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Abstract: This paper proposes a logarithmic version of the two-component ACD (LogCACD) model
with no restrictions on the sign of the model parameters while allowing the expected durations to be
decomposed into the long- and short-run components to capture the dynamics of these durations.
The extended generalised inverse Gaussian (EGIG) distribution is used for the error distribution as
its hazard function consists of a roller-coaster shape for certain parameters’ values. An empirical
application from the trade durations of International Business Machines stock index has been carried
out to investigate this proposed model. Extensive comparisons are carried out to evaluate the
modelling and forecasting performances of the proposed model with several benchmark models and
different specifications of error distributions. The result reveals that the LogCACDEGIG(1,1) model
gives the best in-sample fit based on the Akaike information criterion and other criteria. Furthermore,
the estimated parameters obtained through the maximum likelihood estimation confirm the existence
of the roller-coaster-shaped hazard function. The examination of LogCACDEGIG(1,1) model also
provides the best out-of-sample forecasts evaluated based on the mean square forecast error using
the Hansen’s model confidence set. Lastly, different levels of time-at-risk forecasts are provided and
tested with Kupiec likelihood ratio test.

Keywords: autoregressive conditional duration; two-component model; extended generalised
inverse Gaussian; hazard function; time-at-risk

MSC: 37M10; 62M10; 91-10

1. Introduction

In finance, duration is defined as the time interval between two consecutive events.
For example, duration data that have been studied by researchers are trade, quote, price,
transaction, and volume. As discussed by [1], financial durations played an important
role in understanding and processing of private and public information in a financial
market. With the advancement of technology, high frequency financial duration data can
be recorded and are collected in irregular time intervals. In general, they show a strong
autocorrelation which can be used to study the intraday market behaviours and dynamic
of trades.

The duration models originated from the family of autoregressive conditional duration
(ACD) model introduced by [2] and treated the transaction arrival time as a random variable
in the dependent point process where its conditional intensity depends on the past dura-
tion. In the early stage, ACD models have been expressed in a linear model specification
consisting of non-negative model parameters and non-negative error distributions such as
the exponential (Exp) and Weibull (Wei) distributions [2] and the generalised gamma (GG)
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distribution [3]. The limitation of these models is whenever some other variables having
negative coefficients are assigned to the linear autoregressive equation, the durations might
become negative. Meanwhile, it is quite frequent that these ACD models will impose an
exponential decay pattern on the autocorrelation function and, in general, will not account
for the long-range dependence in durations. Therefore, the logarithmic ACD (LogACD)
model of [4] was introduced with no restrictions on the sign of the parameters to guarantee
the positiveness of the process and the fractionally integrated ACD (FIACD) model of [5]
was introduced to capture the long-range dependence in durations, which is shown to
be more flexible than the linear ACD model. Recently, several nonlinear ACD models
have been developed to better delineate the trade duration process, see for example the
threshold ACD model [6], the asymmetric ACD and asymmetric LogACD models [7], and
the augmented ACD model [8]. An informative review on the various ACD models with
its applications can be obtained in [9–11].

It being the case that most of the ACD models belong to the family of one-component
models, [12] introduced the two-component ACD (CACD) model to fit the International
Business Machines (IBM) trade durations to measure the impact of durations on the price
volatility. The main feature of this duration model is that it consists of a long-run (trend)
component and a short-run (transitory) component, and the sum of these two components
establishes a long-range dependence in the duration process, which helps in capturing
the complexity of duration dynamics in contrast to the one-component ACD models. To
this end, [13] developed an alternative way of capturing long-range dependence in the
trade duration series by extending the component multiplicative error model. However,
little is known about the extension of the CACD model with no restrictions on the sign
of the parameters, and hence we are keen to answer the research question of whether the
extended CACD model with no sign restrictions will provide a better fit to the data as
compared to the one-component models as well as the CACD model.

The choice of error distributions plays an important role in ACD modelling. [2] in-
troduced the basic ACD model by considering the Exp and Wei as the error distributions.
The Exp distribution with a constant hazard function and the Wei distribution with mono-
tonically increasing or decreasing hazard function, however, are too restrictive, and thus,
various error distributions have been considered to provide greater flexibility to the con-
structed models. Some examples include the GG distribution [3], the Burr type XII (Burr)
distribution [14], the generalised F distribution [15], the Pareto distribution [16], the Lognor-
mal distribution [17], the extended Weibull distribution [18], the Fréchet distribution [19],
the generalised beta of type 2 (GB2) distribution [20] and the mixture of GB2 distribu-
tion [21]. Comparison of the ACD modelling performance using various distributions was
addressed by [22–24], providing distributions either monotonically increasing, decreasing
or non-monotonic shapes such as bathtub or upside-down-bathtub shape of the hazard
function constituting of, at most, a single turning point. To the best of our knowledge, there
has thus far been relatively little research into this area where most of the ACD models
with error distributions have only a single turning point hazard function. In this aspect, we
are interested to study this to see if the hazard function of the error distribution consisting
of more than one turning point with a roller-coaster shape would help to increase the
flexibility of the model.

The liquidity risk such as the minimal time without any trade occurring is valuable
for market makers and traders and is analogous to the value-at-risk introduced in volatility
literature. Time-at-risk (TaR) is defined as the extreme risk of time between two consecutive
transactions at a certain risk level. [25] showed that the TaR can be calculated from the
product of the conditional expectation of durations and the inverse of the cumulative
distribution associated with the error term. In the meantime, [21] used the basic ACD
models with mixed distribution to compute the TaR and conditional TaR (CTaR) forecasts
of trade durations, and the TaR performance was then evaluated using violation rate
and quantile loss function. The performances of TaR and CTaR were further tested by
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employing some other common backtests as illustrated by [26,27] to confirm the accuracy
of their forecasts.

The contribution of this paper is threefold. Firstly, we propose the logarithmic CACD
(LogCACD) model, which allows for no restrictions on the sign of the parameters while the
conditional expectation of durations is decomposed into the long- and short-run compo-
nents. As the error distribution is a crucial factor in constructing a model, our second aim is
to model the duration data using the LogCACD model with flexible extended generalised
inverse Gaussian (EGIG) distribution having the roller-coaster-shaped hazard function.
The effects of model specification and error distribution on the performances of various
ACD models are then examined by comparing the in-sample model fits and out-of-sample
forecasts. Subsequently, the in-sample model fitting performance is evaluated using several
criteria and loss functions while the out-of-sample forecasts are tested using the model
confidence set (MCS) procedure of [28] to acquire a superior set of models (SSM). Lastly,
the empirical study of IBM trade durations is investigated with the detailed illustration
of the model fitting and forecasts of TaR under various risk levels. It follows that the SSM
are computed and the accuracy of the TaR forecasts is tested by the Kupiec likelihood ratio
(KLR) test [26].

The remainder of this paper is organised as follows. Section 2 reviews several existing
ACD models including the CACD model and the motivation of the LogCACD model, while
Section 3 introduces the EGIG distribution and other error distributions adopted for these
duration models. Section 4 describes the empirical data used in the preliminary analysis,
and Section 5 reports the model fitting and forecasting results as well as the forecast of TaR.
Finally, Section 6 concludes the paper.

2. The General Class of ACD Models

Let x∗i be the i-th duration between two consecutive transactions occurring at random
times ti and ti−1 such that

x∗i = ti − ti−1, i = 1, 2, . . . , N,

and a sequence of diurnally adjusted durations, xi is calculated by

xi =
x∗i

Φ(ti)
, (1)

where Φ(ti) is the deterministic function used to remove the diurnal effect of x∗i (see [29]).

2.1. Basic ACD and CACD Models

Let ψi be the conditional expectation of xi which is defined as

ψi = E(xi|xi−1, xi−2, . . . , x1) = E(xi|Fi−1),

where Fi−1 = {xi−1, xi−2, . . . , x1} is the information set available up to ti−1. Then, the
diurnally adjusted duration xi at time ti can be modelled as

xi = ψiεi, (2)

where εi is a sequence of independent and identically distributed non-negative random
variables with a known probability density function (pdf) f (·) such that E(εi) = 1 and εi is
independent of Fi−1.

(a) Basic ACD model

The basic ACD (P ,Q) model specification of orders P and Q is given by

ψi = ϑ + ∑P
j=1 αjxi−j + ∑Q

k=1 βkψi−k (3)
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where the parameters ϑ > 0, αj ≥ 0 and βk ≥ 0 are restricted to be non-negative to ensure
the positivity of ψi. The unconditional expectation of xi can be calculated from

µ = E(xi) =
ϑ

1−∑Pj=1 αj −∑Pk=1 βk
(4)

if ∑Pj=1 αj + ∑Pk=1 βk < 1

(b) CACD model

Using the Equations (3) and (4), a dynamic structure of ψi under the basic ACD(1,1)
model can be written as

ψi = µ(1− α1 − β1) + α1xi−1 + β1ψi−1
= µ + α1(xi−1 − µ) + β1(ψi−1 − µ),

(5)

where µ is the constant trend of ψi and (xi−1 − µ) is the shock of duration.
For a more general specification, the constant trend µ can be modelled in a dynamic

structure (denoted as ψi,1), which will be allowed to evolve slowly in an autoregressive
manner. More specifically, the dynamic trend of the conditional expectation of xi, ψi,1 can
be defined as

ψi,1 = ωµ + ρµψi−1,1 + αµ(xi−1 − ψi−1), (6)

which is called the long-run component. On the other hand, a short-run component, ψi,2, is
defined as the difference between ψi and the long-run component, ψi,1. To be more specific,
the short-run component, ψi,2, is

ψi,2 = ψi − ψi,1 = α1(xi−1 − ψi−1,1) + β1(ψi−1 − ψi−1,1). (7)

Hence, the CACD(1,1) model specification can be written as

ψi = ψi,1 + ψi,2, (8)

ψi,1 = ωµ + ρµψi−1,1 + αµ(xi−1 − ψi−1),

and
ψi,2 = (α1 + β1)ψi−1,2 + α1(xi−1 − ψi−1).

Note that the duration innovation (xi−1 − ψi−1) will drive both the long- and short-run
components at the rate of αµ and α1, respectively. The long- and short-run components have
the respective unconditional mean of E(ψi,1) = ωµ/

(
1− ρµ

)
and E(ψi,2) = 0 which leads to

the long-run component converging into a constant level at ωµ/
(
1− ρµ

)
and the short-run

component mean-reverting to zero at a geometric rate of (α1 + β1) when 0 < (α1 + β1) < 1.
If 0 < (α1 + β1) < ρµ < 1, then the long-run component has much slower mean-reverting
rate or more persistent than the short-run component. For CACD(1,1) model, the following
non-negativity constraints are needed to ensure the positivity of the conditional expectation
of durations:

ωµ > 0, ρµ > 0, αµ > 0, α1 > 0, β1 > 0 and 0 < αµ < α1,

which are compatible with the stationarity conditions of (α1 + β1) < 1 and ρµ < 1. Princi-
pally, the CACD model resembles the component generalised autoregressive conditional
heteroskedasticity (CGARCH) model, hence the constraints’ development of the CACD(1,1)
model is in analogous to the CGARCH(1,1) model and the details of the illustrations can be
found in the appendix of [30].
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Essentially, the conditional expectation of diurnally adjusted duration for the CACD(1,1)
model in Equation (8) can be written as the basic ACD(2,2) model as follows:

ψi = (1− α1 − β1)ωµ +
(
αµ + α1

)
xi−1 +

[
−αµ(α1 + β1)− α1ρµ

]
xi−2

+
(
ρµ + β1 − αµ

)
ψi−1 +

[
αµ(α1 + β1)− β1ρµ

]
ψi−2.

The above can be reduced to the basic ACD(1,1) model by setting α1 = β1 = 0 and
ρµ = αµ + βµ. This indicates that the CACD(1,1) model encompasses higher order of the
basic ACD model as discussed by [12].

2.2. LogACD and LogCACD Models

To ensure the positiveness of the conditional expectation of durations with no restric-
tions on the sign of the parameters of the ACD model specification, [4] defined ψi as the
logarithmic of the conditional expectation of xi, so that:

ψi = ln[E(xi|xi−1, xi−2, . . . , x1)] = ln[E(xi|Fi−1)].

Consequently, the diurnally adjusted duration, xi, can be modelled as

xi = eψi εi. (9)

(a) LogACD model

The LogACD(P ,Q) model specification of orders P and Q is given by

ψi = ϑ + ∑P
j=1 αjln

(
xi−j

)
+ ∑Q

k=1 βkψi−k (10)

where αj and βk are parameters without positivity constraints. For the process to be weakly

stationary, the constraint
∣∣∣∑Pj=1 αj + ∑Pk=1 βk

∣∣∣< 1 is required.

(b) LogCACD(1,1) model

Motivated by the flexibility of CACD(1,1) model specification and imposing no restric-
tions on the sign of the parameters of LogACD model, we propose the logarithmic version
of the CACD(1,1) called LogCACD(1,1) model, which shares the similar structure with the
CACD(1,1) model defined as

ψi = ψi,1 + ψi,2, (11)

ψi,1 = ωµ + ρµψi−1,1 + αµ[ln(xi−1)− ψi−1],

and
ψi,2 = (α1 + β1)ψi−1,2 + α1[ln(xi−1)− ψi−1],

where ψi,1 and ψi,2 are, respectively, the long- and short-run components. With no restric-
tions on the sign of the parameters, LogCACD model requires fewer restrictions on the
model parameters as compared with CACD model. To avoid interchangeable between
the two components, we impose the restriction |α1 + β1| <

∣∣ρµ

∣∣ < 1, which is also the
stationarity condition of ln(xi).

Analogous to the CACD(1,1) model, the logarithmic of the conditional expectation of
diurnally adjusted duration for LogCACD(1,1) model in Equation (11) can be rewritten as
the LogACD(2,2) stated as

ψi = (1− α1 − β1)ωµ +
(
αµ + α1

)
ln(xi−1) +

[
−αµ(α1 + β1)− α1ρµ

]
ln(xi−2)

+
(
ρµ + β1 − αµ

)
ψi−1 +

[
αµ(α1 + β1)− β1ρµ

]
ψi−2.

It can be reduced to the LogACD(1,1) model by assigning α1 = β1 = 0 and ρµ = αµ + βµ.
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3. Error Distributions for ACD Models and Estimation

To improve the flexibility of hazard function in ACD models, we use the EGIG dis-
tribution proposed by [31], which contains more than one turning point in the hazard
function. Further details of the EGIG distribution, its statistical properties, inferences and
applications are available in [32–34]. To facilitate the comparison, several error distributions
such as Wei, GG, Burr and GB2 are also considered.

Let yi be a EGIG distributed random variable, such that yi ∼ EGIG(λ, δ, v, w). The
pdf, cumulative density function (cdf) and hazard function of yi, are, respectively, given by

f (yi) =
δyλ−1

i
2vλ/δ Kλ/δ(w)

exp
[
−w

2

(
v−1yδ

i + vy−δ
i

)]
,yi > 0, (12)

F(yi) =

γ

(
λ
δ , wyδ

i
2v , w2

4

)
21−λ/δ

(
wλ/δ

)
Kλ/δ(w)

, (13)

and

h(yi) =
δyλ−1

i

v λ/δ

[
2Kλ/δ(w)− 2λ/δ w−λ/δ γ

(
λ
δ , wyδ

i
2v , w2

4

)] exp
[
−w

2

(
v−1yδ

i + vy−δ
i

)]
, (14)

where λ ∈ R, δ > 0, w > 0, v > 0, Kλ/δ(w) is the modified Bessel function of the third kind

with index λ
δ and γ

(
λ
δ , wyδ

i
2v , w2

4

)
is the generalised incomplete gamma function, which

can be defined as the power series expansion in its general form of exp
(
−ct−1) given by

γ(η, z, c) =
∫ z

0
tη−1 exp(−t− ct−1)dt = ∑∞

k=0
(−c)k

k!
γ(η − k, z),

with γ(η − k, z) =
∫ z

0 tη−k−1 exp(−t)dt is the ordinary incomplete gamma function.
Let εi be a standardised EGIG distributed random variable such that

E(εi) =
v1/δK(λ+1)/δ(w)

Kλ/δ(w)
= 1.

Then, the scale parameter v can be reparametrised as

v =

[
Kλ/δ(w)

K(λ+1)/δ(w)

]δ

.

By substituting the v into Equations (12)–(14), the corresponding pdf, cdf and hazard

function of εi ∼ EGIG

(
λ, δ,

[
Kλ/δ(w)

K(λ+1)/δ(w)

]δ

, w

)
are expressed as

f (εi) =
δελ−1

i [K(λ+1)/δ(w)]λ

2[Kλ/δ(w)]λ+1 exp

−w
2

( εi K(λ+1)/δ(w)

Kλ/δ(w)

)δ

+

(
εi K(λ+1)/δ(w)

Kλ/δ(w)

)−δ
, (15)

F(εi) =

γ

(
λ
δ , w

2

[
εi K(λ+1)/δ(w)

Kλ/δ(w)

]δ

, w2

4

)
21−λ/δ wλ/δ Kλ/δ(w)

, (16)
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and

h(εi) =

δελ−1
i

(
K(λ+1)/δ(w)

)λ
exp

{
−w

2

[(
εi K(λ+1)/δ (w)

Kλ/δ(w)

)δ

+

(
εi K(λ+1)/δ(w)

Kλ/δ(w)

)−δ
]}

(Kλ/δ(w))λ
[

2Kλ/δ(w)− 2λ/δ w−λ/δ γ

(
λ
δ , w

2

[
εi K(λ+1)/δ(w)

Kλ/δ(w)

]δ

, w2

4

)] . (17)

The hazard functions of the standardised EGIG distribution will allow for various
shapes such as monotonically increasing (I), monotonically decreasing (D), upside-down
bathtub (UB) and upside-down bathtub then bathtub (UBB). Different shapes of the stan-
dardised EGIG hazard function can be acquired and subjected to the constraint, ∆, that is

∆ =


−1, if (λ – 1)2 < δ2(δ2 − 1

)
w2

0, if (λ – 1)2 = δ2(δ2 − 1
)
w2

1, if (λ – 1)2 > δ2(δ2 − 1
)
w2

,

and other constraints on the distribution parameters as presented in Table 1 (see [33] for fur-
ther details). Figure 1 shows the plots for hazard shapes using different sets of parameters
with (a) monotonically increasing (I), (b) monotonically decreasing (D), (c) upside-down
bathtub (UB) and (d) upside-down bathtub then bathtub (UBB) which consists of more
than one turning point.

Table 1. Shapes of hazard function for the standardised EGIG distribution.

Shape ∆ Other Constraints

I

–1
0 λ = 1 δ > 1
1 λ < 1 δ > 1
1 λ > 1 δ > 1

D 0 λ = 1 0 < δ < 1

UB
1 λ < 1 0 < δ < 1
1 λ > 1 0 < δ < 1
1 λ = 1

UBB 1 λ < 1 δ > 1

For illustration purposes, other standardised error distributions were also considered
in ACD models, with their respective pdfs and standardisation constraints reflected in
Table 2. Henceforth, the ACD model with any distribution D will be notated as ACDD.

Table 2. Error distributions for ACD models.

Distribution pdf, f(εi) Mean Standardisation Constraint

Wei(a , b) f (εi) =
a
ba εa−1

i exp
[
−
( ε i

b
)a
]

E(εi) = bΓ(1 + 1/a) b = 1
Γ(1+1/a)

GG(a , b, p) f (εi) =
a

bap Γ(p) ε
ap−1
i exp

[
−
( ε i

b
)a
]

E(εi) = b Γ(p+1/a)
Γ(p) b =

Γ(p)
Γ(p+1/a)

Burr(a , q, b) f (εi) =
aq

ba (1+b−aεa
i )

1+q εa−1
i E(εi) = qbB(1 + 1/a, q− 1/a) b = 1

q B(1+1/a, q−1/a)

GB2(a , b, p, q) f (εi) =
a

bap B(p,q)[1+( εi
b )

a
]

p+q ε
ap−1
i E(εi) =

bB(p+1/a,q−1/a)
B(p,q) b =

B(p,q)
B(p+1/a,q−1/a)

Remark: B(·, ·)denotes the beta function and Γ(·) denotes the gamma function.
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From Equation (2), the conditional pdf of xi for the ACDEGIG(1,1) and CACDEGIG(1,1)
models can be written as

f (xi|Fi−1) =
δxλ−1

i [K(λ+1)/δ(w)]λ

2ψλ
i [Kλ/δ(w)]λ+1 exp

−w
2

( xi K(λ+1)/δ(w)

ψi Kλ/δ(w)

)δ

+

(
xi K(λ+1)/δ(w)

ψi Kλ/δ(w)

)−δ
, (18)

i.e., xi|Fi−1 ∼ EGIG

(
λ, δ,

[
ψi Kλ/δ(w)
K(λ+1)/δ(w)

]δ

, w

)
.

The corresponding conditional log-likelihood (LL) function is given by

LL = ∑N
i=2 ln[ f (xi|Fi−1)]

= ∑N
i=2

{
ln(δ) + (λ− 1) ln(xi) + λ ln[K(λ+1)/δ(w)]− ln(2)−λ ln(ψi)

−(λ + 1) ln[Kλ/δ(w)]−w
2

[(
xi K(λ+1)/δ(w)

ψi Kλ/δ(w)

)δ

+

(
xi K(λ+1)/δ(w)

ψi Kλ/δ(w)

)−δ
]}

.

(19)

However, since the initial ψ1 is unknown, we set ψ1 = x, where x is the sample mean
of xi.

From Equation (9), the conditional pdf of xi for the LogACDEGIG(1,1) and
LogCACDEGIG(1,1) models can be written as

f (xi|Fi−1) =
δxλ−1

i [K(λ+1)/δ(w)]λ

2eλψi [Kλ/δ(w)]λ+1 exp

−w
2

( xiK(λ+1)/δ(w)

eψi Kλ/δ(w)

)δ

+

(
xiK(λ+1)/δ(w)

eψi Kλ/δ(w)

)−δ
, (20)

i.e., xi|Fi−1 ∼ EGIG

(
λ, δ,

[
eψi Kλ/δ(w)
K(λ+1)/δ(w)

]δ

, w

)
.

The corresponding conditional LL function is given by

LL = ∑N
i=2 ln[ f (xi|Fi−1)]

= ∑N
i=2

{
ln(δ) + (λ− 1) ln(xi) + λ ln[K(λ+1)/δ(w)]− ln(2)− λψi

−(λ + 1) ln[Kλ/δ(w)]− w
2

[(
xiK(λ+1)/δ(w)

eψi Kλ/δ(w)

)δ

+

(
xiK(λ+1)/δ(w)

eψi Kλ/δ(w)

)−δ
]}

,

(21)

with that ψ1 = ln(x).
For the estimation parts, the maximum likelihood estimates are obtained by maximis-

ing the LL functions given by Equations (19) and (21) using the R functions such as gosolnp
and optim, where the gosolnp is to find some suitable initial values of the parameters and
the optim is utilised in optimisation process. The standard errors of the estimates can then
be acquired via the R function such as numericHessian.

4. Data Description

The intra-daily trading times and prices from 3–16 December 2019 in the IBM stock
listed on the New York Stock Exchange (NYSE) were retrieved from the Bloomberg Terminal.
By removing the data recorded outside the regular operating hours of NYSE, a total of
125,658 transactions were collected from 9:30:00 a.m. to 4:00:00 p.m. and these transactions
were treated consecutively from day to day for the calculation of the duration between two
consecutive transactions. After filtering out the zero-valued durations and the durations
between two consecutive days, a series of 46,288 transactions is obtained. For the given
series, we define an event as the IBM stock price changes being greater than or equal to
$0.02, which is a similar procedure to that demonstrated by [35]. To be more concrete, we
first calculated the duration of each event that occurred and removed the durations between
two consecutive days to obtain a series of 7208 durations. The first N = 6633 durations
from 3–13 December 2019 were then used for in-sample model fitting, and the one-step-
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ahead rolling-window technique was used to forecast the out-of-sample duration for
h = 575 durations on the next trading day of 16 December 2019.

The time series plot of the duration series for the period 3–13 December 2019 is
depicted in Figure 2. The graph clearly illustrates that the durations consist of a diurnal
pattern, with high trading activities (short duration) at the start and end of each trading day,
and low trading activities (long duration) in the middle parts. By employing the approach
that uses the deterministic function (see [29], pp. 253–254) to remove the diurnal effect
and obtain the diurnally adjusted duration series by dividing the duration with the fitted
deterministic function (see Equation (1)). Figure 3 shows the diurnally adjusted duration
series; the summary statistics of the series are reported in Table 3. The data shows that the
durations have an average of 2.1294, with 50% of the diurnally adjusted durations above
1.1201. The skewness of 3.5687 and kurtosis of 20.4377 indicates that the data is positively
skewed and has a leptokurtic distribution. Both Ljung-Box (LB) test statistics Q(10) and
Q(20) at lags 10 and 20, respectively, are significant at 1% significance level, implying a
strong autocorrelation in the series.
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Table 3. Summary statistics of the diurnal adjusted durations from 3–13 December 2019.

Mean Median Variance Skewness Kurtosis Min Max Q (10) Q (20)

2.1294 1.1201 8.5131 3.5687 20.4377 0.0361 35.5459 1018.452 * 1591.317 *

* Significance at 1% level.
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5. Results and Discussion
5.1. In-Sample Model Fit

The diurnally adjusted durations series using the variations of basic ACD(1,1) models were
first modelled as demonstrated by ACDWei(1,1), ACDGG(1,1), ACDBurr(1,1), ACDGB2(1,1)
and ACDEGIG(1,1). The results are presented in columns 2 to 6 in Table 4. Among those
basic ACD(1,1) models, the ACDEGIG(1,1) model is chosen as the best-fitted model with the
largest LL of −10895.97, and the smallest Akaike information criterion (AIC) and Bayesian
information criteria (BIC) of 21803.94 and 21844.74, respectively. We further examine
the estimated parameters of the models, we observe that (i) the ACDWei(1,1) model with
â < 1 indicates a monotonically decreasing (D) hazard function, (ii) the ACDGG(1,1)
model with (â p̂ –1) > 0 and â < 1 has a upside-down-bathtub (UB) hazard function,
(iii) the ACDBurr(1,1) model with â > 1 and (â p̂ –1) > 0 gives a UB hazard function, and
(iv) the ACDGB2(1,1) model with (â p̂ –1) > 0, â < 1 and p̂ < 2

â(â+1) −
(â−1)q̂
(â+1) implies a

UB hazard function. However, the ACDEGIG(1,1) model with λ̂ < 1, δ̂ > 1, ŵ > 0 and(
λ̂ – 1

)2
> δ̂2(δ̂2 − 1

)
ŵ2 indicates that the hazard function has more than one turning

point with upside-down bathtub then bathtub (UBB) shape. In addition, the estimates
of α̂1 + β̂1 = 0.9643 from the ACDEGIG(1,1) model possesses the greatest distance from
one as compared to other basic ACD(1,1) models, which indicates the EGIG distribution
indeed helps to capture the persistency of duration. The LB test statistics of the standardised
residuals for all basic ACD(1,1) models are not significant at lags 10 and 20 at 5% significance
level. Meanwhile, the autocorrelation function (ACF) plots of these models are presented
in Figure 4a–e, which confirm that the standardised residuals of the fitted models have no
(weak) serial correlations.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

Lastly, in overall comparison among all the models, the LogCACDEGIG(1,1) model of-
fers the best fit with the largest LL and smallest AIC and BIC as highlighted in boldface in 
Table 4. Figure 5 demonstrates the fitted duration series of the LogCACDEGIG(1,1) model 
superimposed on the observed series while Figure 6 plots the fitted 𝑒 , 𝑒 ,  and 𝑒 ,  
series of the LogCACDEGIG(1,1) model. It is worth noting that the estimated model param-
eters also satisfy the UBB constraints, which confirm the presence of the UBB-shaped haz-
ard function. Moreover, 𝜌  and 𝛼 + 𝛽  of the model suggests that the decay rates of the 
short-run component and long-run component are well-separated, with the short-run 
component having a faster mean-reverting rate than the long-run component. To put it 
simply, the long-run component is more persistent than the short-run component with 0 < 𝛼 + 𝛽 < 𝜌 < 1. With 𝛼 > 𝛼 , the model establishes a greater immediate impact 
on the short-run component than on the long-run component. To ease depiction, Figure 
4g,h display the ACF plots of standardised residuals for the CACDEGIG(1,1) and LogCAC-
DEGIG(1,1) models, respectively, with the LB tests at lags 10 and 20 showing they are not 
significant at 5% significance level. This implies that the component LogCACDEGIG(1,1) 
model has managed to remove the autocorrelation in the IBM trade duration series as 
compared to the LogACDEGIG(1,1) model. 

             

             
Figure 4. ACF plots for the standardised residuals of the fitted models. Figure 4. ACF plots for the standardised residuals of the fitted models.



Mathematics 2022, 10, 1621 12 of 20

Table 4. Parameter estimates, standard errors (in italic), LL, AIC, BIC, Qr(10) and Qr(20) for in-sample estimation of various fitted ACD models.

Parameter
Model

ACDWei(1,1) ACDGG(1,1) ACDBurr(1,1) ACDGB2(1,1) ACDEGIG(1,1) LogACDEGIG(1,1) CACDEGIG(1,1) LogCACDEGIG(1,1)
ϑ 0.0487 *** 0.0772 *** 0.0651 *** 0.0772 *** 0.0746 *** 0.0618 *** - -

0.0089 0.0133 0.0116 0.0133 0.0123 0.0069 - -
α1 0.0805 *** 0.1010 *** 0.0969 *** 0.1012 *** 0.0791 *** 0.0597 *** 0.0723 *** 0.0710 ***

0.0071 0.0094 0.0089 0.0094 0.0077 0.0055 0.0083 0.0074
β1 0.8968 *** 0.8652 *** 0.8749 *** 0.8652 *** 0.8852 *** 0.9104 *** 0.8738 *** 0.8750 ***

0.0095 0.0127 0.0117 0.0127 0.0115 0.0097 0.0147 0.0136
ωµ - - - - - - 0.0058 *** 0.0053 ***

- - - - - - 0.0013 0.0003
ρµ - - - - - - 0.9972 *** 0.9998 ***

- - - - - - 0.0007 0.0004
αµ - - - - - - 0.0076 * 0.0072 ***

- - - - - - 0.0038 0.0023
a 0.8839 *** 0.3801 *** 1.0157 *** 0.3979 *** - - - -

0.0083 0.0308 0.0181 0.0323 - - - -
p - 4.6389 *** - 4.3432 *** - - - -

- 0.7062 - 0.6507 - - - -
q - - 4.1292 *** 200.0000 ** - - - -

- - 0.0181 143.4178 - - - -
λ - - - - 0.4040 *** 0.3633 *** 0.4007 *** 0.3592 ***

- - - - 0.0303 0.0305 0.0297 0.0270
δ - - - - 1.0604 *** 1.0399 *** 1.0833 *** 1.0849 ***

- - - - 0.0544 0.0544 0.0552 0.0446
w - - - - 0.2328 *** 0.2595 *** 0.2169 *** 0.2230 ***

- - - - 0.0395 0.0441 0.0372 0.0309
LL −11,083.35 −10,973.99 −11,037.85 −10,975.21 −10,895.97 −10,890.23 −10,889.74 −10,878.35

AIC 22,174.71 21,957.97 22,085.70 21,962.43 21,803.94 21,792.45 21,795.49 21,772.69
BIC 22,201.91 21,991.97 22,119.70 22,003.23 21,844.74 21,833.25 21,849.89 21,827.09

Qr(10) 12.1400 16.6061 * 16.1375 * 16.6614 * 11.5349 49.5479 *** 12.2383 18.2597 *
Qr(20) 19.1207 23.6021 23.0540 23.6568 19.0005 67.7134 *** 20.5359 27.2273

Note: Qr(m) is the LB test statistic at lag m of the standardised residuals. *** Significance at 1% level; ** Significance at 5% level; * Significance at 10% level.
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Subsequently, the modelling performance of the ACD model with linear mean
specification, ACDEGIG(1,1) and the ACD models with nonlinear mean specifications,
LogACDEGIG(1,1) and CACDEGIG(1,1) models (refer to columns 7 and 8 in Table 4) were
compared. It can be noted that the nonlinear models tend to produce a better model fit than
the linear model, in which case the LogACDEGIG(1,1) model gives the smallest AIC and
BIC. However, the LB test statistics of the standardised residuals for the LogACDEGIG(1,1)
model are significant at lags 10 and 20 at 1% significance level which indicate that the
series is highly autocorrelated. The corresponding ACF plot is illustrated in Figure 4f. This
result is in line with the finding of [4] that the LogACD model is unable to capture the long
memory effect of IBM trade duration series.

Lastly, in overall comparison among all the models, the LogCACDEGIG(1,1) model
offers the best fit with the largest LL and smallest AIC and BIC as highlighted in boldface in
Table 4. Figure 5 demonstrates the fitted duration series of the LogCACDEGIG(1,1) model su-
perimposed on the observed series while Figure 6 plots the fitted eψ̂i , eψ̂i,1 and eψ̂i,2 series of
the LogCACDEGIG(1,1) model. It is worth noting that the estimated model parameters also
satisfy the UBB constraints, which confirm the presence of the UBB-shaped hazard function.
Moreover, ρ̂µ and α̂1 + β̂1 of the model suggests that the decay rates of the short-run com-
ponent and long-run component are well-separated, with the short-run component having
a faster mean-reverting rate than the long-run component. To put it simply, the long-run
component is more persistent than the short-run component with 0 <

(
α̂1 + β̂1

)
< ρ̂µ < 1.

With α̂1 > α̂µ, the model establishes a greater immediate impact on the short-run com-
ponent than on the long-run component. To ease depiction, Figure 4g,h display the ACF
plots of standardised residuals for the CACDEGIG(1,1) and LogCACDEGIG(1,1) models,
respectively, with the LB tests at lags 10 and 20 showing they are not significant at 5%
significance level. This implies that the component LogCACDEGIG(1,1) model has man-
aged to remove the autocorrelation in the IBM trade duration series as compared to the
LogACDEGIG(1,1) model.
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5.2. Out-of-Sample Forecasts

Essentially, the ability to generate accurate forecasts of trade durations is of utmost
importance in practice. Thus, we implement the one-step ahead rolling window technique
to forecast h = 575 points on 16 December 2019. To remove the diurnal effect, for each
window, we fit the duration series to a deterministic function and calculate the diurnally
adjusted durations series using Equation (1). The resulting adjusted series was then fitted
with the ACD models to obtain the one-step ahead forecast while the one-step ahead
“observed” adjusted duration was acquired by dividing the observed duration with the
fitted deterministic function.
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For assessing the forecasting ability among competing duration models, the forecast
errors were computed based on several loss functions. Table 5 reports the results of
mean square forecast error (MSFE) and quasi-likelihood (QLIKE) for eight ACD models.
On the basis of MSFE, the LogCACDEGIG(1,1) model appears to be the best forecasting
model among those considered models. However, the CACDEGIG(1,1) model is the most
favourable by means of QLIKE estimate and the LogCACDEGIG(1,1) model is still the
second best.

Table 5. Comparison of forecast errors using MSFE and QLIKE.

Model MSFE QLIKE

ACDWei(1,1) 10.8131 0.7378
ACDGG(1,1) 10.8663 0.7375
ACDBurr(1,1) 10.8601 0.7377
ACDGB2(1,1) 10.8674 0.7375
ACDEGIG(1,1) 10.7880 0.7366
LogACDEGIG(1,1) 10.7842 0.7408
CACDEGIG(1,1) 10.7583 0.7324
LogCACDEGIG(1,1) 10.7522 0.7330

Note: MSFE = 1
h ∑N+h

i=N+1(xi − x̂i)
2 and QLIKE = 1

h ∑N+h
i=N+1

[
xi
x̂i
− ln

(
xi
x̂i

)
− 1
]
.

Meanwhile, the MCS procedure was employed to test the equal predictive ability
among all the models at a certain fixed confidence level, and the SSM was then generated.
The MCS procedure was implemented via the R function of MCSprocedure() and evaluated
using 5000 bootstrap replications tested at a 95% confidence level (see [36]). The rank
and p-values of the MCS procedure using the loss functions, MSFE and QLIKE, are listed
in Tables 6 and 7. Results in Table 6 reveal that all ACD models with EGIG distribution
are not eliminated during the process, implying that the EGIG distribution is capable of
describing the shape and the dynamics of the IBM trade durations. Among these models,
nonlinear ACD models are ranked first through third with the LogCACDEGIG(1,1) model
having the highest rank. On the other hand, none of the models are eliminated through
the MCS procedure using QLIKE loss function (see Table 7). The CACDEGIG(1,1) and
LogCACDEGIG(1,1) models are ranked first and second, respectively, in SSM. Hence, we are
of the view that the two-component ACD models seem to have a better predicting power
than the one-component ACD models.
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Table 6. Comparison of forecasting performance based on MCS procedure with MSFE as loss function.

Model Rank p-value

LogCACDEGIG(1,1) 1 1.0000
CACDEGIG(1,1) 2 1.0000
LogACDEGIG(1,1) 3 0.8916
ACDEGIG(1,1) 4 0.2906
ACDWei(1,1) 5 0.1236

Models eliminated: ACDGG(1,1), ACDBurr(1,1) and ACDGB2(1,1).

Table 7. Comparison of forecasting performance based on MCS procedure with QLIKE as
loss function.

Model Rank p-value

CACDEGIG(1,1) 1 1.0000
LogCACDEGIG(1,1) 2 1.0000
ACDWei(1,1) 3 0.6244
ACDGB2(1,1) 4 0.5318
ACDBurr(1,1) 5 0.5304
ACDGG(1,1) 6 0.5258
ACDEGIG(1,1) 7 0.5248
LogACDEGIG(1,1) 8 0.4742

Models eliminated: None.

5.3. TaR Forecasts

As for the risk analysis part, the one-step ahead forecast of TaR is used to evaluate
the liquidity risk of trade duration. The 100(1− u)% upper limit i-th TaR forecast of the
ACDEGIG(1,1) and CACDEGIG(1,1) models is given by

TaRi,1−u = ψi

(
2z
w

)1/δ Kλ/δ(w)

K(λ+1)/δ(w)
, i = N + 1, N + 2, . . . , N + h, (22)

where u is the upper risk level, while the 100(1− u)% upper limit i-th TaR forecast for the
LogACDEGIG(1,1) and LogCACDEGIG(1,1) models is given by

TaRi,1−u = eψi

(
2z
w

)1/δ Kλ/δ(w)

K(λ+1)/δ(w)
, i = N + 1, N + 2, . . . , N + h, (23)

where the z in both Equations (22) and (23) are the solution of

∫ z

0
tλ/δ−1 exp

(
−t− w2

4
t−1
)

dt = 2(1− u)
(w

2

)λ/δ
Kλ/δ(w). (24)

The derivations of TaRi,1−u indicated by Equations (22) and (23) are shown in the
Appendix A. Table 8 provides the 100(1− u)% upper limit TaR forecasts for various basic
ACD(1,1) models under different distributions.

In order to assess the quality of TaR forecasts, the model should always be backtested
with appropriate statistical tools. Amongst these, the violation rate (VR) for the upper
quantile is computed as

νu =
nu

h
=

1
h ∑N+h

i=N+1 I(xi > TaRi,1−u), (25)

where nu is an estimate of the number of TaR violations at the upper risk level u and I(·)
represents an indicator function. The ratio of VR, RVRu = νu

u , indicates an agreement
between νu and u in which the ratio equals one implies a complete agreement. Table 9
reports the νu and RVRu of TaR forecasts for upper risk levels of 0.025, 0.05 and 0.10. It
should be noted that all the estimated νu values are in line with their respective risk levels
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of the models, particularly the TaR values based on the LogCACDEGIG(1,1) model. These
values have the closest νu values to its target risk levels as well as the RVRu values having
the smallest deviation from the value of one for risk levels of 0.05 and 0.10, indicating a
close agreement between observed durations and TaR forecasts.

Table 8. TaRi,1−u for basic ACD(1,1) model under different distributions.

Model TaRi,1−u

ACDWei(1,1) ψi
Γ(1+1/a) [− ln(u)]

1
a

ACDGG(1,1)
ψiΓ(p)

Γ(p+1/a) z
1
a ,

where z is the solution of
∫ z

0 tp−1 exp(−t)dt = (1− u)Γ(p)

ACDBurr(1,1) ψi
q B(1+1/a, q−1/a)

[
u−

1
q − 1

] 1
a

ACDGB2(1,1)
ψiB(p,q)

B(p+1/a,q−1/a)

[
z

1−z

] 1
a ,

where z is the solution of
∫ z

0 tp−1(1− t)q−1dt = (1− u)B(p, q)

Table 9. Risk performance measures for one-step-ahead TaR forecasts and the p-values of KLR test at
upper risk levels 0.025, 0.05 and 0.10 using various ACD models.

Model

u
0.025 0.05 0.10

νu RVRu
p-value of
KLR Test νu RVRu

p-value of
KLR Test νu RVRu

p-value of
KLR Test

ACDWei(1,1) 0.0313 1.2522 0.3512 0.0626 1.2522 0.1812 0.1357 1.3565 0.0066 ***
ACDGG(1,1) 0.0226 0.9043 0.7090 0.0574 1.1478 0.4264 0.1322 1.3217 0.0138 **
ACDBurr(1,1) 0.0243 0.9739 0.9199 0.0626 1.2522 0.1812 0.1426 1.4261 0.0013 ***
ACDGB2(1,1) 0.0226 0.9043 0.7090 0.0574 1.1478 0.4264 0.1322 1.3217 0.0138 **
ACDEGIG(1,1) 0.0261 1.0435 0.8683 0.0574 1.1478 0.4264 0.1270 1.2696 0.0378 **

LogACDEGIG(1,1) 0.0330 1.3217 0.2387 0.0609 1.2174 0.2468 0.1304 1.3043 0.0195 **
CACDEGIG(1,1) 0.0261 1.0435 0.8683 0.0591 1.1826 0.3283 0.1252 1.2522 0.0515 *

LogCACDEGIG(1,1) 0.0278 1.1130 0.6698 0.0557 1.1130 0.5410 0.1252 1.2522 0.0515 *

*** Significance at 1% level; ** Significance at 5% level; * Significance at 10% level.

Apart from these measures, the KLR test was also carried out to evaluate the accuracy
of the estimated TaR. Let the number of TaR violations nu follow a binomial distribution
with h trials and success probability u. [26] proposed a likelihood ratio (LR) test statistic as

LR = −2 ln[unu(1 – u)h−nu ] + 2 ln
[
(nu/h)nu(1 –(nu/h))h−nu

]
~ χ2

1, (26)

where χ2
1 denotes a chi-squared distribution with one degree of freedom under the null

hypothesis that TaR model is correctly specified. The p-values of the KLR test are reported
in Table 9 and the findings show insufficient evidence to reject the null hypothesis for the
upper risk levels 0.025 and 0.05 for all ACD models at 10% significance level. However,
only the TaR forecasts based on the CACDEGIG(1,1) and LogCACDEGIG(1,1) at upper risk
level 0.10 are not rejected at 5% significance level, implying that these two models provide
more precise TaR forecasts. For the sake of illustration, Figure 7 plots the TaR upper limits
at 90%, 95% and 97.5% using the LogCACDEGIG(1,1) model together with its observed
durations and it can be observed that the TaR forecasts at various levels are quite capable
of capturing the trend of the observed durations well.
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6. Conclusions

Generally, this paper proposes a novel model called the LogCACD model with no
restrictions on the sign of parameters while allowing the expected durations to be decom-
posed into the long- and short-run components in duration modelling. The aggregation of
long- and short-run components leads to a slowly decaying autocorrelation that closely
resembles the one observed on trade duration data. We first analysed the goodness of fit
of the proposed LogCACD model with three different linear and nonlinear benchmark
models, namely ACD, LogACD and CACD for capturing the dynamics of trade durations
in terms of their in-sample model-fit and out-of-sample forecast performances. It was then
followed by the investigation of the effect of different distribution assumptions for these
models, in which a flexible EGIG error distribution with a roller-coaster shaped hazard
function was adopted and compared the performance with the Wei, GG, Burr and GB2
error distributions. Finally, for risk measure analysis, the TaR forecasts were computed and
evaluated using various performance measures and backtests.

Meanwhile, an empirical application based on IBM trade durations with the prelim-
inary comparison of the in-sample model fit was carried out using the basic linear ACD
models under different error distributions. The findings reveal that the ACDEGIG offers
the best model fit and all the estimated parameters fulfil the constraints of the UBB-shaped
hazard function (see Table 1) highlighting the practical advantage of the EGIG distribution
as a potential error distribution for ACD modelling. In addition, the linear and nonlinear
ACD models were contrasted with the EGIG distribution, and the result appears to warrant
the conclusion that the LogCACDEGIG model tends to outperform the other models, which
indicates that the choices of mean specifications and error distributions turn out to be the
important factors for improving modelling performance of trade duration.

To further examine the applications of nonlinear mean specifications and EGIG distri-
bution for enhancing the duration forecasts, the forecasting performance of these models
was evaluated via loss functions, namely MSFE and QLIKE and tested using the MCS test.
The LogCACDEGIG model seems to provide the smallest and the second smallest ranks
based on MSFE and QLIKE, respectively, and the MCS test procedure also confirms the
predictive ability of LogCACDEGIG model in producing precise forecasts. Concurrently, the
computed TaR forecasts of these models were evaluated to assess the forecast accuracy and
the results appear to show that the TaR forecasts based on LogCACDEGIG model at all risk
levels are reasonably reflected in terms of the ratio of violation rates. The KLR test is also in
line with the accuracy of the TaR forecasts.

As a summary, it is worth noting that the LogCACD model with nonlinear mean spec-
ification and a flexible EGIG distribution tends to improve the trade durations forecasting
performance under study. For illustration purposes, assuming that there are only two
types of traders in the market constituted by the uninformed and informed traders. Our
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proposed component model could be used to explain the trade behaviour of these traders.
Both the long- and short-run components represent the uninformed and informed trader’s
trade duration, respectively. The long-run component exhibits highly persistent behaviour,
which supports the hypothesis that the uninformed trader acquires the delay trading in-
formation from the informed trader. This result is in line with the finding of [37], that
uninformed trade responds more to past uninformed trade than it does to past informed
trade. Despite the encouraging results of this study, the change of durations might also be
affected by other market events such as price and volume. Hence, in future works, it would
be interesting to extend our model by incorporating other exogenous variables such as
transaction volume, trading intensity and spread associated with trade duration to improve
the predictive ability. Moreover, it would be meaningful to consider the application of
EGIG distribution in stochastic conditional duration models which can account for the
structural change exhibited by the durations.
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Appendix A

The conditional cdf of xi for the ACDEGIG(1,1) and CACDEGIG(1,1) models is given by

F(xi|Fi−1) =

γ

(
λ
δ , w

2

[
xi K(λ+1)/δ(w)

ψiKλ/δ(w)

]δ

, w2

4

)
21−λ/δ

(
wλ/δ

)
Kλ/δ(w)

,

i.e., xi|Fi−1 ∼ EGIG

(
λ, δ,

[
ψi Kλ/δ(w)
K(λ+1)/δ(w)

]δ

, w

)
. The 100(1− u)% upper limit i-th TaR fore-

cast, TaRi,1−u, can be calculated by equating the conditional cdf of xi with 1− u, that is

γ

(
λ
δ , w

2

[
TaRi,1−u K(λ+1)/δ(w)

ψiKλ/δ(w)

]δ

, w2

4

)
21−λ/δ

(
wλ/δ

)
Kλ/δ(w)

= 1− u. (A1)

To solve Equation (A1), let

z =
w
2

[
TaRi,1−u K(λ+1)/δ(w)

ψiKλ/δ(w)

]δ

. (A2)
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Then, we have

γ

(
λ

δ
, z,

w2

4

)
= 2(1 – u)

(w
2

)λ/δ
Kλ/δ(w),

where z is the solution of∫ z

0
tλ/δ−1 exp

(
−t− w2

4
t−1
)

dt = 2(1 – u)
(w

2

)λ/δ
Kλ/δ(w).

From Equation (A2), we obtain

TaRi,1−u = ψi

(
2z
w

)1/δ Kλ/δ(w)

K(λ+1)/δ(w)
.

Similar derivation can be applied to the LogACDEGIG(1,1) and LogCACDEGIG(1,1)
models by replacing ψi with eψi .
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