.3. Symbols and Notations

Parameters
L Total number of educators
O Total number of units
K Total number of classes in a school week
P Maximum preference value
E Maximum expertise value
V Number of classes that an educator is allowed to deliver in a school week
H Number of hours in a school day (e.g., from 8:00 a.m. to 6:00 p.m., there are 10 h)
D Number of days in a school week
M Maximum number of hours a class lasts

Variables
d Duration (in hours) of each class, d = {1, . . . M}
t Set of educators, t = t1, . . . , tL
r Set of units, r = r1, . . . , rO
c Set of classes, c = c1, . . . , cK
p Set of preference, p = 0, . . . , P *
e Set of expertise, e = 0, . . . , E *
A Set of timeslots of a school week, A = {1, . . . , H × D}
u Number of units that cannot be allocated with educators
* When p = 0, it indicates that an educator does not prefer a unit. When e = 0, it means that the
educator is not capable to deliver the unit. By default, all the p and e are 0. They need to be set by
educators and the head of school.

Notation

Atj

Set of timeslots that educator tj is available in the school week. If educator t1 is available
during a whole school week, then At1 = {1, . . . , H × D}.

Aci

Set of timeslots that class ci is scheduled to in the school week. If class c1 is scheduled in the
first three hours of the school week, then Ac1 = {1, 2, 3}.

2.4. Hard Constraints

Hard constraints are those conditions that the solutions have to satisfy. In this study,
the hard constraints listed below are binary values. If a hard constraint is violated, it will
be given value zero; otherwise, value 1 will be assigned. The hard constraints are notated
as g and mathematically modelled as below:

g1 : No educator can deliver more than one class simultaneously.(
Atj ⊇ Aci & Atj ⊇ Acv & Aci ∩ Acv = ∅

)
= True (1)

where i ∈ {1, 2, . . . , K}; v ∈ {1, 2, . . . , K}; v 6= i; j ∈ {1, 2, . . . , L};
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g2: An educator will only be assigned to the timeslots of a class when s/he is available.
Meanwhile, the class must be fully allocated to an educator, meaning that the allocated
educator must be available during the whole period of the class.

Atj ⊇ Aci , i ∈ {1, 2, . . . , K}; j ∈ {1, 2, . . . , L} (2)

g3: One class only can be allocated with one educator.

L

∑
j=1

xij = 1, i ∈ {1, 2, . . . , K} (3)

where i is the index of classes and j is the index of the educators; xij are decision variables,
which is explained in Equation (6).

g4: No educator is allowed to teach more than V classes in a school week.

K

∑
i=1

xij ≤ V, j ∈ {1, 2, . . . , L} (4)

where i is the index of classes and j is the index of the educators; xij are decision variables,
which is explained in Equation (6).

2.5. Soft Constraints

Soft constraints are those conditions that the solutions do not have to satisfy but are
preferably satisfied. The following soft constraints have been identified:

• Educators will be assigned to the most preferred units.
• Units will be allocated to the educators who are more capable to teach.
• All units must be allocated to educators.

In practice, some units cannot be allocated with educators—for example, when a
unit has not been favoured by any educator, or when two units are only favoured by one
educator, but these two units are time-conflicted.

2.6. Objective Function

The objective of this study is to maximise both all educators’ satisfaction and all units’
quality of teaching, or in other words, to let the units be taught by the most qualified
educators and to let the educators teach their most preferred units. When a unit is allocated
to an educator, its allocation quality will be decided by the educator’s expertise level and
associated preference level, subject to the hard constraints being satisfied. This study
defines the objective value q of a class allocation as shown in Equation (5), which is the
multiplication of preferences (p) and expertise (e) values given to class i.

qij = pij × eij (i ∈ {1, 2, . . . , K}; j ∈ {1, 2, . . . , L}) (5)

where pij refers to the preference of educator j toward class z; pij represents the expertise of
educator j to class i.

According to the concept model, the course timetable is preconstructed. The STP can
be transferred to an allocation problem. Figure 2 is the bipartite graph for the STP.
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The objective function for school timetabling is to maximise the sum of every class’s
objective value (q).

Therefore, the STP optimisation model can be presented as follows.
Maximise:

K

∑
i=1

L

∑
j=1

qijxij/u (6)

subject to:
g1.
(

Atj ⊇ Aci & Atj ⊇ Acv & Aci ∩ Acv = ∅
)
= True

g2.Atj Acj

g3.
L
∑

j=1
xij = 1

g4.
K
∑

i=1
xij ≤ V

where:
qij = pij × eij

xij are decision variables

xij =

{
1 allocated

0 unallocated

u =


K−

K
∑

i=1

L
∑

j=1
xij, i f K 6=

K
∑

i=1

L
∑

j=1
xij

1, otherwise

i ∈ {1, 2, . . . , K}; v ∈ {1, 2, . . . , K}; v 6= i; j ∈ {1, 2, . . . , L};

u is the number of unallocated units (if all the units are allocated, then u will be set to be 1).

3. Related Bio-Inspired Optimisation Methods

The ABC algorithm belongs to bio-inspired optimisation methods. This section
presents a review of related bio-inspired optimisation methods, aiming for providing
a reference for future research.

ETPs have been studied over five decades in computational intelligence areas [37].
Most of the approaches and methodologies introduced and developed in the studies fall into
heuristics algorithms [38]. In a heuristic algorithm catalogue, population-based approaches
were experimentally proven to be suitable for solution search space exploration [39], which
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aligns with the objective of this research to seek an optimal solution. Population-based
algorithms can be categorised into evolution-inspired, physical-phenomenon-inspired and
bio-inspired approaches. To some extent, bio-inspired approaches have better performance
over the other two groups [40,41]. Consequently, this research chose a bio-inspired approach
in applying to the proposed model.

Under the umbrella of bio-inspired algorithms, the popular ones are the particle
swarm optimisation [42] (PSO) algorithm, the ant colony optimisation (ACO) [43], the ar-
tificial fish swarm algorithm [44] (AFS), the whale optimisation algorithm [40] (WOA),
the firefly algorithm [45], the shuffled frog leaping (SFL) [46] algorithm and the artificial
bee colony (ABC) [33] algorithm. The PSO algorithm was introduced in 1995 by Kennedy
and Eberhart [42], inspired by the food-searching behaviour of bird flocks. It is easier to
implement, with fewer parameters to control, and is good at dealing with multidimensional
complex space [47]. The ACO algorithm simulates the foraging behaviours of ants with
the feature of the indirect communication of ant groups [48]. It is suitable for complex
combinational optimisation. AFS gets inspiration from the collective movement and the
schooling behaviours of fish. It possesses advantages including high convergence speed,
flexibility, error tolerance and high accuracy. However, its disadvantages, such as high
time complexity and imbalance between global and local search, have to be mitigated by
using AFS in combination with other algorithms [44]. Inspired by the hunting behaviour
of humpback whales, WOA uses encircling prey, bubble-net attacking and searching for
prey to populate, exploit and explore optimal solutions, respectively. WOA is able to
seek solutions in unknown searching spaces [40]. The firefly algorithm unconventionally
populates numerous agents instead of searching randomly, which helps agents effectively
explore search spaces. As a result, the firefly algorithm can effectively solve multi-objective
optimisation [45]. Though the ABC algorithm [33] has been widely studied for solving edu-
cational timetabling problems, especially solving course timetabling problems [34,49,50]
and examination timetabling problems [35,36,51], it has not been applied to STPs. Therefore,
this research adapts the ABC algorithm to the proposed problem, which will be introduced
in detail in Sections 4.2 and 4.3.

4. The Proposed Approach

This section firstly presents a basic concept of allocating educators to the scheduled
course timetable. Based on the concept, a modified ABC algorithm is introduced. After
that, a novel method named VSS is proposed to solve the gigantic searching space issue.

4.1. The Basic Concept of Educator Allocation

The research aims to allocate educators to a scheduled course timetable and attempts
to satisfy their availabilities, preferences and expertise as much as possible. The allocation
concept can be illustrated in Figure 3.
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In Figure 3, the left side is an example of a scheduled course timetable, listing the
classes along with their weekdays, start times and durations. The educator ID column is
to be filled with the IDs of the educators who are allocated to the classes. Weekdays and
start times indicate which weekday the class is allocated to and at what time the class will
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start. Duration shows how long the class will last. On the right side of Figure 3, the ed-
ucator list is presented, including educator ID, preference and expertise and availability
columns. The educator ID column lists educators’ IDs tj(j ∈ {1, 2, . . . , L}); the preference
and expertise column stores a two-dimensional table, exampled in Table 1, which has K
rows and three fields storing all the unit IDs, as well as the preferences and the expertise
levels of an educator against those units. If an educator has no interest in teaching a class,
for example, ck in Table 1, then the preference and expertise will be filled with 0; otherwise,
the corresponding level number will be input. The availability column contains a one-
dimensional array converted from the two-dimensional school week timetable exampled in
Table 2. The number of elements in the availability array is H × D. The availability column
indicates the availabilities of each educator in a school week. If an educator is available at,
for example, 8:00 a.m. on Monday in Table 2, then the first cell of the array will be marked
with a Y; otherwise, an N will be stored.

Table 1. Example of preference and expertise table.

Class ID Preference Expertise

c1 2 3
c2 1 1
. . . . . . . . .
c31 3 2
. . . . . . . . .
cK 0 0

Table 2. Example of educator’s availability.

Mon Tue Wed Thu Fri

8:00 a.m. Y N Y N N
9:00 a.m. Y N N N N

10:00 a.m. Y Y N N N
11:00 a.m. Y Y Y N N
12:00 p.m. N Y Y N N
1:00 p.m. N N Y N Y
2:00 p.m. N N Y N Y
3:00 p.m. N Y Y N Y
4:00 p.m. N N Y N Y
5:00 p.m. Y N Y N Y
6:00 p.m. Y N Y N Y

Note: Y means available, N means unavailable. This table will be converted to be a one-dimensional array.
The total number of cells in the array equals to the multiplication of H × D. The index 1 refers to the first timeslot
of the first day. The index H × D indicates the last timeslot of the last day.

The basic process of allocating educators is to match each educator against a unit.
Figure 3 can be used as an example to explain the process. Assume that t1 is capable
(“capable” means the expertise value e is not equal to zero) and available to teach c1, t2 and
t3 are capable to teach c2 and c3, but only t3 is available to teach c2. Firstly, the program will
consult the first unallocated educator from the educator list, which is t1, and allocate it to the
first unallocated class, which is c1, as t1 is capable and available. Then, the corresponding
cell on t1’s availability table will be marked with “N”. After that, t2 becomes the first
unallocated educator. However, t2 is not available to teach c2, and therefore the consecutive
unallocated educator, that is, t3 , will be consulted. As t3 is capable and available, t3 will be
assigned to c2. When c2’s allocation is finished, t2 becomes the first unallocated educator
and will be consulted for the c3. As t2 is capable and available to teach c3, t2 thus takes c3.
When all the educators and their profiles have been consulted, a timetable solution would
be outputted.

With the concept of educator allocation, it is known that a specific educator list
sequence subjected to the course timetable will always output the same school timetable.
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For instance, in Figure 3, educator t1 will always be assigned to the class c1, even if educator
t2 might be more suitable (e.g., t2 has a higher q value than t1), as t1 will be consulted
before t2. Therefore, an educator list can be considered as a solution, and therein changing
the educator list sequence can obtain different solutions, from which it can be reasoned
that the number of possible solutions is the number of permutations of the educator list
or, in other words, is the factorial of the number of educators. All of the possible solutions
form the entire solution searching space. However, the number of educators in a university
could be over 100, meaning that the number of solutions would be gigantic and lead to
the impossibility of seeking the best solution by traversing the whole searching space.
Therefore, an artificial intelligence algorithm is needed.

4.2. ABC Algorithm

The ABC algorithm was chosen for the proposed STP for its ability to solve multivari-
able, multimodal optimisation problems efficiently. Additionally, the ABC algorithm can
be easily implemented without requiring many parameters. The ABC algorithm is inspired
by the behaviours of honeybees and was introduced by Karaboga [52]. It simulates the
ways that honeybees forage for food sources, which helps bees efficiently and effectively
seek better food sources in a vast area. The mechanisms the ABC algorithm uses include
positive feedback, negative feedback, fluctuations and multiple interactions. These four
mechanisms help the bees to explore new food sources and to avoid over-populating a
source, as well as to ensure information can be shared with each bee. Labour division is
another feature of the ABC algorithm. Bees are categorised to be employee bees, onlooker
bees and scout bees. Employee bees are responsible for new food source exploration;
onlooker bees are in charge of food source analysis and exploitation; scout bees avoid food
source exhaustion.

The ABC algorithm consists of four stages: population, employee bee, onlooker bee
and scout bee stages.

In the solution population stage, the ABC algorithm randomly populates several
solutions (bees) in a searching space with Equation (7).

sd
i = sd

min + random(0, 1)
(

sd
max − sd

min

)
(7)

where i is one of the nodes in the searching space and d is dimension. sd
max and sd

min are the
upper bound and lower bound, respectively, for the dimension d.

In the employee bee stage, neighbours of the populated solutions will be looked for
with Equation (8).

esd
i = sd

i + ϕd
i

(
sd

i − sd
k

)
(8)

where k is randomly chosen from the searching space and k 6= 1. ϕd
i is randomly generated

in the range of [–1, 1]; sd
k is a neighbour of sd

i . The probability of each employee bee es will
be calculated with Equation (9).

pi =
f it(esi)

∑SN
n=1 f it(esn)

(9)

In the onlooker bee stage, a random number [0, 1] will compare to pi for each employee
bee, and if the random number is better than a pi, an onlooker bee will be sent to look for a
neighbour of the employee. A parameter called trail will be used in this stage. Trail limits
the times that a food source has been explored. If the exploration time reaches the trail and
the better neighbour has not been found, the food source will be abandoned.

In the scout bee stage, the onlooker bee(s), whose food source(s) is/are abandoned,
will become scout bee(s) and randomly populate a new solution. The equation scout bees
use is similar to Equation (7).
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4.3. A Modified ABC Algorithm for Proposed STP

The modified ABC algorithm is presented in Algorithm 1. To adapt the ABC algorithm,
some modifications have been made to suit the investigated problem. The modifications
are described as follows.

Algorithm 1. Pseudocode of the modified ABC algorithm.

/*Initialisation stage*/
01: Retrieve the scheduled course timetable and educators’ profiles
02: Define the neighbour search range, number of Traits and read parameters
03: Initialise the food source and construct school timetable, satisfying all hard constraints as in
Equations (1)–(4)
04: Evaluate school timetable’s objective values with Equation (6)
05: Send the employed bees to the current food sources
06: Iteration = N
07: FOR (each iteration)
/∗Employed Bee Phase∗/
08: FOR (each employed bee)
09: Seek new food source from neighbourhood in VSS, satisfying Equations (1)–(4)
10: Construct school timetables and evaluate their objective value with Equation (6); apply
greedy selection
11: END FOR
12: Calculate the probability p for each food source with Equation (9)
/∗Onlooker Bee Phase∗/
13: FOR (each onlooker bee)
14: Send onlooker bees to food sources based on p
15: Find a new food source in its neighbourhood in VSS, satisfying Equations (1)–(4)
16: Construct school timetables and evaluate their objective value with Equation (6); apply
greedy selection and set Trait + 1 if applicable
17: END FOR
/∗Scout Bee Phase∗/
18: IF (any onlooker bee becomes scout bee)
19: Send scout bee to a randomly produced food source, satisfying Equations (1)–(4)
20: END IF
21: Memorise the best solution achieved so far
22: END FOR
23: Output the best solution achieved

Before food source initialisation, a scheduled course timetable will be retrieved from
the course database, followed by the educator profiles data retrieval (Step 1 in Algorithm 1).
The examples of a course timetable and an educator profile are illustrated in Figure 3. Since
the boundary (Equations (7) and (8)) of the searching space and the current neighbourhoods
need to be known when bees are foraging for food sources, the searching space will be
formed beforehand. However, as mentioned before, the number of solutions is gigantic,
so this research proposes a VSS to tackle this dilemma. The VSS is detailed in Section 4.4.
To construct the final solutions from the food sources that bees forage from the VSS (Step 03,
09, 15 and 19 in Algorithm 1), the school timetable construction will be applied and detailed
in Section 4.5. The objective values of constructed final solutions will be evaluated with
Equation (6) (Steps 04, 10 and 16 in Algorithm 1).

The major modifications are summarised as below:

• Integrate VSS construction approach in neighbour population process (Steps 9 and 15
in Algorithm 1) instead of forming a whole searching space beforehand.

• Integrate school timetable constructor approach to generate solutions in every objective
value evaluation process (Steps 3, 10 and 16 in Algorithm 1) instead of picking up
solutions directly when populate.



Mathematics 2022, 10, 73 11 of 19

4.4. Virtual Searching Space Construction

VSS aims to provide an entire solution pool for the proposed algorithm rather than
constructing a gigantic searching space. As discussed above, the searching space is formed
through permutation manipulation with the magnitude of the factorial number of educators.
Thus, it would be impractical to physically construct the whole searching space, as it would
exceed the memory capacity of ordinary computers, not to mention the computational time
for generating all the solutions for each educator list. To tackle this dilemma, we propose a
novel VSS approach. VSS does not construct a searching space by the direct permutations.
Instead, it “imagines” the solutions to be allocated in the searching space in the way
exampled in Table 3.

4.4.1. How VSS Works

Assume one bee is employed and four educators are to be allocated, in which case the
searching space will be similar to Table 3 with four regions (A, B, C and D) and twenty-four
possible solutions (hereafter referred to as columns) numbered.

Table 3. Example of searching space.

A region B region

1 2 3 4 5 6 7 8 9 10 11 12
A A A A A A B B B B B B
B B C C D D A A C C D D
C D B D B C C D A D A C
D C D B C B D C D A C A

C region D region

13 14 15 16 17 18 19 20 21 22 23 24
C C C C C C D D D D D D
A A B B D D A A B B C C
B D A D A B B C A C A B
D B D A B A C B C A B A

In the food source initialisation phase (Step 03 in Algorithm 1), VSS does not need to
know the solutions’ coordinators in the searching space, as any educator list combination
will be in the solution pool. VSS randomly generates an educator sequence B-A-D-C
(Column 8).

In the neighbour-seeking phase, VSS swaps the positions of A and C in Column 8
to obtain Column 10. The swap method can decide the distance, vector and boundary of
neighbour solutions with the following rules:

Rule 1: Fixing top element(s) can confine the boundary of the neighbourhood. For ex-
ample, when the first element “B” is fixed, the neighbourhood will be in B region. When “B-
A” is fixed, there are only two neighbours, B-A-C-D (Column 7) and B-A-D-C (Column 8).
This rule confines the upper bound and lower bound for a dimension as sd

max and sd
min in

Equation (7).
Rule 2: The relationship of swapping elements determines the orientation. For exam-

ple, if the higher element (A) switches with the lower one (C) (in practice, higher/lower
element refers to the higher/lower indexed element, which could be alphabetical order or
numerical order.), the orientation will be rightward, and vice versa. This rule plays the rule
as ϕd

i in Equation (8).
Rule 3: The positions of and distance between swapping elements decide the distance

of neighbours. For example, if swapping the last two elements, “D” and “C” in B-A-D-C
(Column 8), the neighbour is right next to the other. If swapping higher elements, such as
“A” and “D”, the neighbour is three steps away. This rule plays the role of k in Equation (8).

These three rules have been successfully applied to a large dataset with 150 educators
experimented in Section 5.
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4.4.2. The Implementation of VSS in Modified ABC Algorithm

VSS uses swapping methods to locate neighbour solutions and confine the searching
space boundary. The pseudocode of VSS implementation is detailed in Algorithm 2.

Algorithm 2. Pseudocode of VSS.

01: Randomly select first educator (index is I f irst) from the given educator list.
02: Randomly generate neighbour search range r.
03: Randomly generate number b (b = −1 or 1).
04: Set the second educator’s index Isecond = I f irst + r× b
05: If Isecond > L or Isecond < 1, repeat Step 2 (L is the number of educators).
06: Swap I f irst and Isecond.

4.5. School Timetable Construction

The proposed approach will not generate a timetable solution directly. Instead, it will
randomly select educator lists from VSS as the food sources of the modified ABC algorithm.
After that, the food sources will be passed to the timetable constructor to output complete
solutions. Steps 03, 04, 10 and 16 in Algorithm 1 are the entry food sources passed to the
school timetable constructor. Algorithm 3 demonstrates the construction process.

Algorithm 3. Pseudocode of school timetable solution construction.

1: Receive an educator list and the number of units an educator can take
2: FOR (V)
3: FOR (K)
4: FOR (each unallocated educator in the educator list)
5: IF (the educator is available and prefer to teach the class)
6: Allocate the educator to the class
7: Modify the educator’s availability
8: IF (all classes are allocated with an educator)
9: Return constructed school timetable
10: FOR (each unallocated class in the course timetable)
10: FOR (L)
12: IF (the educator can and is available to teach the class)
13: Allocate the educator to the class
14: Modify the educator’s availability
15: Return constructed school timetable

A class will be subsequently selected from the scheduled course timetable to match
an unallocated educator in the given educator list. If the educator is allocatable due
to her/his preference and availability, then the class will be assigned to that educator.
Otherwise, the consecutive educator will be consulted. The scheduled course timetable
will be traversed at particular times depending on the number of classes (parameter V) that
an educator is allowed to deliver in a school week. If all the classes have been allocated
with an educator, a constructed school timetable will be returned (Steps 03, 04, 10 and 16 in
Algorithm 1). Otherwise, the unallocated classes will be revisited to seek the educators who
are capable and available to teach those classes despite the limitation of the V. When the
program reaches the end of the course timetable again, a school timetable will be returned
even if there may be some unallocated classes left. The extra revisiting aims to minimise the
number of unallocated classes and provides suggestions to the head of school to negotiate
with those educators who have the relevant expertise but do not prefer to teach the classes.

5. Experimental Section

The experiment follows the proposed school timetabling conceptual model as illus-
trated in Figure 1. The scenario is detailed as below.
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• The course timetable is prescheduled and fixed based on the course enrolment infor-
mation. The class activities have been scheduled in the weekly timeslots.

• Before planning a school timetable, educators will submit their expression of interest to
the administration, including the units they want to teach and the preferences towards
each unit.

• Educators need to provide their unavailability form in the school week. The number
of unavailable hours cannot be more than 3 h.

• The head of school will confirm and adjust each educator’s expertise against a unit.
• The goal of the school timetabling is to satisfy educators’ preferences and classes’

qualities and attempt to ensure every unit is allocated to an educator.

5.1. Experimental Settings

According to the proposed conceptual model in Figure 1, this research set the following
parameters to randomly generate a dataset consisting of a predefined course timetable and
an educator roster, along with their availabilities, preferences and expertise levels. After
that, the generated dataset will be simulated with the proposed approach.

• K = 300 (Total number of classes in a school week)
• L = 150 (Total number of educators)
• V = 5 (Number of classes that an educator is allowed to deliver in a school week)
• H = 8 (Number of hours in a school day)
• D = 5 (Number of days in a school week)
• P = 3 (Maximum preference value)
• E = 3 (Maximum expertise value)
• d = 1 or 2 (Duration of each class)
• Maximum unavailable timeslots an educator can have in a week: 3

Before designing the parameter settings, several configurations were tested with the
purpose of seeking a reasonable setting range for ordinary computers to implement the
proposed algorithm in terms of the time complexity and solution acceptance.

Ten samples have been configured in Table 4 to experiment with the proposed algo-
rithm with four ABC parameters: number of bees, neighbour range, number of iterations
and number of traits. The number of bees presents the number of the solution population;
neighbour range confines the coverage of an exploration area of a bee; number of iterations
is set to test whether increasing search times will improve the result; and number of traits
determines the depth of exploitation of a food source.

Table 4. Parameter settings for modified ABC algorithm.

Sample Num of Bees Neighbour Range Num of Iterations Num of Traits

A 5 5 1000 10
B 20 5 1000 10
C 5 30 1000 10
D 5 5 10,000 10
E 5 5 1000 30
F 20 30 10,000 10
G 20 30 10,000 30
H 5 5 10,000 30
I 20 30 10,000 30
J 40 60 20,000 60

According to [53], in the horizontal tuning comparison, the best population (bee)
number was in an interval of 10 to 20. Thus, in the research, the number of bees is set
between 5 and 40. The number of solutions in a neighbour area is the factorial number of
the neighbour range. Therefore, number 5 is believed to be sufficient, but bigger numbers
30 and 60, were given in order to experiment whether the performance would be improved.
Based on some studies this research came across, this research selected 10 [54,55], 30 [56]
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and 60 [57] (although, in [57], the number of trails is 50, we chose 60 to simplify the data
analysis, as it is the doubled number of 30) for the trails. The authors of [53] configured the
number of iterations to be 10 and 100 for vertical and horizonal approaches, respectively.
Although it utilised a large number of populations, we thought the number of single runs
was inadequate and therefore selected 1000, 10,000 and 20,000 instead.

The proposed approach has been experimented in the following computing environment:

• Operating System: Windows 10 Pro Edition.
• Integrated development environment: IntelliJ IDEA 2020.3.2.
• Programming language: Java.
• Computer hardware system: Intel® Core™ i7-1065G7 1.30GHz Processor with 16.0 GB

of memory.

5.2. Experimental Results

The experiment results for each sample listed in Table 4 are shown in Table 5. Three
key results demonstrating the performance of the proposed approach are chosen, which are
values of the objective function, time spent and number of unallocated classes. Objective
function values are calculated with Equation (6). Time spent presents computational time
spent on the given samples. Unallocated class indicates the number of classes that cannot
be allocated educators. Each sample is tested ten times, and the recorded results include
average value, best value, standard deviation and coefficient of variation (CV).

Table 5. Experiment result (run ten times).

Sample
Objective Values Time Spent (Seconds) Unallocated Classes

Avg. Best Std. Dev. CV Avg. Best Std. Dev. CV Avg 1 Best

A 42.4299 44.0740 0.9697 2.285% 4.983 4.742 0.2712 5.443% 0.5 0
B 43.4970 44.7037 0.6937 1.594% 18.8521 18.453 0.4208 2.232% 0.1 0
C 42.7910 43.7407 0.6779 1.584% 5.0719 4.834 0.1950 3.846% 0.5 0
D 43.6596 44.8518 0.6690 1.532% 48.843 47.238 2.4431 5.002% 0 0
E 41.9709 43.9256 1.0925 2.603% 4.9919 4.818 0.1732 3.470% 1 0
F 44.7148 45.3703 0.4201 0.939% 197.513 193.957 2.2012 1.114% 0 0
G 44.5255 45.1481 0.2849 0.639% 201.0127 194.826 6.5969 3.281% 0 0
H 42.5502 43.2222 0.4757 1.118% 50.3867 46.775 3.9439 7.827% 0.3 0
I 44.4592 45.8148 0.5484 1.228% 206.4878 197.141 7.1228 3.449% 0 0
J 46.8359 47.1481 0.2448 0.522% 831.6302 813.494 441.1553 4.467% 0 0

1 The numbers have been offset by 27. Those 27 classes have been manually confirmed as non-allocatable.

There are 27 unallocated classes, a fact which has been manually reviewed and con-
firmed on the basis that those failures are due to educators’ availabilities or interests. This
is also because of the data quality resulting from all the experimental data being randomly
generated. For example, two classes only can be taught by educator A, but these two classes
share a timeslot with each other, or some classes have not been chosen by any educator.
For this scenario, the educational administration will need to solve the issue manually,
such as negotiating with educators and recruiting new educators. For simplifying the data
comparison, the number of unallocated classes shown in Tables 5 and 6 has been offset
by 27.

Based on the result, the following conclusions could be drawn:

• The proposed approach can obtain a feasible solution in a gigantic searching space in
a short time. In Sample A, the time spent for the best solution is 4.742 s.

• Deploying more bees can help improve objective value. Sample B has a better result
than Sample A in objective value (43.4970 to 42.4299 on average), as Sample B populates
twenty bees and Sample A deploys five bees.

• Increasing the number of program iterations can obtain a better result. Sample D has
a better objective function value over Sample A (43.6596 over 42.4299 on average),
as Sample D has 10,000 iterations and Sample A has 1000 iterations.
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• Increasing both the number of bees and the number of iterations can improve the
result. Comparing Sample A and Sample F, the objective value improves from 42.4299
to 44.7148 on average, but the time spent also increased significantly (from 4.983 s to
197.513 s on average).

• Expanding the neighbourhood can slightly improve the result. Sample C expands the
neighbourhood three times compared to Sample A, but the result only improves 0.85%
(from 42.4299 to 42.7910 on average).

• Increasing the exploitation will not benefit the solution and instead provides worse
results. Compared to Sample A, although Sample E triples the number of traits,
the objective value decreases and the number of unallocated units increases. This is
because exploitation reduces the opportunity of exploration, which is also proven by
comparing the results between Sample D and Sample H as well as between Sample F
and Sample G.

• Sample J enlarges the variables. Although the improvement of the result is obvious,
the time spent is significant. Compared to Sample A, the objective value is increased
by 10.3% (from 42.4299 to 46.8359), but the time Sample J spends is 165 times than that
of Sample A.

• All the CVs are lower than 8%, indicating that the proposed ABC can provide solu-
tions stably.

Overall, although Sample A uses the fewest bees and iterations with a smaller neigh-
bour range and traits, it achieves acceptable results within several seconds of execution.
Therefore, the settings for Sample A are recommended for the proposed approach.

Besides, with the aid of VSS, the computational cost has been significantly reduced.
Since VSS will not generate the entire searching space, the actual computational cost for
forming the searching space is the cost of generating real solutions. The computational cost
(cs) of forming the searching space can be calculated with the Equation (10).

If one sets the number of bees as b and the number of iterations as w, then the number
of solutions that the program (detailed in Algorithm 1) generates in one run is

cs = b× w× 3∗ (10)

(* each bee populates one solution and generates at most two neighbour solutions, so each
bee generates at most three solutions in one iteration.)

As explained above, the scale of the entire searching space is the factorial of the number
of educators, that is, L!. Therefore, the reducing computational cost can be calculated with
Equation (11). (

1− cs
L!

)
× 100% (11)

Given that the result of a factorial is generally gigantic, computational cost will be
considerably reduced.

6. Comparison Study

With the purpose of verifying the performance of the proposed approach in solving
STPs, a CP is implemented for the comparison study, since STPs are considered constraint
satisfaction problems and CP has been proven to successfully solve various problems,
including timetabling [58]. The CP applied to the investigated problem is demonstrated in
Figure 4. The steps of testing data retrieval and solution population are the same as the ones
detailed in the initialisation stage in Step 1 of Algorithm 1. After that, unassigned classes
and the populated educator list will be consecutively visited. If the consulting educator
satisfies the constraints of expertise and availability of the selected class, the educator will
be allocated to the class. If none of the educators can be allocated to the current class,
the class will remain unassigned and the consecutive class will be selected to look for an
eligible educator. If the number of unassigned classes exceeds the limitation, backtracking
will be triggered. If all the classes have attempted to be assigned an educator, a solution will
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be outputted, and then its objective function value will be evaluated. If the backtracking
reaches the first class of the course timetable, the current solution is not feasible and another
solution will be populated.
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To allow the modified ABC algorithm and CP be more comparative, the CP will be
fed with Sample A, shown in Table 4, which can reach a better solution with the smallest
population and iteration. As it is known that there are 27 unassignable classes in the dataset,
to avoid over-backtracking, the compared approach sets up a backtracking trigger with the
value 27, which is the N parameter in Figure 4.

This comparison study tests both the proposed modified ABC algorithm and CP ten
times. The results of time spent in program execution, the number of unallocated classes
and the objective function value will be compared. The comparison results are represented
in Table 6.

Table 6. Comparison results of ABC approach and CP approach.

Items
Proposed ABC CP

Best Average Best Average

Time spent (seconds) 4.742 4.983 3.5 3.6108
Unallocated classes 1 0 0.5 12 12

Objective function values 44.0740 42.4299 30.5128 30.1158
1 The numbers have been offset by 27. Those 27 classes have been manually confirmed as non-allocatable.
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From Table 6, the following findings can be discovered.

• CP is slightly faster than the modified ABC algorithm in solution-seeking (3.6108 s
over 4.983 s on average).

• The modified ABC algorithm can allocate all the non-conflict classes. However, CP has
12 allocatable classes left.

• The modified ABC algorithm can seek a solution that is 40.88% better than CP in terms
of objective function values gaining (42.4299 against 30.1158 on average).

Overall, the modified ABC algorithm can find out a better solution than CP in terms
of hard constraint satisfaction and objective function optimisation. Although the proposed
ABC is slower than CP in program execution, a one-second time difference for a practical
scenario is insignificant.

7. Conclusions and Future Work

This research aims at providing an effective solution for solving an STP with the
considerations of educators’ availabilities, preferences and expertise as a whole. The STP is
an ETP that has not advanced as quickly as the other two types due to its diversity and
complexity. Most STP research has only focused on educators’ availabilities rather than
taking educators’ preferences and expertise into consideration. This paper proposed a
conceptual model of the STP and introduced a novel VSS method to reduce the searching
space. A modified ABC algorithm is applied to the STP model.

The proposed approach is simulated with a large, randomly generated dataset. The ex-
perimental results demonstrate that the proposed approach is able to solve the STP and
handle a large dataset in an ordinary computer hardware environment, thereby signifi-
cantly reducing computational costs. Compared to the traditional constraint programming
method, the proposed approach is more effective and can provide more satisfactory solu-
tions by considering educators’ availabilities, preferences and expertise levels.

For future work, the proposed approach will be tested with datasets from real-world
cases. The computing performance will be further evaluated by comparing it with other
bio-inspired optimisation algorithms such as PSO.
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